
Natural Language Generation From Ontologies1

Van Duc Nguyen2

Computer Science Department3

[New Mexico State University, USA]4

vnguyen@cs.nmsu.edu5

Son Cao Tran6

Computer Science Department7

[New Mexico State University, USA]8

tson@cs.nmsu.edu9

Enrico Pontelli10

Computer Science Department11

[New Mexico State University, USA]12

epontell@cs.nmsu.edu13

Abstract14

The paper addresses the problem of automatic generation of natural language descriptions for15

ontology-described artifacts. The motivation for the work is the challenge of providing textual16

descriptions of automatically generated scientific workflows (e.g., paragraphs that scientists can17

include in their publications). The extended abstract presents a system which generates descrip-18

tions of sets of atoms derived from a collection of ontologies. The system, called nlgPhylogeny,19

demonstrates the feasibility of the task in the Phylotastic project, that aims at providing evol-20

utionary biologists with a platform for automatic generation of phylogenetic trees given some21

suitable inputs. nlgPhylogeny utilizes the fact that the Grammatical Framework (GF) is suit-22

able for the natural language generation (NLG) task; the abstract shows how elements of the23

ontologies in Phylotastic, such as web services, inputs and outputs of web services, can be encoded24

in GF for the NLG task.25

2012 ACM Subject Classification Computing methodologies → Logic programming and answer26

set programming, Information systems → World Wide Web → Web services, Computing meth-27

odologies → Artificial intelligence → Natural language processing → Natural language generation28

Keywords and phrases Phylotastic, Grammatical Framework29

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.1430

1 Introduction31

In many applications whose users are not proficient in computer programming, it is of the32

utmost important to be able to communicate the results of a computation to the users in an33

easily understandable way (e.g., text rather than a complex data structure). The problem34

of generating natural language explanations has been explored in several research efforts.35

For example, the problem has been studied in the context of question-answering systems,136

providing recommendations,2, etc. With the proliferation of spoken dialogue systems and37

conversational agents on mobile robots, phones, etc., verbal interfaces such as Amazon38

Echo and Google Home for human-robot-interaction, and the availability of text-to-speech39

1 http://coherentknowledge.com
2 http://gem.med.yale.edu/ergo/default.htm

© John Q. Public and Joan R. Public;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 14; pp. 14:1–14:3

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vnguyen@cs.nmsu.edu
mailto:tson@cs.nmsu.edu
mailto:epontell@cs.nmsu.edu
http://dx.doi.org/10.4230/OASIcs.ICLP.2018.14
http://coherentknowledge.com
http://gem.med.yale.edu/ergo/default.htm
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


14:2 Natural Language Generation From Ontologies

programs such as the TTSReader Extension,3 the application arena of systems capable of40

generating natural language representation will just become larger.41

In this paper, we describe a system called nlgPhylogenyfor generating natural language42

descriptions of collections of atoms derived from a set of ontologies. The system is powered43

by Grammatical Framework.44

2 Methodology45

In this section, we describe the nlgPhylogeny system. Figure 1 shows the overall
architecture of nlgPhylogeny.
The main component of the
system is the GF generator
whose inputs are the ontology
and the elements necessary for
the NLG task (i.e., the set of
linearizations, the set of pre-
define conjunctives, the set of
vocabularies, and the set of
sentence models) and whose
output is a GF program, i.e.,
a pair of GF abstract and con-
crete syntax. This GF pro-
gram is used for generating
the descriptions of workflows
via the GF runtime API. The

Ontology Linearization Pre-defined 
Conjunctive

Pre-defined 
Vocabulary

GF GeneratorAdapter

Portable 
grammar 

format

Sentence 
Model

English concrete 
syntax

Abstract 
syntax

Workflow Atoms English 
Description

GF Runtime API

Sentence generator

Figure 1 Overview of nlgPhylogeny

adapter provides the GF generator with the information from the ontology, such as the
classes, instances, and relations.
2.1 Web Service Ontology (WSO)46

