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Abstract—Attack trees are a well-recognized formalism for
security modeling and analysis, but in this work we tackle a
problem that has not yet been addressed by the security or formal
methods community – namely guided design of attack trees. The
objective of the framework presented in this paper is to support
a security expert in the process of designing a pertinent attack
tree for a given system. In contrast to most of existing approaches
for attack trees, our framework contains an explicit model of the
real system to be analyzed, formalized as a transition system that
may contain quantitative information. The leaves of our attack
trees are labeled with reachability goals in the transition system
and the attack tree semantics is expressed in terms of traces
of the system. The main novelty of the proposed framework is
that we start with an attack tree which is not fully refined and
by exhibiting paths in the system that are optimal with respect
to the quantitative information, we are able to suggest to the
security expert which parts of the tree contribute to optimal
attacks and should therefore be developed further. Such useful
parts of the tree are determined by solving a satisfiability problem
in propositional logic.

I. Introduction

Attack trees [26], [21] are probably the best known and the
most often used in practice modeling language for security
and risk analysis [10], [24], [18]. The first strong point of
attack trees is that they provide a simple and very intuitive
way of representing and structuring attacks. The objective of
the attacker is depicted with the root node of the tree and the
remaining nodes refine this objective into smaller and easier
to grasp subgoals that need to be reached to achieve the root
goal. This hierarchical structure of attack trees implies the
second great advantage of the model, namely the possibility
of performing efficient quantitative evaluation of security of
the analyzed system. By estimating time, cost, impact, or
probability of various attacks, the optimal (from the point of
view of the attacker) attack paths can be found. This allows
the analyst to identify the corresponding vulnerabilities, and
thus identify the weakest points in the system, where patches
should be applied or detection mechanisms should be put in
place.

The setting: In this work, we consider attack trees with
OR, AND, and SAND refinements. We follow a system-based
approach, close to the one recently proposed in [4], where
the real system to be analyzed with the help of an attack
tree is modeled explicitly as a transition system. Furthermore,
the labels of the leaf nodes in our attack trees represent
reachability goals in this system and can be more complex

or more general than classical basic actions used to label the
leaves in the standard attack tree approaches. We can thus
consider trees that are not yet fully deployed, i.e., whose leaves
are to be further refined. The semantics of our attack trees
relies on the notion of traces that can be interpreted in the
underlying system. Next, by a monitoring technique, we can
focus on all attacks captured by our attack tree formalization
that also exist in the analyzed real system. This way, we
can capture more dependencies than those represented by the
AND and SAND attack tree refinements. The quantitative values
used in our approach originate from the system. This implies
that the value of executing an action (that intuitively may
correspond to taking a weighted transition in the transition
system) may depend on the context of this action in the system.
In other words, executing the same action may take different
values in different places or points in time in the system.

Objective: This work is concerned with the problem of
guiding a security expert in the process of designing a relevant
attack tree. By relevant, we understand a tree where only
the potentially useful parts (i.e., parts that may contribute to
an optimal attack) are developed, and where the constraints
originating from the analyzed system are taken into account
in the quantitative analysis.
• We start with an attack tree τ that is not fully deployed

(potentially composed of the root node only). The labels
of the leaves of this tree represent the reachability goals
in the transition system S modeling the analyzed system.

• We construct an automaton Aτ that accepts the trace
semantics of our attack tree, independently of the system.

• We compute a product τ[S] between the transition system
and the attack tree automaton to restrict the system
behavior to the situations modeled by the attack tree only,
as a kind of monitoring.

• By a quantitative analysis of τ[S], typically by solving
optimal reachability problems, we can synthesize traces
involved in the optimal attacks, called witnesses.

• Given a witness, we provide a method to identify the
leaves in τ that may be involved in such an optimal
attack. We call them useful leaves. We reduce the problem
of determining if a leaf is useful to a propositional
satisfiability problem.

• Identifying useful leaves allows us to suggest to the
security expert which parts of his tree he should refine
and which are unnecessary for further analysis.



Using the above recipe, the security expert is advised on
which parts of a partially deployed attack tree contribute to
the optimal attacks and should therefore be further refined. As
a consequence, the tree constructed using our guided approach
would be smaller than a totally deployed tree built manually,
in a standard, brainstorming-based way. The guidance does
not prevent the expert from refining other nodes, if he wishes,
but tells him they may be less important w.r.t. the quantitative
analysis he is interested in.

The paper is organized as follows. Related work is described
in Section II. We devote Section III to the introduction of
new operations on formal languages that will be used to
formalize the semantics of our attack trees in Section IV
where the construction of the automatonAτ for attack tree τ is
provided. In Section V we explain how to monitor a transition
system with the automatonAτ, and how to perform early-stage
quantitative analysis in this context. Finally, in Section VI, we
exploit the notion of useful positions to formalize our method
for guided design of attack trees, summarized in Section VI-D.
We conclude in Section VII.

II. Related work

Classical formalizations of attack trees, cf., [21], [15], [14],
are usually based on the notion of basic actions: leaves of
attack trees are labeled with actions to be executed by the
attacker and the intermediate nodes describe how these actions
should be combined (using OR, AND, and sometimes SAND
refinements) to construct an attack. A naive, but standard,
quantitative analysis of such trees relies on an incremental
bottom-up approach, intuitively introduced by Schneier in [26]
and formalized for the first time by Mauw and Oostdijk
in [21], where values are assigned to the basic actions and
then propagated to the remaining nodes, depending on the
type of the node’s refinement. One of the weaknesses of
this approach is that the dependencies between the actions
cannot be expressed, and are thus not taken into account in
the value propagation. In addition, since the analyzed system
is not modeled explicitly, the optimal value obtained from the
bottom-up analysis may in reality not be obtainable in the
underlying system. Thus, in reality the bottom-up evaluation
often gives an approximated result rather than the exact,
optimal value.

This observation attracted the attention of researchers with
the formal methods background, who proposed analysis meth-
ods for attack trees based on operational semantics, e.g., [19],
[11]. Such methods permit to better capture the correlations
between actions and benefit from well-known verification
methods, such as optimal reachability, model checking with
temporal logic, etc. In this context, Kumar et al. [19] pio-
neered the use of automata for the analysis of attack trees.
They proposed an effective way of computing the necessary
resources, e.g., time, skills, etc., and the corresponding attack
paths achieving the root goal of an attack tree. Their method
also allows to rank possible attack paths according to a given
quantitative criterion, for instance identify ten cheapest attack
paths. To do so, the leaves of an attack tree are augmented with

a cost structure capturing several quantitative components, e.g.,
time, skills, resources, that can be dependent on each other.
The leaves of the tree are then translated into priced timed
automata (PTA) [7], [2] expressing how the corresponding
basic actions behave in the analyzed system. These basic
automata are combined using PTAs for OR, AND, and SAND
refinements to provide the semantics of the intermediate nodes.
The resulting network of automata is model checked using
the Uppaal CORA tool [29] against the quantitative queries
expressed in weighted CTL.

In [11], Gadyatskaya et al. propose an alternative way of
using timed automata to analyze attack–defense trees [17]
– an extension of classical attack trees with countermeasure
nodes. The main novelty of [11] is to separate the modeling of
the attacker’s and the defender’s behavior from the modeling
of the security scenario itself. In this work, the attacker,
the defender, and the environment are encoded as timed
automata communicating with each other. The modeling of
the environment contains automata for basic actions related to
the elements composing the system, such as locations, assets,
etc. The attacker is stochastic (he selects his actions probabilis-
tically) and constraint by time and available resources. The at-
tacker’s actions are decorated with an interval expressing their
execution time, a probability mass, and the cost. The structure
of an attack–defense tree is encoded as a Boolean formula that
the attacker wishes to become true while taking quantitative
and probabilistic constraints into account. The Uppaal tool is
employed to, given a set of countermeasures deployed by the
defender, find an attack that succeeds within a specified time
interval, estimate the probability of a successful attack within
a given time-bound, or compute the corresponding estimated
cost for the attacker.

The common elements of the works presented above are the
following

1) Modeling of the system is reduced to modeling the
underlying basic actions.

2) The quantitative input values are assigned to the actions
represented by the leaves of the tree.

3) The objective of standard approaches is to analyze an
existing attack tree and not to update or modify it.

These three aspects constitute the main differences between
the existing approaches and the framework that we develop
in this paper. 1) We model the analyzed system explicitly,
as a transition system, and a link is made (language-wise)
between the system states and the labels of the attack tree
nodes. More precisely, the labels in our attack trees describe
reachability goals in the system model. This way the link
between the attack tree nodes and the system behavior is
mathematically robust, at every step of the tree deployment.
Thus, our goal-labeled attack trees are more precise than those
labeled with basic actions, because their labels correspond
exactly to what can happen in the analyzed system. In addition,
our method takes the dependencies that are inherent in the
system model into account. Our product construction between
the tree (automaton) and the system gives a direct mean to
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enforce these dependencies. 2) The formal model of the system
to be analyzed may contain quantitative information that is
used to find optimal attacks. Such an approach is more precise
than the existing approaches relying on values assigned to
basic actions, because it allows for differentiating between the
values of similar actions performed in different contexts. As
a result, our quantitative evaluation provides more accurate
and more realistic results compared to the existing approaches
where the values are assigned to basic actions and where
the system to be analyzed is not modeled explicitly. 3) The
ultimate goal of this work is to provide a formal approach to
support the security expert in the process of developing the
tree. To the best of our knowledge, we are the first ones to
have the objective of guiding the tree design with respect to the
analyzed system and the underlying quantitative information.

III. New operations on formal languages

Given a set X of propositions, we let C+(X) be the set of
positive conjunctive Boolean formulas over X and we refer
to > for the true formula, the neutral element of operator ∧.
The elements of C+(X) will be denoted by b, b′, bi . . . ∈ C

+(X),
Given two formulas b, b′ ∈ C+(X), we write b |= b′ whenever
b′ is a logical consequence of b; in particular, for every b ∈
C+(X), we have b |= >.

In our setting, the set C+(X) will be seen as an alphabet, and
we use notations u1, u2, . . . for finite words over this alphabet,
i.e., the elements of C+(X)∗. The symbol ε represents the
empty word. The size of a word u ∈ C+(X)∗, written |u|, is
the length of the sequence u; thus |ε | = 0. For any 1 ≤ i ≤ |u|,
the expression u(i) denotes the i-th letter of word u. Also, for
any 1 ≤ i ≤ j ≤ |u|, the expression u[i, j] is the subword of u
starting at u(i) and ending at u( j). We also use the standard
notation for concatenation of words u and v: namely, u.v, or
simply uv.

A. Enhanced concatenation and shuffle

We now define two binary operations over (sets of) words:
the enhanced concatenation (Definition 1) and the shuffle1

(Definition 3). Intuitively, the objective of the enhanced con-
catenation will be to capture the sequential composition of
attacker’s goals: either the goals are achieved one after the
other (standard concatenation), or the goals are achieved
simultaneously which is reflected by a logical conjunction.
The shuffle captures the achievements of several goals: it is
inherently combinatorial because the order of these achieve-
ments may be arbitrary, and as for the enhanced concatenation,
some goals may be achieved simultaneously.

Definition 1 (Enhanced concatenation of words). Given two
words u1, u2 ∈ C

+(X)∗ and two letters b1, b2 ∈ C
+(X), we

let the enhanced concatenation of u1 and u2 be the subset
u1 � u2 ⊆ C

+(X)∗ defined by induction over words as follows
• u � ε = ε � u = {u}, for all words u ∈ C+(X)∗,
• (u1b1) � (b2u2) = {u1b1b2u2, u1(b1 ∧ b2)u2}

1There are many other notions of shuffle in the literature, see e.g., [9].

For example, b�>b′ = {b>b′, bb′}, where we freely simplify
all expressions of the form b ∧> or >∧ b by b. We now can
generalize the enhanced concatenation to languages as follows.

Definition 2 (Enhanced concatenation of languages). Let L
and L′ be two languages over alphabet C+(X). We define the
enhanced concatenation of L and L′ as

L � L′ =
⋃

u∈L, u′∈L′
u � u′.

Definition 3 of the shuffle operation is inspired by, e.g. [13].

