
Constrained Image Generation Using Binarized Neural
Networks with Decision Procedures

Svyatoslav Korneev1, Nina Narodytska2, Luca Pulina3, Armando Tacchella4, Nikolaj
Bjorner5, and Mooly Sagiv26

1 Dept. of Energy Resources Engineering, Stanford, USA, skorneev@stanford.edu
2 VMware Research, Palo Alto, USA, nnarodytska@vmware.com

3 Chemistry and Pharmacy Dept., University of Sassari, Italy, lpulina@uniss.it
4 DIBRIS, University of Genoa, Italy, armando.tacchella@unige.it

5 Microsoft Research, USA, nbjorner@microsoft.com
6 Tel Aviv University, msagiv@acm.org

Abstract. We consider the problem of binary image generation with given proper-
ties. This problem arises in a number of practical applications, including generation
of artificial porous medium for an electrode of lithium-ion batteries, for composed
materials, etc. A generated image represents a porous medium and, as such, it
is subject to two sets of constraints: topological constraints on the structure and
process constraints on the physical process over this structure. To perform image
generation we need to define a mapping from a porous medium to its physical
process parameters. For a given geometry of a porous medium, this mapping can
be done by solving a partial differential equation (PDE). However, embedding
a PDE solver into the search procedure is computationally expensive. We use a
binarized neural network to approximate a PDE solver. This allows us to encode
the entire problem as a logical formula. Our main contribution is that, for the first
time, we show that this problem can be tackled using decision procedures. Our
experiments show that our model is able to produce random constrained images
that satisfy both topological and process constraints.

1 Introduction

We consider the problem of constrained image generation of a porous medium with given
properties. Porus media occur, e.g., in lithium-ion batteries and composed materials [1,2];
the problem of generating porus media with a given set of properties is relevant in
practical applications of material design [3,4,5]. Artificial porous media are useful
during the manufacturing process as they allow the designer to synthesize new materials
with predefined properties. For example, generated images can be used in designing a
new porous medium for an electrode of lithium-ion batteries. It is well-known that ions
macro-scale transport and reactions rates are sensitive to the topological properties of
the porous medium of the electrode. Therefore, manufacturing the porous electrode with
given properties allows improving the battery performance [1].

Images of porous media7 are black and white images that represent an abstraction of
the physical structure. Solid parts (or so called grains) are encoded as a set of connected

7 Specifically, we are looking at a transitionally periodic “unit cell” of porous medium assuming
that porous medium has a periodic structure [5].



2 S. Korneev, N. Narodytska et al.

black pixels; a void area is encoded a set of connected white pixels. There are two
important groups of restrictions that images of a porous medium have to satisfy. The first
group constitutes a set of “geometric” constraints that come from the problem domain
and control the total surface area of grains. For example, an image contains two isolated
solid parts. Figure 1(a) shows examples of 16x16 images from our datasets with two (the
top row) and three (the bottom row) grains. The second set of restrictions comes from

Fig. 1: (a) Examples of images from train sets with two and three grains; (b) Examples of images
generated by a GAN on the dataset with two grains. Examples of generated images with (c)
d ∈ [40, 50), (d) d ∈ [60, 70), and (e) d ∈ [90, 100].

the physical process that is defined for the corresponding porous medium. In this paper,
we consider the macro-scale transportation process that can be described by a set of
dispersion coefficients depending on the transportation direction. For example, we might
want to generate images that have two grains such that the dispersion coefficient along
the x-axis is between 0.5 and 0.6. The dispersion coefficient is defined for the given
geometry of a porous medium. It can be obtained as a numerical solution of the diffusion
Partial Differential Equation (PDE). We refer to these restrictions on the parameters of
the physical process as process constraints.

The state of the art approach to generating synthetic images is to use generative
adversarial networks (GANs) [6]. However, GANs are not able learn geometric, three-
dimensional perspective, and counting constraints which is a known issue with this
approach [7,8]. Our experiments with GAN-generated images also reveal this problem.
There are no methods that allow embedding of declarative constraints in the image
generation procedure at the moment.

In this work we show that the image generation problem can be solved using decision
procedures for porous media. We show that both geometric and process constraints
can be encoded as a logical formula. Geometric constraints are encoded as a set of
linear constraints. To encode process constraints, we first approximate the diffusion
PDE solver with a Neural Network(NN) [9,10]. We use a special class of NN, called
BNN, as these networks can be encoded as logical formulas. Process constraints are
encoded as restrictions on outputs of the network. This provides us with an encoding
of the image generation problem as a single logical formula. The contributions of this
paper can be summarized as follows: (i) We show that constrained image generation
can be encoded as a logical formula and tackled using decision procedures. (ii) We
experimentally investigate a GAN-based approach to constrained image generation and
analyse their advantages and disadvantages compared to the constraint-based approach.
(iii) We demonstrate that our constraint-based approach is capable of generating random
images that have given properties, i.e., satisfy process constraints.