Phylotastic uses web service composition to generate workflows for the extraction/construc-47

tion of phylogenetic trees. It makes use of two ontologies: WSO and PO. WSO encodes48

information about registered web services and their abstract classes. In the following dis-49

cussion, we refer to a simplified version of the ASP encoding of the ontologies used in [2], to50

facilitate readability. In WSO, a service has a name and is associated with a list of inputs51

and a list of outputs.52

2.2 GF generator53

Each Phylotastic workflow is an acyclic directed graph, where the nodes are web services,54

each consumes some resources (inputs) and produces some resources (outputs). The GF55

generator produces a portable grammar format (pgf) file [1]. This file is able to encode and56

generate sentences by using GF Runtime API. The GF generator (see Fig. 1) accepts two57

flows of input data:58

The flow of data from the ontology which is maintained by an adapter. The adapter is59

the glue code that connects the ontology to the GF generator. Its main function is to60

extract classes and properties from the ontology.61

3 https://ttsreader.com

https://ttsreader.com


J.Q. Public and J.R. Public 14:3

The flow of data from predefined resources that cannot be automatically obtained from62

the ontology—instead they require manual effort from both ontology experts and lin-63

guistic developers;64

A list of linearizations; these are essentially the translations of names of ontology65

entities into linguistic terms. This translation is performed by experts who have66

knowledge of the ontology domain. An important reason for the existence of this67

component is that some classes or terms used in the ontology might not be directly68

understandable by the end user. This may be the result of very specialized strings69

used in the encoding of the ontology by the ontology engineer (e.g., abbreviations),70

or the use of URIs for the representation of certain concepts.71

Some model sentences which are principally Grammatical Framework syntax trees72

with meta-information. The meta-information denotes which part of syntax tree can73

be replaced by some vocabulary or linearization.74

A list of pre-defined vocabularies which are domain-specific for the ontology. A pre-75

defined vocabulary is different from linearizations, in the sense that some lexicon may76

not be present in the ontology but might be needed in the sentence construction; the77

predefined vocabulary is also useful to bring variety in word choices when parts of a78

model sentence are replaced by the GF generator.79

A configuration of pre-defined conjunctives which depend on the document planning80

result. Basically, this configuration defines which sentences accept a conjunctive ad-81

verb in order to provide generated text transition and smoothness.82

Based on the number of inputs and outputs of a service, the GF generator determines83

how many parameters will be included in the GF abstraction function corresponding to the84

service. Furthermore, for each input or output of a service, the GF generator includes an85

Input or Output in the GF abstract function.86

Next, the GF generator looks up in the sentence models a model syntax tree whose87

structure is suitable for the number of inputs and outputs of the service. If such syntax tree88

exists, the GF generator will replace parts of the syntax tree with the GF service input and89

output functions, to create a new GF syntax tree which can be appended in the GF concrete90

function.91

From the abstract and concrete syntax built by GF generator, it is possible to generate92

the sentence93

The input of service phylotastic_FindScientificNamesFromWeb_GET is
a web link and its outputs are a set of species names and a set of scientific
names.

94

for the atom occur_concrete(phylotastic_FindScientificNamesFromWeb_GET,1). We use the same95

technique to encode the other types of sentences to describe a full workflow.96

References97

1 Krasimir Angelov, Björn Bringert, and Aarne Ranta. Pgf: A portable run-time format for98

type-theoretical grammars. Journal of Logic, Language and Information, 19:201–228, 2010.99

2 Thanh H. Nguyen, Tran Cao Son, and Enrico Pontelli. Automatic web services composition100

for phylotastic. In Practical Aspects of Declarative Languages - 20th International Sym-101

posium, pages 186–202, 2018. URL: https://doi.org/10.1007/978-3-319-73305-0_13,102

doi:10.1007/978-3-319-73305-0_13.103

ICLP 2018

https://doi.org/10.1007/978-3-319-73305-0_13
http://dx.doi.org/10.1007/978-3-319-73305-0_13

	Introduction
	Methodology
	Web Service Ontology (WSO)
	GF generator