Definition 3 (Shuffle of words). Given two words u1, u2 ∈

C+(X)∗ and two letters b1, b2 ∈ C
+(X), we let the shuffle of u1

and u2 be the subset u1 ⊗ u2 ⊆ C
+(X)∗ defined by induction

over words as follows
• u ⊗ ε = ε ⊗ u = {u}, for all words u ∈ C+(X)∗,
• b1u1⊗b2u2 = b1(u1⊗b2u2)∪b2(b1u1⊗u2)∪(b1∧b2)(u1⊗u2)

For example, b1b2 ⊗ b3 = {b1b2b3, b1(b2 ∧ b3), b1b3b2, (b1 ∧

b3)b2, b3b1b2}. The shuffle operation is generalized on lan-
guages as follows.

Definition 4 (Shuffle of languages). Let L, L′ ⊆ C+(X)∗ be
two languages. We define the shuffle of L and L′ as

L ⊗ L′ =
⋃

u∈L, u′∈L′
u ⊗ u′.

We end this section with few notions that will be used later.

Definition 5. A word v is embedded into a word u, written
v |= u, if |v| = |u|, and for every 1 ≤ i ≤ |v|, v(i) |= u(i).

For example, b1.(b1 ∧ b2).(b1 ∧ b2) |= >.b2.(b1 ∧ b2).
We next show that enhanced concatenation and shuffle

preserve the regularity of languages by providing automata
constructions for each of them.

B. Automata for enhanced concatenation and shuffle

The property that the class of regular languages is closed by
some operation, for instance complementation, often relies on
finite-state automata constructions (see [12, Chaper 3, Section
3.2]).

Definition 6. A finite-state automaton over a finite alphabet
A is a tuple A = (Q, A, δ, I, F), where Q is a set of states,
δ : Q × A → 2Q is the transition function2, I ⊆ Q is the
set of initial states, and F ⊆ Q is the set of final states,
that w.l.o.g. we may assume “terminal”3. The language of A,
written L(A), is the set of words a0 . . . an ∈ A∗ for which there
exists a sequence of states of A of the form q0, . . . , qn+1 ∈ Q,
with q0 ∈ I, qn+1 ∈ F, and qi ∈ δ(qi−1, ai−1), for 1 ≤ i ≤ n + 1.
The sequence q0, . . . , qn+1 is called a run of A, and since
qn+1 ∈ F it is also accepting the word a0 . . . an.

We make use of automata to obtain the results stated in
Proposition 1.

2We consider non-deterministic automata.
3A terminal state does not have any outgoing transitions.
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Proposition 1. The class of regular languages is closed by
enhanced concatenation and by shuffle.

The rest of this section is dedicated to the proof of Propo-
sition 1.

Let us fix two automata A1 = (Q1,C
+(X), δ1, q0

1, F1) and
A2 = (Q2,C

+(X), δ2, q0
2, F2). We will successively define

automata A1 � A2 and A1 ⊗ A2 in such a way that Propo-
sition 2 holds (its full proof can be found in Appendix A).
Proposition 1 is then a mere corollary.

Proposition 2. L(A1�A2) = L(A1)�L(A2) and L(A1⊗A2) =

L(A1) ⊗ L(A2).

The construction for the enhanced concatenation � is in-
spired from the standard concatenation. The main difference
reflects the ability to concatenate two words by merging the
last letter of the former with the first letter of the latter.
We define A1 � A2 = (Q1 ] Q2,C

+(X), δ, q0
1, F2) (where ]

denotes the disjoint union) by letting the transition function
δ : (Q1 ] Q2) × C+(X) → 2Q1]Q2 be such that q′ ∈ δ(q, b)
whenever one of the four following cases holds
• q ∈ Q1 and q′ ∈ δ1(q, b),
• q ∈ Q2 and q′ ∈ δ2(q, b),
• q ∈ F1 and q′ ∈ δ2(q0

2, b),
• letter b is of the form b1 ∧ b2 such that there exists q1 ∈

δ1(q, b1) ∩ F1, and q′ ∈ δ2(q0
2, b2).

For the shuffle operator ⊗, we define A1 ⊗ A2 = (Q1 ×

Q2,C
+(X), δ, (q0

1, q
0
2), F1×F2) by letting the transition function

δ : Q1 × Q2 × C
+(X) → 2Q1×Q2 be such that: (q′1, q

′
2) ∈

δ((q1, q2), b) whenever one of the three following cases holds
• q′1 = q1 and q′2 ∈ δ2(q2, b),
• q′1 ∈ δ1(q1, b) and q′2 = q2,
• letter b is of the form b1 ∧ b2 with q′1 ∈ δ1(q1, b1) and

q′2 ∈ δ2(q2, b2).
Now that enhanced concatenation and shuffle can be re-

flected by operations over automata, we can enter the core
sections of our contribution which starts with a description of
the attack tree framework we consider in this work.

IV. The attack tree framework
We first introduce the formal framework of attack trees, next

their trace semantics and related automata constructions.

A. Attack trees
In the spirit of [4], attack trees are finite labeled trees whose

leaves are labeled by propositions ranging over a fixed set
Prop, and whose internal nodes (non leaves) are labeled by
a (binary) operator ranging over O = {OR, SAND, AND}. The
elements of O are respectively called “Or”, “Sequential And”
and “And”. However, as opposed to [4] internal nodes do not
display any labeling with propositions as these are not relevant
in this framework. The meaning of operators OR, SAND, and
AND is provided by the trace semantics of attack trees (see
Definition 10).

Before introducing these notions formally, we briefly recall
the mathematical setting for labeled binary trees. Rather than
“node” we will use “position”. Let Σ be a set of labels.

Definition 7 (Σ-labeled binary trees). A Σ-labeled (binary)
tree is a partial function τ : {1, 2}∗ → Σ whose domain Pos(τ),
called the set of positions of τ, is a finite, prefix-closed subset
of {1, 2}∗ such that for every position p ∈ Pos(τ), if p.2 ∈
Pos(τ) then p.1 ∈ Pos(τ).

We write p � q whenever p is a prefix-word of q (p is the
position of an ancestor node of q).

For any position of the form p.i we let par(p.i) = p and we
call it the parent position of p.i.

A Σ-labeled tree τ is a leaf whenever Pos(τ) = {ε}. Given
a position p ∈ Pos(τ), the subtree of τ at position p is the Σ-
labeled tree τ|p defined by Pos(τ|p) := {p′ | pp′ ∈ Pos(τ)} and
τ|p(p′) = τ(pp′). In the sequel, we will identify a leaf τ where
τ(ε) = σ, with its label σ. We write σ(τ1, τ2) for the Σ-labeled
tree τ defined by τ(ε) = σ ∈ Σ, τ1 = τ|1, and τ2 = τ|2; the trees
τ1 and τ2 are the immediate subtrees of τ.

Definition 8. Let τ be a tree and let p ∈ Pos(τ). For any tree
τ′, the substitution of τ′ in τ at position p is the tree τ[p← τ′]
defined by replacing in τ the subtree τ|p by the tree τ′.

We now turn to the framework of attack trees where the set
of labels is specialized to Prop ∪ O (recall that Prop is a set
of propositions and O = {OR, SAND, AND}).

Definition 9 (Attack tree). The class of attack trees over Prop
is the least subset of (Prop∪O)-labeled trees such that for every
γ ∈ Prop, γ is an attack tree, and if τ1 and τ2 are attack trees
and OP ∈ O, then OP(τ1, τ2) is also an attack tree.

AND

SAND

γ1 γ2

OR

γ3 γ4

Fig. 1. The attack tree τe, with the graphical conventions of ADTool [16]

For reasons that will become clear in the next section, we
will refer to propositions of Prop appearing in an attack tree
as goals. Also, a position labeled by OP ∈ O is called an OP
position (and it is not a leaf position).

Given an attack tree τ over Prop, we define `(τ),PosOR(τ),
PosSAND(τ), PosAND(τ) as the set of leaf positions, the set of
OR positions, the set of SAND positions, and the set of AND
positions in τ, respectively. Formally,
• `(τ) =

⋃
γ∈Prop

{p ∈ Pos(τ) | τ(p) = γ};

• for OP ∈ O, PosOP(τ) = {p ∈ Pos(τ) | τ(p) = OP}.

Example 1. Let τe be the attack tree of Figure 1. Its set
of positions is Pos(τe) = {ε, 1, 2, 1.1, 1.2, 2.1, 2.2}. Its root
label is τe(ε) = AND. Its two immediate subtrees τe

|1 and τe
|2
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are respectively SAND(γ1, γ2) and OR(γ3, γ4). The set of leaf
positions of τe is `(τe) = {1.1, 1.2, 2.1, 2.2}, where τe(1.1) = γ1,
τe(1.2) = γ2, τe(2.1) = γ3, τe(2.2) = γ4. Also, PosOR(τe) = {2},
PosSAND(τe) = {1}, PosAND(τe) = {ε}.

B. Trace semantics and automata for attack trees

Attack trees can be given a trace semantics defined as a
language over the alphabet C+(Prop).

Definition 10 (Trace semantics). Let τ be an attack tree over
Prop. The trace semantics of τ is L(τ) ⊆ C+(Prop)∗ defined by
induction over the structure of τ as follows.
• L(γ) = >∗.γ;
• L(OR(τ1, τ2)) = L(τ1) ∪ L(τ2);
• L(SAND(τ1, τ2)) = L(τ1) � L(τ2);
• L(AND(τ1, τ2)) = L(τ1) ⊗ L(τ2).
Elements of L(τ) are called the traces of τ.

Example 2. Let τe be the attack tree from Figure 1. The
trace semantics of τe

|1 is L(τe
|1) = >∗.γ1 � >

∗.γ2, which is
>∗.(γ1 ∧ γ2) ∪ >∗.γ1.>

∗.γ2. Also, L(τe
|2) = >∗.γ3 ∪ >

∗.γ4.
Therefore L(AND(τe

|1, τ
e
|2)) = L(τe

|1) ⊗ L(τe
|2), which is com-

plex to describe, so we only pick some of its elements:
for example, >∗.γ1.>

∗.γ2.>
∗.γ3, and >∗.γ3.>

∗.γ1.>
∗.γ2, and

>∗.γ1.>
∗.γ3.>

∗.γ2, and >∗.(γ1∧γ2∧γ3), and >∗.γ1.>
∗.(γ2∧γ4).

We now establish that the trace semantics of an attack tree
is a regular language. This is achieved by providing finite-
state automata constructions, which not surprisingly because
of Definition 10, use operators � and ⊗ between automata
(see Section III). The result of Theorem 1 is not trivial
because the trace semantics of an attack tree is not a finite
language, but follows from Proposition 2 as the non-standard
operations of enhanced concatenation and shuffle do not yield
non-regularity.

Theorem 1. Let τ be an attack tree over Prop. Then, L(τ) is
a regular language. Moreover, one can effectively construct
the trace automaton of τ, written Aτ, that is a finite-state
automaton over C+(Prop) with L(Aτ) = L(τ).

The rest of this section is dedicated to proving Theorem 1.

Notice that the ability to characterize L(τ) by means of a
finite-state automaton Aτ entails the regularity of L(τ). The
construction of Aτ is inductive over τ.
• For a leaf attack tree γ, by Definition 10 we have L(γ) =

>∗.γ which is clearly regular. A natural automaton that
accepts the language >∗.γ is depicted in Figure 2, where
q is the unique final state.

q0start q
γ

>

Fig. 2. The trace automaton Aγ.

• For an attack tree τ of the form OP(τ1, τ2), by induction
hypothesis, there exists some automata Aτ1 and Aτ2 that
accept L(τ1) and L(τ2) respectively. We now consider the
three possible cases for OP:

– If OP = OR, we define AOR(τ1,τ2) = Aτ1 ∪ Aτ2 that
trivially accepts L(OR(τ1, τ2)).

– If OP = SAND, we let ASAND(τ1,τ2) = Aτ1 � Aτ2 . By
Proposition 2, L(ASAND(τ1,τ2)) = L(τ1) � L(τ2), which
by definition is equal to L(SAND(τ1, τ2)).

– If OP = AND, similarly to the previous case we let
AAND(τ1,τ2) = A1 ⊗A2.

This last case achieves the proof of Theorem 1.

The construction of Aτ may be used to verify the member-
ship problem, that is given a tree τ and a word u, do we have
u ∈ L(τ)? Because the automaton in the worse case (AND-nodes
only) is of size exponential in |τ| (recall that by construction∣∣∣AAND(τ1,τ2)

∣∣∣ =
∣∣∣Aτ1

∣∣∣ × ∣∣∣Aτ2

∣∣∣), and because the emptiness of
an automaton can be decided in NLOGSPACE [28], the
membership problem can be solved in polynomial time.

Most importantly, the trace automaton Aτ can be used
to perform quantitative analysis. Before getting to this, we
explain how the trace automaton of an attack tree can monitor
a system.

V. System-based quantitative analysis

We consider models of systems that rely on standard tran-
sition systems and explain how to monitor the latter with the
trace automaton of an attack tree. Then, we use this monitoring
technique to reduce the synthesis problem of an optimal attack
to the standard optimal reachability problem in quantitative
models4.

In the rest of this section, we fix an attack tree τ
over some set Prop. W.l.o.g. we may assume that Prop =

{γ | γ is a leaf of τ}.

A. Transition systems

Transition systems are very common models, based on
states and transitions between states, that naturally describe
the dynamics of a system.

Definition 11. An Act-labeled transition system over Prop is
a tuple S = (S , S 0, Act,→, λ), where
• S is a finite set of states (elements of S are denoted by

s, s′, s0, s1, . . .), and S 0 ⊆ S is the set of initial states,
• Act is a set of actions, whose typical element is a,
• →⊆ S × Act × S is the transition relation, and we write

s
a
→ s′ instead of (s, a, s′) ∈→, and s → s′ whenever

there is some action a such that s
a
→ s′,

• λ : S → 2Prop is the valuation function that assigns
propositions to states.

Paths of transition systems are central objects as they
represent system executions.

4Extensions of transition systems that own quantitative features, such as
priced timed systems [7], [2].
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s0start

s1

s2 s3

a1 a3

a2 a3
∅

γ4

γ1, γ3 γ2

Fig. 3. The transition system Se.

Definition 12. A path of S is a sequence of states π = s0 . . . sn,
such that si → si+1, for every 0 ≤ i ≤ n − 1. The set of paths
of S is denoted with Π(S). An initial path is a path starting
from an initial state of S.

Definition 13 (Traces). Given a path π = s0s1 . . . sn ∈ Π(S),
we let the trace of π be the finite word over alphabet 2Prop

defined by trace(π) := λ(s0)λ(s1) . . . λ(sn).

Remark 1 (Important). Notice that a trace λ(s0)λ(s1) . . . λ(sn)
can be interpreted as a finite word over C+(Prop) by replacing
each λ(si) by the Boolean formula

∧
γ∈λ(si) γ, with the conven-

tion that
∧
γ∈∅ γ = > (the true formula). It therefore makes

sense to state that a trace of S is embedded into some word
of L(τ) (see Definition 5).

We say that π ∈ Π(S) is a τ-attack on S, if π is an initial
path and trace(π) can be embedded into some u ∈ L(τ). We
abuse notation by writing trace(π) ∈ L(τ) to mean that π is a
τ-attack.

Example 3. Let Se be the transition system over Prop =

{γ1, γ2, γ3, γ4} of Figure 3 (an arrow with “start” is meant to
distinguish initial states, here s0). This system has four states
s0, s1, s2, s3 and three actions a1, a2, a3. The labels of the states
are λ(s0) = ∅, λ(s1) = {γ4}, λ(s2) = {γ1, γ3}, λ(s3) = {γ2}. An
example of an initial path of Se is πe = s0s2s3, whose trace
is trace(πe) = ∅{γ1, γ3}{γ2}. As stated in Remark 1, we can
see this trace as the word ue = >(γ1 ∧ γ3)γ2 ∈ C

+(Prop).
Incidentally, ue ∈ L(τe) (see Figure 1), so that πe is a τe-
attack on Se. Also the path π′e = s0s1s3 has trace ve = >γ4γ2
and one can easily verify that ve < L(τe).

The concept of transition system is central to any sort of
operational models and in particular to the ones that fall into
classes of quantitative systems, such as timed systems [3],
weighted automata [1], and the rich setting of priced timed
automata [7], [2] (a standard input to the Uppaal CORA
tool [29]). As our methodology is meant to be general, we
abstract from the kind of quantitative systems one is interested
in by agreeing on a notation: a quantitative system (or simply
a system) is a pair (S,Q) where S is the underlying transition
system and Q is some extra information that gathers the
quantitative features, if any.

We can exploit the trace automaton Aτ to restrict the
system’s behavior to τ-attacks by performing some product,
called the τ-monitoring of the system.

B. System monitored by an attack tree

To monitor the system, we use a product (Definition 14)
that generalizes the standard product construction between a
transition system S and a finite-state/Büchi automaton A, that
we write S×A, and used to model-check linear-time properties
[5]. The reader may think of this product as an attack graph
in the sense of [27].

For the rest of this section, we fix a transition sys-
tem S = (S , S 0, Act,→, λ) over Prop and we let Aτ =

(Q,C+(Prop), δ, I, F).

Definition 14. The τ-monitoring of S is the Act-labeled transi-
tion system over {win} defined by τ[S] = (S τ, S 0

τ , Act,→τ, λτ),
where:
• S τ = S × Q;
• S 0

τ is the set of pairs (s0, q) where s0 ∈ S 0 and there
exists a letter b such that q ∈ δ(I, b) and λ(s0) |= b,

• ((s, q), a, (s′, q′)) ∈→τ whenever s
a
→ s′ and q′ ∈ δ(q, b)

with λ(s′) |= b, for some letter b,

• λτ((s, q)) =

{win}, if q ∈ F,
∅, otherwise.

Figure 4 illustrates the construction of τe[Se] (see also
Figures 1 and 3): in the picture, we additionally recall next
to each action the label read by the automaton Aτe . The first
label read, that is the one of initial state s0, is written on the
“start” arrow; it is > by Remark 1 since λ(s0) = ∅. The label
next to action a2 is λ(s2), and the label next to action a3 is
λ(s3). The states of the automaton are dismissed.

s0start s2 s3
> a2, γ1 ∧ γ3 a3, γ2
∅ ∅ {win}

Fig. 4. The τe-monitoring of Se.

The following proposition follows from Definition 14.

Proposition 3.
1) Let (s0, q1), (s1, q2), . . . , (sm, qm+1) be a path in τ[S].

Then, the sequence of states s0s1 . . . sm ∈ Π(S). If
moreover s0 is an initial state and λτ((sm, qm+1)) = {win},
then s0s1 . . . sm is a τ-attack on S.

2) Reciprocally, for each τ-attack on S of the form
s0s1 . . . sm, there exists a path in τ[S] of the form
(s0, q1), (s1, q2), . . . , (sm, qm+1) with λτ((sm, qm+1)) =

{win}.

Proof. 1. Since (s0, q1), (s1, q2), . . . , (sm, qm+1) is a path in
τ[S], it follows from Definition 14 that π = s0s1 . . . sm is a
path in S. In addition, for every 0 ≤ i ≤ m, there exists
bi ∈ C

+(Prop), such that qi+1 ∈ δ(qi, bi) and λ(si) |= bi. If
λτ((sm, qm+1)) = {win}, then by definition qm+1 ∈ F, which
implies that the word u = b0b1 . . . bm ∈ L(Aτ) = L(τ), and
thus π ∈ L(τ). Clearly if s0 is initial, π is a τ-attack on S by
definition of a τ-attack on S.
2. Reciprocally, let π = s0s1 . . . sm ∈ Π(S). By definition of a
path in S, for every 0 ≤ i ≤ m − 1, there exists ai ∈ Act,
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such that si
ai
→ si+1. Since π is a τ-attack on S, trace(π)

can be embedded in some word u = b0b1 . . . bm ∈ L(τ), with
λ(si) |= bi, for every 0 ≤ i ≤ m. Since L(τ) = L(Aτ), there
exists a sequence of states q0, q1, . . . qm+1 in Aτ, such that
qi+1 ∈ δ(qi, bi) and qm+1 is final in Aτ. By Definition 14, the
sequence (s0, q1), (s1, q2), . . . , (sm, qm+1) is a path in τ[S], and
since qm+1 is final, λτ((sm, qm+1)) = {win}. �

We can generalize the product to a system (S,Q) and an
automaton A: it amounts to compute the product S × A,
while adapting the quantitative features Q in a straightforward
manner. An instance of such a product is mentioned in [8] for
the product of a timed system and a Büchi automaton, and
this construction underlies some functionalities of the model
checker Divine [6].

We can take advantage of the monitored system to perform
quantitative analysis of an attack tree at any stage of its design.

C. Early-stage quantitative analysis

Quantitative analysis approaches in attack tree-based secu-
rity modeling and analysis have been widely investigated in
the literature [21], [19], [11]. In all approaches, the tree is
considered on its own, bereft of the system model. In this
context, quantitative features are only attached to the leaves
of the tree, which in all approaches are meant to represent
basic action steps. The simplest way to achieve this has been
studied in [21], where quantities (like duration, cost, etc.) are
assigned to the leaves and, by a bottom-up computation, yield
a value to the entire tree.

More recent works have considered more expressive objects
reflecting quantitative features than mere values: in [19], [11],
basic action steps are equipped with an operational model,
such as a timed automaton or even a priced timed automaton.
Again, a bottom-up computation returns a global operational
model for the tree, which allows for quantitative analysis
taking advantage of well-known verification methods, such as
optimal reachability, model checking with temporal logic, etc.

However, despite the progress made since the pioneer ap-
proaches, such quantitative assignments to basic actions do
not allow to differentiate between the values of similar actions
performed in different contexts. As a consequence, the quan-
titative evaluation may provide an improper value to the tree.

The setting we propose offers a robustness that previous
methods cannot guarantee: first, we can exploit our monitor-
ing technique to incorporate the system into the quantitative
evaluation process, and second, the evaluation can be carried
out at an early-stage of the attack tree design: it is sufficient
to know the reachability goal of each leaf, without the need
to develop the tree until atomic actions arise. This is what we
detail now.

Assume we have an attack tree τ and a system such as a
PTA, say T 5, and let us denote by τ[T ] the PTA resulting
from the monitoring of T by Aτ (as explained in the previous
section). We can now exploit the proposition win in the PTA
τ[T ] to address e.g. the cost-optimal reachability (resp. the

5We follow the notation of [7].

minimum-time reachability) problem of some state labeled
by win. According to [7], [2] (resp. [25]) this problem is
decidable and an optimal path can even be synthesized.

By Proposition 3 such a path reflects some τ-attack on
the system T . The (optimal) value of this path is the right
candidate for the value of the tree τ (w.r.t. the system T ),
even though basic actions do not appear in the tree (they are
nevertheless conveyed by the system).

Given a synthesized optimal path π∗ of the system, we let
trace(π∗) ∈ L(τ) be a witness of τ. In what follows, we take
advantage of our ability to exhibit a witness w ∈ L(τ) at an
early-stage of the design to guide the expert in the refinement
process of some leaves.

VI. Guided design of attack trees

Having in hand a witness w ∈ L(τ) arising from the quantita-
tive analysis described in Section V, we can determine which
part of the tree, namely which set of positions, is involved
when considering this very trace. Such positions are called
useful and their charaterization is established in Theorem 3.
of Subsection VI-C. This theorem relies on a propositional
formula whose backbone is the so-called membership-test
formula φτu of Subsection VI-B: the semantics of φτu, the set
of models, describes all the different ways of justifying that
u ∈ L(τ), as stated by Theorem 2 of Subsection VI-B; in
particular if u < L(τ), formula φτu has no model.

The precious information on which position is useful can
then be exploited to guide the designer towards useful leaves
that deserve being developed further. However, as we will see
in Subsection VI-D), developing a leaf, or equivalently refining
it, may have a significant impact on the usefulness status of
all leaves in the tree.

Before getting to the main Subsections VI-B, VI-C and
VI-D, we make a brief recall on propositional logic.

In the rest of this section we fix an attack tree τ over Prop.
W.l.o.g. we may assume that Prop = {γ | γ is a leaf of τ}.

A. Brief recall on propositional logic

In the following, let Var be a set of propositional variables,
or simply variables.

Definition 15. A propositional formula over Var is an expres-
sion conform to the following grammar: φ, φ′ F x | ¬φ | φ ∨
φ′ | φ ∧ φ′, where x ∈ Var. Additionally, we use standard
notation φ ⇒ φ′ and φ ⇔ φ′ to denote ¬φ ∨ φ′ and
(φ∧φ′)∨ (¬φ∧¬φ′), respectively. We denote by var(φ) the set
of variables occurring in φ.

Definition 16. A partial valuation ν over Var is a partial
function from Var to {tt, ff}, and we let dom(ν) be its domain.
We may write x ∈ ν for x ∈ Var, whenever x ∈ dom(ν) and
ν(x) = tt.

Two valuations ν1 and ν2 are compatible if for every
x ∈ dom(ν1) ∩ dom(ν2), ν1(x) = ν2(x). Given two compatible
valuations ν1 and ν2, we write ν1∪ ν2 for the valuation whose
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domain is dom(ν1)∪ dom(ν2), defined by: for all x ∈ dom(ν1),
(ν1∪ν2)(x) = ν1(x) and for all x ∈ dom(ν2), (ν1∪ν2)(x) = ν2(x).

Definition 17. Let φ be a propositional formula over Var and
ν be a partial valuation over Var. The valuation ν is a model
of φ, written ν |= φ, whenever the following holds (by induction
over φ):
• ν |= x ∈ Var if, and only if x ∈ ν,
• ν |= ¬φ if, and only if ν 6|= φ,
• ν |= φ ∧ φ′ if, and only if ν |= φ and ν |= φ′,
• ν |= φ ∨ φ′ if, and only if ν |= φ or ν |= φ′.

Lemma 1. Let φ1, φ2 be two propositional formulas over Var,
and let ν1, ν2 be two compatible valuations with ν1 |= φ1 and
ν2 |= φ2. If var(φ2) ∩ dom(ν1) = ∅ and var(φ1) ∩ dom(ν2) = ∅,
then ν1 ∪ ν2 |= φ1 ∧ φ2.

The proof of the above lemma is trivial and thus omitted.
For the rest of the section, we let

Var := {xp
(i, j) | p ∈ {1, 2}∗ and i ≤ j ∈ N}6.

Intuitively, for each propositional variable xp
(i, j), p will

range over the set of positions of the attack tree τ, while i
and j will serve to denote a subword u[i, j] of some trace u
of the system. The variable xp

(i, j), when set to true, reflects the
fact u[i, j] ∈ L(τ).

As we will reason by induction over the subtrees of τ, we
need some simple mechanism to rename the variables so that
they refer to the correct position in the global context τ. This
is achieved by the notion of p-shift: given a fornula φ over Var
and p ∈ {1, 2}∗, the p-shift of φ is the formula φ↓p obtained
by replacing each variable xq

(i, j) in φ by the variable xp.q
(i, j).

B. Membership-test formula

Given a word u over C+(Prop), we define a propositional
formula φτu over Var, that we call the membership-test of u in
τ, that holds whenever u ∈ L(τ) (Theorem 2).

Formula φτu expresses that u ∈ L(τ), hence it requires vari-
able xε(1,n) to be true, but it also has a second conjunct, called
the consistency-test formula, and written ψτu, that axiomatizes
the semantics of the whole tree: first, it needs to reflect the
semantics of all operators in internal positions of the tree
nodes, which is achieved by the so-called junction formulas of
the form Γ

OP,p
i, j (see Definition 18). Second, it needs to reflect

the semantics of each leaf of the tree: namely that for a leaf
γ, variable xp

(i, j) must be false if u[i, j] < L(γ), otherwise said
if u( j) 6|= γ.

We first introduce junction formulas, for each kind of
operator OP.

Definition 18. Let u be a word over C+(Prop) of size n. For
each p ∈ PosOP(τ) \ `(τ) and 1 ≤ i ≤ j ≤ n, we let Γ

OP,p
i, j , called

the junction formula at position p between i and j, be defined
by:

6For technical reasons, in formulas we may have expressions of the form
xp

(i+1,i), that are not in Var, and that are always interpreted as false.

• Γ
OR,p
i, j :=

(
xp

(i, j)⇔ xp.1
(i, j) ∨ xp.2

(i, j)

)
• Γ

SAND,p
i, j :=

(
xp

(i, j)⇔
∨

i≤k≤ j xp.1
(i,k) ∧

(
xp.2

(k, j) ∨ xp.2
(k+1, j)

))
• Γ

AND,p
i, j :=

(
xp

(i, j)⇔
∨

i≤k,l≤ j,k≤l+1

(
xp.1

(i,l)∧xp.2
(k, j)

)
∨
(
xp.2

(i,l)∧xp.1
(k, j)

))
.

We can now define the consistency-test formula ψτu.

Definition 19. Let u be a word over C+(Prop) of size n. The
consistency-test formula for u in τ, is the formula ψτu defined
by (induction on τ):

• ψ
γ
u :=

∧
1≤i≤ j≤n,u( j) 6|=γ ¬xε(i, j)

• ψOP(τ1,τ2)
u := ψτ1

u ↓1 ∧ ψ
τ2
u ↓2 ∧

∧
1≤i≤ j≤n Γ

OP,ε
i, j .

Finally, we obtain the membership-test formula φτu as an-
nounced.

Definition 20. The membership-test formula for u in τ is
defined by φτu := xε(1,n) ∧ ψ

τ
u.

Example 4 illustrates the membership-test formula.

Example 4. Let τe be the attack tree from Figure 1. Let ue

be the word >(γ1 ∧ γ3)γ2 of size 3. We saw in Example 3 that
ue ∈ L(τe).

By Definition 20, φτ
e

u = xε(1,3) ∧ ψ
τ
u, and by Definition 19,

ψ
AND(τe

|1,τ
e
|2)

ue = ψ
SAND(γ1,γ2)
ue ↓1 ∧ ψ

OR(γ3,γ4)
ue ↓2 ∧

∧
1≤i≤ j≤3

Γ
AND,ε
i, j

with ψ
SAND(γ1,γ2)
ue = ψ

γ1
ue↓1 ∧ ψ

γ2
ue↓2 ∧

∧
1≤i≤ j≤3

Γ
SAND,ε
i, j

and ψ
OR(γ3,γ4)
ue = ψ

γ3
ue↓1 ∧ ψ

γ4
ue↓2 ∧

∧
1≤i≤ j≤3

Γ
OR,ε
i, j

so by applying the shifting, we have ψ
AND(τe

|1,τ
e
|2)

ue = ψ
γ1
ue↓11 ∧

ψ
γ2
ue↓12 ∧

∧
1≤i≤ j≤3 Γ

SAND,1
i, j ∧ ψ

γ3
ue↓21 ∧ ψ

γ4
ue↓22 ∧

∧
1≤i≤ j≤3 Γ

OR,2
i, j ∧∧

1≤i≤ j≤3 Γ
AND,ε
i, j .

For all i ∈ {1, 2, 3, 4}, we have ψγi
ue =

∧
1≤i≤ j≤3,ue( j)6|=γi

¬xε(i, j)
which, after being applied to ue and shifted to the position of
the corresponding leaf, gives

• ψ
γ1
ue↓11 = ¬x11

(1,3) ∧ ¬x11
(2,3) ∧ ¬x11

(3,3)
• ψ

γ2
ue↓12 = ¬x12

(1,2) ∧ ¬x12
(2,2)

• ψ
γ3
ue↓21 = ¬x21

(1,3) ∧ ¬x21
(2,3) ∧ ¬x21

(3,3)
• ψ

γ4
ue↓22 = ¬x22

(1,2) ∧ ¬x22
(2,2) ∧ ¬x22

(1,3) ∧ ¬x22
(2,3) ∧ ¬x22

(3,3).

So, φτ
e

ue = xε(1,3) ∧ ¬x11
(1,3) ∧ ¬x11

(2,3) ∧ ¬x11
(3,3) ∧ ¬x12

(1,2) ∧ ¬x12
(2,2) ∧∧

1≤i≤ j≤3 Γ
SAND,1
i, j ∧ ¬x21

(1,3) ∧ ¬x21
(2,3) ∧ ¬x21

(3,3) ∧ ¬x22
(1,2) ∧ ¬x22

(2,2) ∧

¬x22
(1,3) ∧ ¬x22

(2,3) ∧ ¬x22
(3,3) ∧

∧
1≤i≤ j≤3 Γ

OR,2
i, j ∧

∧
1≤i≤ j≤3 Γ

AND,ε
i, j

Now, we can expand the definition of Γ
AND,ε
i, j , Γ

SAND,1
i, j , and
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Γ
OR,2
i, j , which gives

φτ
e

ue =xε(1,3) ∧ ¬x11
(1,3) ∧ ¬x11

(2,3) ∧ ¬x11
(3,3)

∧ ¬x12
(1,2) ∧ ¬x12

(2,2)

∧
∧

1≤i≤ j≤3

(
x1

(i, j)⇔
∨

i≤k≤ j

x11
(i,k) ∧

(
x22

(k, j) ∨ x22
(k+1, j)

))
∧ ¬x21

(1,3) ∧ ¬x21
(2,3) ∧ ¬x21

(3,3)

∧ ¬x22
(1,2) ∧ ¬x22

(2,2) ∧ ¬x22
(1,3) ∧ ¬x22

(2,3) ∧ ¬x22
(3,3)

∧
∧

1≤i≤ j≤3

(
x2

(i, j)⇔ x21
(i, j) ∨ x22

(i, j)

)
∧

∧
1≤i≤ j≤3

(
xε(i, j)⇔

∨
i≤k,l≤ j,k≤l+1

(
x1

(i,l) ∧ x2
(k, j)

)
∨

(
x2

(i,l) ∧ x1
(k, j)

))
One can verify that the valuation assigning tt to variables

x1.1
(1,2), x

1.2
(2,3), x

2.1
(1,2), x

1
(1,3), x

2
(1,2), x

ε
(1,3) and ff to the other ones is

a model of φτ
e

ue . Recall that u ∈ L(τe) (see Example 3). On
the contrary, for the word ve = >γ4γ2, notice that variables
x1.1

(i,k) must be assigned ff for every 1 ≤ i ≤ k ≤ 3, since γ1

never occurs in v. Therefore, because x1
(i, j) ⇔

∨
i≤k≤ j x1.1

(i,k) ∧(
x1.2

(k, j) ∨ x1.2
(k+1, j)

)
, variables x1

(i, j) must also be assigned ff, for

all 1 ≤ i ≤ j ≤ 3. Now, since xε(i, j) ⇔
∨

i≤k,l≤ j,k≤l+1

(
x1

(i,l) ∧

x2
(k, j)

)
∨

(
x2

(i,l) ∧ x1
(k, j)

)
, xε(i,`) must also be assigned ff, which is

not compatible with the first conjunct xε(1,3) of the membership
formula φτ

e

v . As a consequence, formula φτ
e

v has no model.
Recall that v < L(τe) (see Example 3).

All the facts illustrated in Example 4 are correlated as stated
in Theorem 2 which relates the membership-test formula sat-
isfiability and the membership of words in the trace semantics
of an attack tree. This theorem is central for the approach
developed in our work. It has two main repercussions: 1) it
gives a SAT-based algorithm to verify that a trace is in the lan-
guage of the tree (an alternative procedure for the membership
problem than the one based on the trace automaton Aτ), and
2) it is a milestone for the proof of Theorem 3 which gives
us the criterion to identify useful positions.

Theorem 2. Let u be a word over C+(Prop) of size n. The
membership-test formula for u in τ has a model if, and only
if, u ∈ L(τ).

The rest of this section is dedicated to proving Theorem 2.
We will actually show a more general equivalence stated in
Equation (1)

φ
τ,p
u[i, j] has a model if, and only if u[i, j] ∈ L(τ|p), (1)

where φτ,pu[i, j] := xp
(i, j) ∧ ψ

τ,p
u[i, j], with

• ψ
γ,p
u[i, j] :=

∧
i≤i′≤ j′≤ j,u( j′)6|=γ ¬xp

(i′, j′)

• if τ(p) = OP, then ψτ,pu[i, j] := ψ
τ,p.1
u[i, j]∧ψ

τ,p.2
u[i, j]∧

∧
i≤i′≤ j′≤ j Γ

OP,p
i′, j′ .

In particular, it is easy to verify that:

ψτ,εu[1,n] = ψτu (and therefore φτ,εu[1,n] = φτu). (2)

The particular case of Equations (1) and (2), where p = ε,
i = 1 and j = n entails the statement of Theorem 2.

In order to show Equation (1), we establish four helpful
lemmas. Lemma 2 shows that the recursive definition of ψτ,pu[i, j]
can be flattened, while Lemma 3 establishes a relationship
between such formulas. Lemmas 4 and 5 state conditions for
the boundaries i and j to be safely changed.

Lemma 2. The consistency-test formula ψ
τ,p
u[i, j] is equivalent

to ∧
q∈Pos(τ)\`(τ)

p�q
i≤i′≤ j′≤ j

Γ
τ(q),q
i′, j′ ∧

∧
q∈`(τ)

p�q
i≤i′≤ j′≤ j
u( j′)6|=τ(q)

¬xq
(i′, j′). (3)

Proof. We reason by induction over the height7 of τ|p.
If τ|p is a leaf, say τ(p) = γ, then it is clear by definitions

of ψγ,pu[i, j] and by the fact that the first conjunct of Equation (3)
vanishes.

Otherwise, let τ(p) = OP. By definition, ψτ,pu[i, j] = ψ
τ,p.1
u[i, j] ∧

ψ
τ,p.2
u[i, j] ∧

∧
i≤i′≤ j′≤ j Γ

OP,p
i′, j′ , and by induction hypothesis,

ψ
τ,p.1
u[i, j] =

∧
q∈Pos(τ)\`(τ)

p.1�q
i≤i′≤ j′≤ j

Γ
τ(q),q
i′, j′ ∧

∧
q∈`(τ)
p.1�q

i≤i′≤ j′≤ j
u( j′)6|=τ(q)

¬xq
(i′, j′)

and ψ
τ,p.2
u[i, j] =

∧
q∈Pos(τ)\`(τ)

p.2�q
i≤i′≤ j′≤ j

Γ
τ(q),q
i′, j′ ∧

∧
q∈`(τ)
p.2�q

i≤i′≤ j′≤ j
u( j′)6|=τ(q)

¬xq
(i′, j′).

Now, gathering all positions of the formulas and noticing
that ε ∈ Pos(τ) \ `(τ), we can rewrite ψτ,pu[i, j] as the formula of
Equation (3).

�

Relying on Lemma 2, it easy to show the following technical
lemma (whose proof is omitted).

Lemma 3. Let i ≤ i′ ≤ j′ ≤ j. The formula ψτ,pu[i, j] is equivalent
to

ψ
τ,p
u[i′, j′] ∧

( ∧
[i′′, j′′]⊆[i, j]

[i′′, j′′]*[i′, j′]
p�q<`(τ)

Γ
τ(q),q
i′′, j′′ ∧

∧
[i′′, j′′]⊆[i, j]

[i′′, j′′]*[i′, j′]
p�q∈`(τ)

u( j′′)6|=τ(q)

¬xq
(i′′, j′′)

)
. (4)

Lemma 4. Let i ≤ i′ ≤ j′ ≤ j. If ν |= ψ
τ,p
u[i, j], then ν |= ψ

τ,p
u[i′, j′].

Proof. By Lemma 3, ψτ,pu[i′, j′] is a conjunct of ψτ,pu[i, j], which
concludes. �

Lemma 5. Let i ≤ i′ ≤ j′ ≤ j. If ν |= ψ
τ,p
u[i′, j′] with

dom(ν) = var(ψτ,pu[i′, j′]), then ν |= ψ
τ,p
u[i, j] (where ν is interpreted

over var(ψτ,pu[i, j]) by assigning all extra variables to false).

Proof. We use Lemma 3 and remark that the right-hand
conjunct of Equation (4) is satisfied by the valuation ∅
(denoting the valuation with an empty domain) and involves
only propositions that do not appear in ψ

τ,p
u[i′, j′].

7The height is the length of the longest branch.
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By Lemma 1, ν ∪ ∅ = ν |= ψ
τ,p
u[i, j]. �

We now turn to the proof of Equation (1).
⇒) Suppose that φτ,pu[i, j] has a model, say ν |= φ

τ,p
u[i, j]. We

reason by induction on the height of τ|p.
If τ|p is a leaf, say τ(p) = γ, then ν |= xp

(i, j) ∧∧
i≤i′≤ j′≤ j,u( j′)6|=γ ¬xp

(i′, j′). Since xp
(i, j) ∈ ν, proposition xp

(i, j) is not
among the propositions xp

(i′, j′) such that u( j′) 6|= γ (otherwise
the formula would be contradictory), thus u( j) |= γ which
entails u[i, j] ∈ L(γ).

Otherwise, τ|p = OP(τ|p.1, τ|p.2).

• if OP = OR, then ν |= xp
(i, j)∧ψ

τ,p.1
u[i, j]∧ψ

τ,p.2
u[i, j]∧

∧
i≤i′≤ j′≤ j Γ

OR,p
i′, j′ .

So xp
(i, j) ∈ ν, and as ν |= Γ

OR,p
i, j , we have either xp.1

(i, j) ∈ ν

or xp.2
(i, j) ∈ ν. Assume that xp.1

(i, j) ∈ ν, as the other case is
symmetric. We have xp.1

(i, j) ∈ ν and ν |= ψ
τ,p.1
u[i, j] so ν |= xp.1

(i, j)∧

ψ
τ,p.1
u[i, j] = φ

τ,p.1
u[i, j]. By induction hypothesis, u[i, j] ∈ L(τ|p.1).

As L(τ|p) = L(τ|p.1) ∪ L(τ|p.2), we have u[i, j] ∈ L(τ|p).
• if OP = SAND, then ν |= xp

(i, j) ∧ ψ
τ,p.1
u[i, j] ∧ ψ

τ,p.2
u[i, j] ∧∧

i≤i′≤ j′≤ j Γ
SAND,p
i, j . So xp

(i, j) ∈ ν, and as ν |= Γ
SAND,p
i, j , we

have that for some i ≤ k ≤ j, xp.1
(i,k) ∈ ν and either xp.2

(k, j) ∈ ν

or xp.2
(k+1, j) ∈ ν. Assume that xp.2

(k, j) ∈ ν, as the other case
is symmetric. We have xp.1

(i,k) ∈ ν and ν |= ψ
τ,p.1
u[i, j] and by

Lemma 4, ν |= ψ
τ,p.1
u[i,k], so ν |= xp.1

(i,k) ∧ ψ
τ,p.1
u[i,k] = φ

τ,p.1
u[i,k]. By

induction hypothesis, u[i, k] ∈ L(τ|p.1). We have xp.2
(k, j) ∈ ν

and ν |= ψ
τ,p.2
u[i, j] and by Lemma 4, ν |= ψ

τ,p.2
u[k, j], so ν |= xp.2

(k, j)∧

ψ
τ,p.2
u[k, j] = φ

τ,p.2
u[k, j]. By induction hypothesis, u[k, j] ∈ L(τ|p.2).

So u[i, j] = u[i, k] � u[k, j] ∈ L(τ|p.1) � L(τ|p.2) = L(τ|p).
• if OP = AND, then ν |= xp

(i, j)∧ψ
τ,p.1
u[i, j]∧ψ

τ,p.2
u[i, j]∧

∧
i≤i′≤ j′≤ j Γ

AND,p
i, j .

So xp
(i, j) ∈ ν, and as ν |= Γ

AND,p
i, j , we have that for some

i ≤ k, l ≤ j with k ≤ l + 1, either xp.1
(i,l) ∈ ν and xp.2

(k, j) ∈ ν,
or xp.2

(i,l) ∈ ν and xp.1
(k, j) ∈ ν. Assume that xp.1

(i,l) ∈ ν and
xp.2

(k, j) ∈ ν, as the other case is symmetric. We have xp.1
(i,l) ∈ ν

and ν |= ψ
τ,p.1
u[i, j] and by Lemma 4, ν |= ψ

τ,p.1
u[i,l], so ν |=

xp.1
(i,l) ∧ ψ

τ,p.1
u[i,l] = φ

τ,p.1
u[i,l]. By induction hypothesis, u[i, l] ∈

L(τ|p.1). We have xp.2
(k, j) ∈ ν and ν |= ψ

τ,p.2
u[i, j] and by Lemma 4,

ν |= ψ
τ,p.2
u[k, j], so ν |= xp.2

(k, j) ∧ ψ
τ,p.2
u[k, j] = φ

τ,p.2
u[k, j]. By induction

hypothesis, u[k, j] ∈ L(τ|p.2). So u[i, j] = u[i, k]⊗ u[k, j] ∈
L(τ|p.1) ⊗ L(τ|p.2) = L(τ|p).

⇐): suppose that u[i, j] ∈ L(τ|p). We reason by induction
on the height of τ|p.

If τ|p is a leaf, say τ(p) = γ, then {xp
(i, j)} |= φ

τ,p
u[i, j] because

u[i, j] ∈ L(τ|p) implies that u( j) |= γ, so ¬xp
(i, j) does not appear

in ψ
τ,p
u[i, j].

Otherwise, τ|p = OP(τ|p.1, τ|p.2).
• if OP = OR, then u[i, j] ∈ L(τ|p.1) ∪ L(τ|p.2) so w.l.o.g,

assume that u[i, j] ∈ L(τ|p.1) (the case u[i, j] ∈ L(τ|p.2)
is similar). By induction hypothesis, the formula φτ,p.1u[i, j] is
satisfiable, so let ν′ |= φ

τ,p.1
u[i, j] with dom(ν′) = var(ψτ,p.1u[i, j]).

We have immediately that ν′ |= ψ
τ,p.1
u[i, j], and by Lemma 1

and because var(ψτ,p.1u[i, j]) ∩ var(ψτ,p.2u[i, j]) = ∅, and ∅ |= ψ
τ,p.2
u[i, j],

we have ν′ |= ψ
τ,p.2
u[i, j]. Let ν = ν′ ∪ {xp

(i′, j′) | xp.1
(i′, j′) ∈ ν

′, i ≤
i′ ≤ j′ ≤ j}. Because ν′ |= ψ

τ,p.1
u[i, j] ∧ ψ

τ,p.2
u[i, j], and xp.1

(i, j) ∈ ν
′,

we have ν |= xp
(i, j) ∧ ψ

τ,p.1
u[i, j] ∧ ψ

τ,p.2
u[i, j]. We now show that

ν |= Γ
OR,p
i′, j′ for all i ≤ i′ ≤ j′ ≤ j. Let i ≤ i′ ≤ j′ ≤ j. We

have xp
(i′, j′) ∈ ν if, and only if xp.1

(i′, j′) ∈ ν by definition of
ν. Additionally, recall that var(ψτ,p.2u[i, j]) ∩ dom(ν′) = ∅, so
as we have xp.2

(i, j) ∈ var(ψτ,p.2u[i, j]) clearly xp.2
(i, j) < ν

′ and then
xp.2

(i, j) < ν, which entails ν |= Γ
OR,p
i′, j′

• if OP = SAND, then u[i, j] ∈ L(τ|p.1) � L(τ|p.2) so w.l.o.g,
assume that for some k, we have u[i, k] ∈ L(τ|p.1) and
u[k, j] ∈ L(τ|p.2) (the case u[k + 1, j] ∈ L(τ|p.2) is
similar). By induction hypothesis, the formulas φτ,p.1u[i,k] and
φ
τ,p.2
u[k, j] are satisfiable, so let ν1 |= φ

τ,p.1
u[i,k] and ν2 |= φ

τ,p.2
u[k, j]

with dom(ν1) = var(ψτ,p.1u[i, j]) and dom(ν2) = var(ψτ,p.2u[i, j]).
By Lemma 5 we have ν1 |= ψ

τ,p.1
u[i, j] and ν2 |= ψ

τ,p.2
u[i, j],

and because var(ψτ,p.1u[i, j]) ∩ var(ψτ,p.2u[i, j]) = ∅, we have by
Lemma 1 that ν1 ∪ ν2 |= ψ

τ,p.1
u[i, j] ∧ ψ

τ,p.2
u[i, j]. Let ν =

ν1 ∪ ν2 ∪ {x
p
(i′, j′) | for some k, xp.1

(i′,k) ∈ ν1 and xp.2
(k, j′) ∈

ν2 or xp.2
(k+1, j′) ∈ ν2}. Clearly, var(ψτ,p.1u[i, j]∧ψ

τ,p.2
u[i, j]) contains no

variable of the form xp
(i′, j′), so ν |= ψ

τ,p.1
u[i, j] ∧ψ

τ,p.2
u[i, j]. We now

show that for all i ≤ i′ ≤ j′ ≤ j, we have ν |= Γ
SAND,p
i, j . Let

i ≤ i′ ≤ j′ ≤ j. We have xp
(i′, j′) ∈ ν if, and only if for some

k, xp.1
(i′,k) ∈ ν1 and xp.2

(k, j′) ∈ ν2 or xp.2
(k+1, j′) ∈ ν2 by definition

of ν, so ν |= xp
(i′, j′)⇔

∨
i′≤k≤ j′ xp.1

(i′,k) ∧ (xp.2
(k, j′) ∨ xp.2

(k+1, j′)) so
ν |= Γ

SAND,p
i′, j′ . Additionally, we have that for some k ∈ [i, j],

xp.1
(i,k) ∈ ν1 and xp.2

(k, j) ∈ ν2, so by definition of ν we
have xp

(i, j) ∈ ν. As we also have ν |= ψ
τ,p.1
u[i, j] ∧ ψ

τ,p.2
u[i, j] and

ν |=
∧

i≤i′≤ j′≤ j Γ
SAND,p
i′, j′ , we have ν |= φ

τ,p
u[i, j].

• if OP = AND, then u[i, j] ∈ L(τ|p.1) ⊗ L(τ|p.2) so w.l.o.g,
assume that for some k, l we have u[i, l] ∈ L(τ|p.1)
and u[k, j] ∈ L(τ|p.2) (the case u[i, l] ∈ L(τ|p.2) and
u[k, j] ∈ L(τ|p.1) is similar). By induction hypothesis,
the formulas φτ,p.1u[i,l] and φ

τ,p.2
u[k, j] are satisfiable, so let ν1 |=

φ
τ,p.1
u[i,l] and ν2 |= φ

τ,p.2
u[k, j] with dom(ν1) = var(ψτ,p.1u[i, j]) and

dom(ν2) = var(ψτ,p.2u[i, j]). By Lemma 5, we have ν1 |= ψ
τ,p.1
u[i, j]

and ν2 |= ψ
τ,p.2
u[i, j], and because var(ψτ,p.1u[i, j]) ∩ var(ψτ,p.2u[i, j]) = ∅,

we have by Lemma 1 that ν1 ∪ ν2 |= ψ
τ,p.1
u[i, j] ∧ ψ

τ,p.2
u[i, j]. Let

ν = ν1 ∪ ν2 ∪ {x
p
(i′, j′) | for some k, l ∈ [i, j] with k ≤ l +

1, xp.1
(i′,l) ∈ ν1 and xp.2

(k, j′) ∈ ν2, or xp.2
(i′,l) ∈ ν1 and xp.1

(k, j′) ∈ ν2}.
Clearly, var(ψτ,p.1u[i, j] ∧ ψ

τ,p.2
u[i, j]) contains no variable of the

form xp
(i′, j′), so we have ν |= ψ

τ,p.1
u[i, j] ∧ ψ

τ,p.2
u[i, j]. We now

show that for all i ≤ i′ ≤ j′ ≤ j, we have ν |= Γ
AND,p
i′, j′ .

Let i ≤ i′ ≤ j′ ≤ j. We have xp
(i′, j′) ∈ ν if, and only

if for some k, l ∈ [i, j] with k ≤ l + 1, xp.1
(i′,l) ∈ ν1 and

xp.2
(k, j′) ∈ ν2, or xp.2

(i′,l) ∈ ν1 and xp.1
(k, j′) ∈ ν2 by definition

of ν, so ν |= xp
(i′, j′)⇔ (xp.1

(i′,l) ∧ xp.2
(k, j′)) ∨ (xp.2

(i′,l) ∧ xp.1
(k, j′)), so

ν |= Γ
AND,p
i′, j′ . Additionally, we have that for some k, l ∈ [i, j]

with k ≤ l + 1, we have xp.1
(i,l) ∈ ν1 and xp.2

(k, j) ∈ ν2, so the
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definition of ν entails that xp
(i, j) ∈ ν. As we also have

ν |= ψ
τ,p.1
u[i, j] ∧ ψ

τ,p.2
u[i, j] and ν |=

∧
i≤i′≤ j′≤ j Γ

AND,p
i′, j′ , we have that

ν |= φ
τ,p
u[i, j].

Now that the membership-test formula plays its role, we
can consider words that belong to L(τ), that is τ-attacks on S,
like witnesses. Such words have a satisfiable membership-test
formula (by Theorem 2) that we over constrain to test whether
a given position in the tree plays a role in this membership.

C. Useful positions

In order to motivate Definition 21 of useful position, assume
τ is of the form OR(τ1, τ2) and take u ∈ L(τ). By the semantics
of OR we know that either u ∈ L(τ1) or u ∈ L(τ2). For example,
in case when u ∈ L(τ1) but u < L(τ2), it is natural to think
of the subtree τ2 as useless for u, or equivalently of position
2 as useless for u, and to think of position 1 as useful for u.
Regarding the membership of word u, considering the tree τ or
τ1, does not make any difference. The usefulness of position
1 for u ∈ L(τ) can be rephrased as the usefulness of position
ε for u ∈ L(τ[ε ← τ1]), since it is equal to τ1.

Also, because 2 is useless for u, so are all positions below
2 in τ. Therefore, for a position to be useful, it is necessary
that this is also the case for all its ancestor positions.

Our illustration for the notion of usefulness is a toy example
where the parent of the useful position is the root position.
This principle should be extended to all arbitrary positions p
whose parent is an OR-position: this is captured by the first
condition of Definition 21 that u ∈ L(τ[par(p) ← τ|p]) and
par(p) is useful for u in τ[par(p)← τ|p].

The second condition of Definition 21 relates to positions
whose parent q is not an OR-position: since for position q both
q.1 and q.2 contribute to the membership of a word in L(τ|q),
it is natural to let q.1 and q.2 be useful (provided position q
itself is useful).

Definition 21 (Useful positions). Let τ be an attack tree over
Prop, and let u ∈ L(τ). A position p ∈ Pos(τ) is useful for u
in τ if either p = ε, or p , ε and par(p) is useful for u in τ
and one of the two following conditions holds:
• τ(par(p)) = OR and u ∈ L(τ[par(p) ← τ|p]) and par(p)

is useful for u in τ[par(p)← τ|p], or
• τ(par(p)) , OR.

A position is useless if it is not useful.

We now give a characterization of useful positions for u in
τ by the satisfiability of the usefulness-test formula of p for u
in τ.

Theorem 3. Let u ∈ L(τ) of size n and p ∈ Pos(τ). Then, p is
useful for u in τ if, and only if Υ

τ,p
u := φτu∧

∧
q�p

∨
1≤i≤ j≤n xq

(i, j),
called the usefulness-test formula of p for u in τ, has a model.

The rest of this section is the proof of Theorem 3.
We first state Lemma 6 (whose proof can be found

in Appendix B) that exhibits a relationship between the
membership-test formulas of τ and of a tree obtained by
substituting in τ an OR subtree (at position par(p) in the lemma

statement) with one of its immediate subtrees (p in the lemma
statement).

Lemma 6. Let u ∈ L(τ) be of size n and let a non-root position
p ∈ Pos(τ) be such that par(p) ∈ PosOR(τ). Consider

τ′ := τ[par(p)← τ|p].

Then Υ
τ′,par(p)
u has a model if, and only if Υ

τ,p
u has a model.

We can start the proof of Theorem 3.
⇒) Let p ∈ Pos(τ), and suppose that p is useful for u in τ.

We reason by induction on the depth of position p.
If p = ε, then by Theorem 2, φτu has a model such that

xε(1,n) holds which entails the truthfulness of
∨

1≤i≤ j≤n xε(i, j). As
a conlusion Υ

τ,ε
u has a model.

Otherwise, p = par(p).i is defined and, by Definition 21,
par(p) is useful for u in τ. Now, let τ(par(p)) = OP, we
distinguish the two cases OP , OR and OP = OR.
• If OP , OR: since par(p) is useful for u in
τ, then by induction hypothesis, Υ

τ,par(p)
u (=φτu ∧∧

q�par(p)
∨

1≤i≤ j≤n xq
(i, j)) has a model, say ν. In particular,

ν |=
∨

1≤i≤ j≤n xpar(p)
(i, j) ; pick some xpar(p)

(i, j) ∈ ν. Also, since
ν |= φτu, we have ν |= ψτu, which by Lemma 2 entails
ν |= Γ

OP,par(p)
i, j . In virtue of Definition 18 for the case

OP , OR and the fact xpar(p)
(i, j) ∈ ν, we necessarily have some

xp
(i′, j′) ∈ ν, which entails ν |= φτu ∧

∧
q�p

∨
1≤i≤ j≤n xq

(i, j) =

Υ
τ,p
u .

• Otherwise, OP = OR: by definition of p being useful with
a OR-parent position, we know that u ∈ L(τ[par(p) ←
τ|p]) and that par(p) is useful for u in τ[par(p) ←
τ|p]. By induction hypothesis on par(p)8, the formula
Υ
τ[par(p)←τ|p],p
u = φ

τ[par(p)←τ|p]
u ∧

∧
q�par(p)

∨
1≤i≤ j≤n xq

(i, j) has
a model, and by Lemma 6, so does Υ

τ,p
u , which concludes.

⇐) Let p ∈ Pos(τ) such that φτu ∧
∧

q�p
∨

1≤i≤ j≤n xq
(i, j) has a

model. We reason by induction on p.
If p = ε, then we are done because by definition of useful

positions, ε is always useful (provided u ∈ L(τ) which is an
assumption of Theorem 3).

Otherwise, p = par(p).i is defined.
We first establish that par(p) is useful u in τ. Pick a model

ν of Υ
τ,p
u . As formula

∧
q�par(p)

∨
1≤i≤ j≤n xq

(i, j) is weaker than
formula

∧
q�p

∨
1≤i≤ j≤n xq

(i, j), we also have ν |= Υ
τ,par(p)
u , which

by induction hypothesis entails the usefulness of par(p) for u
in τ.

Now, consider OP = τ(par(p)), where the only interesting
case is when OP = OR (otherwise p is immediately useful for
u in τ by Definition 21). Let τ′ = τ[par(p)← τ|p].

By Lemma 6, because by assumption Υ
τ,p
u has a model, so

does Υ
τ′,par(p)
u .

In particular, formula φτ
′

u has a model, which by Theorem 2
entails u ∈ L(τ′). Also, by induction hypothesis on the depth
of par(p), we know that par(p) is useful for u in τ′.

8Technically, the tree τ[par(p) ← τ|p] here is not τ, but notice that
Theorem 2 holds for any tree, and that par(p)’s depth is strictly less that
p’s.

11



To sum up, We have shown that par(p) is useful for u in
τ, that u ∈ L(τ′) and that par(p) is useful for u in τ′, so we
can conclude by Definition 21 that p is useful for u in τ.

As announced, we next exploit our ability to characterize
useful positions to guide the designer in a further develope-
ment of an attack tree.

D. Refining useful leaves

The way attack trees are designed relies on so-called re-
finement steps: starting from a leaf tree γ where the goal γ
describes the global objective of the attack, the tree is refined
by expanding the root position as some OP(γ1, γ2). Then some
of the new leaves, say at position 1, may be refined again into
some OP′(γ1.2, γ2.2), and so on.

Remark that, after any refinement step, such a tree is
conform to our Definition 7 of attack trees.

This refinement process is in most cases performed manu-
ally. The work [4] aims at providing a formal setting where
a refinement step, that is a substitution of a leaf γ by a tree
OP(γ1, γ2), can be analyzed in the context of a given model S
of the system. In this approach the central notion of the Match
property9(that may or may not hold for a refinement step)
expresses a faithful rephrasing of goal γ as the combination
of the subgoals γ1 and γ2. Otherwise stated, the tree obtained
by a matching refinement, say τ′, is such that the set of τ′-
attacks in S coincides with the set of τ-attacks in S.

Regarding quantitative analysis, it is clear that performing
a matching refinement does not question the optimality of
a previously computed witness (as described in the previous
section). Nevertheless, as two new leaves have been generated,
they might not be both useful. For a refinement involving either
the SAND or the AND operator, all leaves of the refined tree are
necessarily useful, whereas for a refinement involving the OR
operator, it is then necessary to reconsider Theorem 3 on the
two new leaves to determine their status.

A more critical situation happens when a non-matching re-
finement is considered: in such a case, there is more guarantee
that the set of attacks in the system for the refined tree matches
the set of attacks for the tree prior to this refinement, and
the optimality of the witness may become obsolete. Hence,
another round of quantitative analysis is needed to recompute
a witness. Unless this new witness is identical to the previous
one, the whole process to determine useful positions needs
being restarted on the entire tree because previously useless
leaves might become useful for this updated witness.

VII. Conclusion

In this paper, we have developed a methodology to guide
a security expert in the design of an attack tree for a given
system. In contrast to standard approaches where attack trees
are labeled with actions that an attacker needs to execute, we
consider attack trees where leaves represent reachability goals
in the analyzed system. Such attack trees are homogeneous
throughout the entire design process: at the earliest stage it

9There are also some weaker notions that are less relevant here.

might be a single node labeled with the attacker’s goal which
is then refined according to the system and a new attack tree
with goal-labeled nodes is obtained. The model of attack trees
with reachability goals enables an early-stage analysis, i.e., the
analysis with trees that have not yet been fully refined.

To formalize our attack trees and be able to express the
link with the analyzed model, we defined trace semantics
for attack trees. It required us to introduce the operations of
enhanced concatenation and shuffle of regular languages which
are not classic in the standard theory of formal languages
but are well chosen to reflect the path semantics of attack
trees with reachability goals, as introduced in [4]. When the
τ-monitoring of a system S is considered, the “winning” paths
in the monitored system τ[S], i.e., the paths in S that have their
trace embedded in the language of attack tree τ, correspond
exactly to the paths in the path semantics of [4]. Under the
path semantics, an attack tree is a combination of reachability
goals and the enhanced operators correspond to the SAND and
AND refinements, as defined in [4]. It is to be noticed that
in this path-based setting, AND should not be seen as a “true
parallel”, but rather as a conjunctive operator that allows for
any superposition of subgoals in an execution.

Our ability to monitor a transition system with an attack
tree is easily extended to quantitative systems. This enables
quantitative analysis, i.e., giving a value to the tree, and
synthesizing an optimal path. We discussed it on the example
of priced timed automata (PTA) because it is a rich model, but
our methodology applies to any quantitative system for which
there exists an algorithm synthesizing optimal paths. Examples
of such systems are multi-priced timed automata with single
cost minimization and bounds on other costs [20], but also all
sorts of weighted automata [23], [22].

We consider a single optimal path that defines the value
assigned to the tree and guides the tree creation. In this context,
the guided construction of attack tree is correct, in the sense
that if a position is suggested to be further refined, it does
correspond to an optimal path in the system.

Classically, an attack tree represents a collection of potential
attacks. However, in this paper we suggest to refine an
attack tree only with an optimal attack in mind. So a natural
question that arises is how an expert who wants to cover more
(or even all) attacks, rather than only optimal ones, should
proceed? Query for attacks that are a bit less than optimal,
but synthesizing all attacks, or at least all elementary attacks
(i.e., without loops) is a much harder problem. A thorough
investigation should be conducted to estimate how hard this
problem is in practice. In the mean time, we may suggest a
procedure which is standard in practical risk analysis: starting
to analyze an optimal attack, then mitigate it by patching the
system accordingly, and then search for optimal attacks in the
updated system.

In the future, we would also like to study the complexity
of the problems underlying our framework. In particular,
the problem of optimal reachability clearly depends on the
quantitative model that is used. It is known to be EXPTIME-
complete for PTAs [2], but investigating its complexity for
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other types of systems would provide valuable information
about the practical applicability of our framework. Similarly,
deciding if a position is useful is in NP, as it can be solved
with the help of the SAT problem. However, we have not
yet identified its lower bound. Since the conjunctive normal
form of the usefulness-test formula is not a Horn formula, we
cannot immediately deduce that the problem is polynomial,
and a different reasoning would need to be used.

Finally, we have defined the notion of useless position with
respect to one optimal trace. In other words, in the current
framework, a position is useless if it does not contribute
to the optimal trace under consideration. However, there is
no guarantee that there is no other optimal trace where this
position would be useful. It would thus be interesting to
redefine the notion of uselessness of a position with respect to
all optimal traces. Proving that a position is useless in this new
sense would be of course more difficult, but such positions
could simply be removed from the tree without losing any
relevant attacks.
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Appendix A
Proof of Proposition 2

1) If u ∈ L(A1 � A2), then there exists a run of A1 � A2
accepting u. Let q0, . . . , qn be such an accepting run. For
all i′ ∈ [0, n], we have either qi′ ∈ Q1 or qi′ ∈ Q2.
Additionally, we have q0 = q0

1 ∈ Q1 and qn ∈ F2 ⊆ Q2.
Let i ∈ [0, n − 1] be such that qi ∈ Q1 and qi+1 ∈ Q2.
By definition of δ, for all i′ ∈ [0, n − 1], if qi′ ∈ Q2 then
qi′+1 ∈ Q2, so i is uniquely defined. We have that (1)
for all i′ ∈ [0, i − 1], it holds that qi′ ∈ Q1 and qi′+1 ∈

δ1(qi′ , u(i′ + 1)), (2) either qi ∈ F1, or u(i + 1) = b′ ∧ b′′

and δ1(qi, b′) ∩ F1 , ∅ and qi+1 ∈ δ2(q0
2, b
′′), and (3) for

all i′ ∈ [i + 1, n − 1], qi′ ∈ Q2 and qi′+1 ∈ δ2(qi′ , u(i′ + 1)).
Now we distinguish between the two cases of (2).
• Case qi ∈ F1: By definition of δ, we have that qi+1 ∈

δ2(q0
2, u(i + 1)). Let u1 = u(0) . . . u(i) and u2 = u(i +

1) . . . u(n). We have that q0 = q0
1, and qi ∈ F1, and we

have (1), so q0, . . . , qi is a run of A1 accepting u1.
We also have that qi+1 ∈ δ2(q0

2, u(i + 1)), and (3), and
qn ∈ F2, so q0

2, qi+1, . . . , qn is a run in A2 accepting
u2. As u = u1.u2, we have that u ∈ L(A1) � L(A2)

• Case u(i + 1) = b′ ∧ b′′ and δ1(qi, b′) ∩ F1 , ∅ and
qi+1 ∈ δ2(q0

2, b
′′): Let u1 = u(0) . . . u(i) and u2 = u(i +
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2) . . . u(n). Let q f
1 ∈ δ1(qi, b′)∩F1. By (1) and q0 = q0

1,
we have that q0, . . . , qi, q

f
1 is a run of A1 accepting

u1b′. By (3) and qi+1 ∈ δ2(q0
2, b
′′) and qn ∈ F2, we

have that q0
2, qi+1, . . . , qn is a run of A2 accepting

b′′u2. As u = u1.(b′ ∧ b′′).u2 with u1b′ ∈ L(A1) and
b′′u2 ∈ L(A2), we have that u ∈ L(A1) � L(A2)

If u ∈ L(A1)�L(A2), then there exist two possible cases:
either u = u1.u2 with ui ∈ L(Ai), or u = u1.(b′ ∧ b′′).u2
with u1b′ ∈ L(A1) and b′′u2 ∈ L(A2).
• Suppose that u = u1.u2, with ui ∈ L(Ai). Then,

let q0, . . . , qi be a run of A1 accepting u1, and let
q0

2, qi+1, . . . , qn be a run of A2 accepting u2. For all
i′ ∈ [0, i], we have qi′ ∈ Q1 and qi′+1 ∈ δ1(qi′ , u(i′+1)),
so qi′+1 ∈ δ(qi′ , u(i′ + 1)). Since qi ∈ F1 and
qi+1 ∈ δ2(q0

2, u(i + 1)), we have qi+1 ∈ δ(qi, u(i + 1)).
Additionally, for all i′ ∈ [i+1, n−1], we have qi′ ∈ Q2
and qi′+1 ∈ δ2(qi′ , u(i′ + 1)), so qi′+1 ∈ δ(qi′ , u(i′ + 1)).
Finally, we also have q0 = q0

1 and qn ∈ F2, thus
q0, . . . , qn is a run of A1 � A2 accepting u, and
u ∈ L(A1 �A2).

• Suppose that u = u1.(b′ ∧ b′′).u2, with u1b′ ∈ L(A1)
and b′′u2 ∈ L(A2). Let q0, . . . , qi, q

f
1 be a run of A1

accepting u1b′, and let q0
2, qi+1, . . . , qn be a run in A2

accepting b′′u2. For all i′ ∈ [0, i−1], we have qi′ ∈ Q1
and qi′+1 ∈ δ1(qi′ , u(i′ + 1)), so qi′+1 ∈ δ(qi′ , u(i′ + 1)).
We have that q f

1 ∈ δ1(qi, b′), and qi+1 ∈ δ2(q0
2, b
′′), so

qi+1 ∈ δ(qi, b′∧b′′). Additionally, for all i′ ∈ [i+1, n−
1], we have qi′ ∈ Q2 and qi′+1 ∈ δ2(qi′ , u(i′ + 1)), thus
qi′+1 ∈ δ(qi′ , u(i′ + 1)). Finally, we also have q0 = q0

1
and qn ∈ F2, which implies that q0, . . . , qn is a run of
A1 �A2 accepting u, and thus u ∈ L(A1 �A2).

2) First, remark that Definition 3 can be stated differently,
in a way more convenient to proving Proposition 2.
Lemma 7. Let u, v ∈ C+(X)∗. We have w ∈ u ⊗ v if, and
only if, there exist two sets J and K such that J ∪ K =

[1, |w|], and for all i ∈ [1, |w|],

w(i) =


u( ji) if i ∈ J \ K
v(ki) if i ∈ K \ J
u( ji) ∧ v(ki) otherwise, thus i ∈ J ∩ K

where the increasing sequences ( ji)i∈[1,|w|] and (ki)i∈[1,|w|]
are defined by recurrence over i as follows.
First j1 = k1 = 1, then for all i ∈ [2, |w|],

ji =

{
ji−1 + 1 if i − 1 ∈ J
ji−1 otherwise ki =

{
ki−1 + 1 if i − 1 ∈ K
ki−1 otherwise

We do not prove this lemma, but for example we have
seen that b1b2 ⊗ b3 = {b1b2b3, b1(b2 ∧ b3), b1b3b2, (b1 ∧

b3)b2, b3b1b2}. Take b1(b2 ∧ b3) ∈ b1b2 ⊗ b3; the sets J
and K in Lemma 7 are respectively {1, 2} and {2}, while
for b3b1b2 the sets are {2, 3} and {1}.

Let u ∈ L(A1)⊗L(A2). Let u = v⊗w such that v ∈ L(A1)
and w ∈ L(A2). Let q0, . . . , qm+1 be a run in A1 accepting
v, and let q′0, . . . , q

′
m′+1 be a run in A2 accepting w. Let

n = |u|.

Let J and K be the two sets defined in Lemma 7,
and let ( ji)i∈[1,n] and (ki)i∈[1,n] be the two sequences
defined in Lemma 7. We also define by convention
j0 = k0 = 0. We now show that the sequence
(q j0 , q

′
k0

), (q j1 , q
′
k1

), . . . , (q jn , q
′
kn

) is a run in A1 ⊗ A2 that
accepts u. As q0, . . . , qm is a run in A1 accepting v, we
have that q0 = q0

1 and qm ∈ F1, and with a similar
reasoning, we have q′0 = q0

2 and q′m′+1 ∈ F2. Moreover,
for 2 ≤ i ≤ n, we have three possible exclusive cases
• i − 1 ∈ J and i − 1 < K : we have ji = ji−1 + 1,

and as q0, . . . , qm is a run in A1 accepting v, we have
that q ji ∈ δ1(q ji−1 , v( ji)). Besides, we have ki = ki−1
so immediately q′ki

= q′ki−1
. By the definition of the

transition function of A1⊗A2, and as v( ji) = u(i) we
have that (q ji , q

′
ki

) ∈ δ((q ji−1 , q
′
ki−1

), u(i)).
• i − 1 < J and i − 1 ∈ K : we have ji = ji−1, so

immediately q ji = q ji−1 . Besides, we have ki = ki−1+1,
and as q′0, . . . , q

′
m′ is a run in A2 accepting w, we

have that q′ki
∈ δ2(q′ki−1

, w(ki−1)). By the definition of
the transition function of A1⊗A2, and as w(ki) = u(i)
we have that (q ji , q

′
ki

) ∈ δ((q ji−1 , q
′
ki−1

), u(i)).
• i− 1 ∈ J and i− 1 ∈ K : we have ji = ji−1 + 1, and as

q0, . . . , qm is a run in A1 accepting v, we have that
q ji ∈ δ1(q ji−1 , v( ji)). Besides, we have ki = ki−1+1, and
as q′0, . . . , q

′
m′ is a run inA2 accepting w, we have that

q′ki
∈ δ2(q′ki−1

, w(ki)). We also have that u(i) = v( ji) ∧
w(ki). By the definition of the transition function of
A1 ⊗A2, we have that (q ji , q

′
ki

) ∈ δ((q ji−1 , q
′
ki−1

), u(i)).
In any case, we have that (q ji , q

′
ki

) ∈ δ((q ji−1 , q
′
ki−1

), u(i)).
As additionally (q j0 , q

′
k0

) = (q0
1, q

0
2) and (q jn , q

′
kn

) ∈ F1 ×

F2, we conclude that (q j0 , q
′
k0

), . . . , (q jn , q
′
kn

) is a run in
A1 ⊗A2 accepting u.
Now we turn to the other direction of the inclusion. Let
u ∈ L(A1 ⊗ A2). Let (q0, q′0), . . . , (qn, q′n) be a run in
A1 ⊗ A2 accepting u. By definition of δ, for each i ∈
[0, n−1] we have 3 possible case: (1) qi+1 = qi and q′i+1 ∈

δ2(q′i , u(i + 1)) or (2) qi+1 ∈ δ1(qi, u(i + 1)) and q′i+1 = q′i
or (3) u(i + 1) = b′ ∧ b′′ and qi+1 ∈ δ1(qi, b′) and q′i+1 ∈

δ2(q′i , b
′′). We define the two set J and K such that for all

i ∈ [0, n − 1], i + 1 ∈ J if and only if case (2) or (3) hold
for i, and i + 1 ∈ K if and only if case (1) or (3) hold for
i. Necessarily J ∪K = [0, n− 1]. Remark that if for some
i, case (1) and (2) both hold, then case (3) holds as well,
so for all i+1 ∈ J∩K, case (3) holds for i. Moreover, for
all i + 1 ∈ J \ K, case (2) holds for i but not case (1) and
case (3) , and for all i + 1 ∈ K \ J, case (1) holds for i but
not case (2) and case (3). We define the two sequences
of pairs of integers j1, . . . , jn and k1, . . . , kn by recurrence
such that j1 = k1 = 1, and for all 2 ≤ i ≤ n,

ji =

{
ji−1 + 1 if i − 1 ∈ J
ji−1 otherwise ki =

{
ki−1 + 1 if i − 1 ∈ K
ki−1 otherwise

Now we define v and w to be the two words such that for

all 1 ≤ i ≤ n, u(i) =


v( ji−1) if i ∈ J \ K
w(ki−1) if i ∈ K \ J
v( ji−1) ∧ w(ki−1) if i ∈ J ∩ K

By Lemma 7, we have that u ∈ v ⊗ w. We conclude by
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showing that v ∈ L(A1) and w ∈ L(A2).
For all i ∈ J, case (2) or (3) holds, which means that
either u(i + 1) = v( ji+1) and qi+2 ∈ δ1(qi+1, u(i + 1)) or
u(i + 1) = v( ji+1) ∧ w(ki+1) qi+2 ∈ δ1(qi+1, v( ji+1)), so for
all i ∈ J, we have qi+2 ∈ δ1(qi+1, v( ji+1)). Additionally,
we have q0 = q0

1 and qn ∈ F1. Also, remark that for all
i ∈ [1, n]\J, qi+1 = q j+1 where j = min{ j ∈ J∪{n} | j > i}.
The sequence (q j−1) j∈J , qn is a run in A1 accepting v.
Similarity, for all i ∈ K, case (1) or (3) holds, which
means that either u(i) = v(ki+1) and q′i+2 ∈ δ2(q′i+1, u(i+1))
or u(i+1) = v( ji+1)∧w(ki+1) q′i+2 ∈ δ2(q′i+1, w(ki+1)), so for
all i ∈ K, we have q′i+2 ∈ δ2(q′i+1, w(ki+1)). Additionally,
we have q′0 = q0

2 and q′n ∈ F2. Also, remark that for all
i ∈ [1, n] \K, qi+1 = qk+1 where k = min{k ∈ K ∪ {n} | k >
i}. The sequence (q′k−1)k∈K , q′n is a run in A2 accepting w

Appendix B
Proof of Lemma 6

Recall the lemma statement: Let u ∈ L(τ) of size n and let
a non-root position p ∈ Pos(τ) be such that par(p) ∈ PosOR(τ).
Consider τ′ := τ[par(p)← τ|p]. Then
Υ
τ′,par(p)
u has a model if, and only if Υ

τ,p
u has a model.

We make a proof only for the case p = par(p).1, as the
other case p = par(p).2 is symmetric.

First of all, remark that τ and τ′ are very similar: they
differ only by the parts below position par(p), and the two
subtrees τ|p and τ′

|par(p) are equal. We make use of this remark
to separate the formulas Υ

τ′,par(p)
u and Υ

τ,p
u , into a conjunct of

respectively three and six subformulas.
To implement this separation, we first use Lemma 2 to

flatten Υ
τ′,par(p)
u into a conjunction, and then separate this

conjunction into three subformulas, each subformula being
characterized by the relation between par(p) and the positions
the subformula refers to. There are three kinds of sets of
positions relative to par(p): the first kind is when all positions
are below par(p), the second kind is when no positions are
below par(p), and the third kind when some position are below
par(p) and some others are not. Let φout, φin and φinter be the
three separated subformulas, so that φout is the conjunction of
all formulas of the first kind, φout is the conjunction of all
formulas of the second kind, and φinter is the conjunction of
all formulas of the third kind. It can be shown that
• φin =

∧
1≤i≤ j≤n,

q∈`(τ),
par(p)�q,
u( j)6|=τ(q)

¬xq
(i′, j′) ∧

∧
q∈Pos(τ)
\`(τ),

par(p)�q

Γ
τ(q),q
1,n ∧

∨
1≤i≤ j≤n xpar(p)

(i, j)

• φinter =
∧

1≤i≤ j≤n Γ
τ(par(par(p))),par(par(p))
i, j

• φout =
∧

1≤i≤ j≤n,
q∈`(τ),

par(par(p)) 6�q,
u( j)6|=τ(q)

¬xq
(i′, j′) ∧

∧
q∈Pos(τ)
\`(τ),

par(par(p)) 6�q

Γ
τ(q),q
1,n ∧

∧
q�par(par(p))

∨
1≤i≤ j≤n xq

(i, j)

Similarly, we flatten Υ
τ,p
u and separate the flattened version

the same way into three subformulas. But this time, it can be
shown that the subformula of the first kind is

φin↓1 ∧ ψ
τ|par(p).2
u ↓par(p).2 ∧ Γ

τ(par(p)),par(p)
1,n ∧

∨
1≤i≤ j≤n

xpar(p)
(i, j) ,

the subformula of the second kind is φinter, and the subformula
of the third kind is φout.

To recap the separation of Υ
τ′,par(p)
u and Υ

τ,p
u , we can rewrite

• Υ
τ′,par(p)
u as φin ∧ φinter ∧ φout, and

• Υ
τ,p
u as φin↓1 ∧ ψ

τ|par(p).2
u ↓par(p).2 ∧ Γ

τ(par(p)),par(p)
1,n ∧∨

1≤i≤ j≤n xpar(p)
(i, j) ∧ φinter ∧ φout

⇒): Suppose that ν |= Υ
τ′,par(p)
u .

We derive two valuations νout and νin that restrict ν to
particular domains:
• dom(νin) = dom(ν) ∩ {xq

(i, j) | q ∈ Pos(τ[par(p) ←
τ|p]) with par(p) � q, i ≤ j ∈ N}, and

• dom(νout) = dom(ν) ∩ {xq
(i, j) | q ∈ Pos(τ[par(p) ←

τ|p]) with par(p) 6� q, i ≤ j ∈ N}.
It is easy to establish that dom(νin) ⊆ var(φin), and dom(νout) ⊆
var(φout).

Let ν′in be the valuation of domain {xq
(i, j) | q ∈

Pos(τ) with par(p) � q, 1 ≤ i ≤ j ≤ n} defined by ν′in(xq
(i, j)) =

tt iff q = par(p) or q = p.q′ and νin(xpar(p).q′

(i, j) ) = tt. Clearly,
dom(ν′in) ∩ dom(νout) = ∅.

We have ν′in ∪ νout |= φinter because ν |= φinter and ν′in ∪ νout
and ν agree on var(φinter).

Now, the statement “ν′in |= xpar(p).1.q
(i, j) iff νin |= xpar(p).q

(i, j) for
all par(p).q ∈ dom(νin) and every i, j” implies the statement
“ν′in |= φin↓1 iff νin |= φin”.

Additionally, ∅ |= ψ
τ|par(p).2
u ↓par(p).2 ∧ Γ

τ(par(p)),par(p)
1,n and

dom(ν′in)∩ var(φout) = dom(νout)∩ var(φin) = ∅ and νout |= φout,
so by Lemma 1, ν′in |= φin↓1 ∧ ψ

τ|par(p).2
u ↓par(p).2 ∧ Γ

τ(par(p)),par(p)
1,n

and ν′in ∪ νout |= φin↓1 ∧ ψ
τ|par(p).2
u ↓par(p).2 ∧ Γ

τ(par(p)),par(p)
1,n ∧ φout.

As Additionally ν′in ∪ νout |= φinter and νout |=
∨

1≤i≤ j≤n xpar(p)
(i, j) ,

we have νin ∪ νout |= φτu ∧
∧

q�p
∨

1≤i≤ j≤n xq
(i, j) = Υ

τ,p
u .

⇐): Suppose that ν |= Υ
τ,p
u .

We let νout and νin restrict ν to
• dom(νout) = dom(ν) ∩ {xq

(i, j) | q ∈ Pos(τ) with par(p) 6�
q, i ≤ j ∈ N}, and

• dom(νin) = dom(ν) ∩ {xq
(i, j) | q ∈ Pos(τ) with q =

par(p) or p � q, i ≤ j ∈ N}.
It can be estblished that dom(νout) ⊆ var(φout) and

dom(νin) ⊆ var(φin↓1) ∪ {xpar(p)
(i, j) | i ≤ j ∈ N}.

Let ν′in be the valuation of domain {xq
(i, j) | q ∈

Pos(τ[par(p) ← τ|p]) with par(p) � q, 1 ≤ i ≤ j ≤ n} defined
by ν′in(xq

(i, j)) = tt iff q = par(p).q′ and νin(xp.q′

(i, j)) = tt. Clearly,
dom(ν′in) ∩ dom(νout) = ∅.

Now, ν′in ∪ νout |= φinter because ν |= φinter and ν′in ∪ νout and
ν agree on var(φinter).

The statement “ν′in |= xpar(p).q
(i, j) iff νin |= xpar(p).1.q

(i, j) for all
par(p).1.q ∈ dom(νin) and every i, j” implies the statement
“ν′in |= φin iff νin |= φin↓1”. Finally, dom(ν′in) ∩ var(φout) =

dom(νout)∩var(φin) = ∅, so by Lemma 1, ν′in∪νout |= φin∧φout,
and as ν′in∪νout |= φinter, we have ν′in∪νout |= φin∧φout∧φinter =

Υ
τ′,par(p)
u , which concludes.
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