Constrained Image Generation Using BNN with Decision Procedures 3

2 Problem description

We describe a constrained image generation problem. We denote I ∈ {0, 1}t×t an image
that encodes a porous medium and d ∈ Zm a vector of parameters of the physical process
defined for this porous material. We use an image and a porous medium interchangeably
to refer to I . We assume that there is a mapping function M that maps an image I to the
corresponding parameters vector d, M : I → Zm. We denote as Cg(I) the geometric
constraints on the structure of the image I and as Cp(d) the process constraints on the
vector of parameters d. Given a set of geometric and process constraints and a mapping
function M, we need to generate a random image I that satisfies Cg and Cp. Next we
overview geometric and process constraints and discuss the mapping function.

The geometric constraints Cg define a topological structure of the image. For exam-
ple, they can ensure that a given number of grains is present on an image and these grains
do not overlap. Another type of constraints focuses on a single grain. They can restrict
the shape of a grain, e.g., a convex grain, its size or position on the image. The third type
of constraints are boundary constraints that ensure that the boundary of the image must
be in a void area. Process constraints define restrictions on the vector of parameters. For
example, we might want to generate images with dji ∈ [aj , bj ], j = 1, . . . ,m.

Next we consider a mapping function M. A standard way to define M is by solving
a system of partial differential equations. However, solving these PDEs is a computa-
tionally demanding task and, more importantly, it is not clear how to ‘reverse’ them to
generate images with given properties. Hence, we take an alternative approach of approx-
imating a PDE solver using a neural network [9,10]. To train such an approximation, we
build a training set of pairs (Ii, di), i = 1, . . . , n, where Ii is an input image of a porous
medium and di, obtained by solving the PDE given I , is its label. In this work, we use a
special class of deep neural networks — Binarized Neural Networks (BNN) that admit
an exact encoding into a logical formula. We assume that M is represented as a BNN
and is given as part of input. We will elaborate on the training procedure in Section 5.

3 The generative neural network approach

One approach to tackle the constrained image generation problem is to use generative
adversarial networks (GANs) [6,11]. GANs are successfully used to produce samples of
realistic images for commonly used datasets, e.g. interior design, clothes, animals, etc.
A GAN can be described as a game between the image generator that produces synthetic
(fake) images and a discriminator that distinguishes between fake and real images. The
cost function is defined in such a way that the generator and the discriminator aim to
maximize and minimize this cost function, respectively, turning the learning process
into a minimax game between these two players. Each payer is usually represented as a
neural network. To apply GANs to our problem, we take a set of images {I1, . . . , In}
and pass them to the GAN. These images are samples of real images for the GAN. After
the training procedure is completed, the generator network produces artificial images
that look like real images. The main advantage of GANs is that it is a generic approach
that can be applied to any type of images and can handle complex concepts, like animals,



4 S. Korneev, N. Narodytska et al.

scenes, etc.8 However, the main issue with this approach is that there is no way to
explicitly pass declarative constraints into the training procedure. One might expect that
GANs are able to learn these constraints from the set of examples. However, this is not
the case at the moment, e.g., GANs cannot capture counting constraints, like four legs,
two eyes, etc. [7]. Figure 1 shows examples of images that GAN produces on a dataset
with two grains per image. As can be seen from these examples, GAN produces images
with an arbitrary number of grains between 1 and 5 per image. In some simple cases, it
is easy to filter wrong images. If we have more sophisticated constraints like convexity
or size of grains, then most images will be invalid. On top of this, to take into account
process constraints, we need additional restrictions on the training procedure. Overall,
it is an interesting research question how to extend the GAN training procedure with
physical constraints, which is beyond the scope of this paper [13]. Next we consider our
approach to the image generation problem.

4 The constraint-based approach

The main idea behind our approach is to encode the image generation problem as a
logical formula. To do so, we need to encode all problem constraints and the mapping
between an image and its label as a set of constraints. We start with constraints that
encode an approximate PDE solver. We denote [N ] a range of numbers from 1 to N .

4.1 Approximation of a PDE solver.

One way to approximate a diffusion PDE solver is to use a neural network [9,10]. A
neural network is trained on a set of binary images Ii and their labels di, i = 1, . . . , n.
During the training procedure, the networks takes an image Ii as an input and outputs
its estimate of the parameter vector d̂i. As we have ground truth parameters di for each
image, we can use the mean square error or absolute value error as a cost function to
perform optimization [14]. In this work, we take the same approach. However, we use
a special type of networks: Binarized Neural Networks (BNN). BNN is a feedforward
network where weights and activations are binary [15]. It was shown in [14,16] that
BNNs allow exact encoding as logical formulas, namely, they can be encoded a set of
reified linear constraints over binary variables. We use BNNs as they have a relatively
simple structure and decision procedures scale to reason about small and medium size
networks of this type. In theory, we can use any exact encoding to represent a more
general network, e.g., MILP encodings that are used to check robustness properties of
neural networks [17,18]. However, the scalability of decision procedures is the main
limitation in the use of more general networks. We use the ILP encoding as in [14] with
a minor modification of the last layer as we have numeric outputs instead of categorical
outputs. We denote ENCBNN(I, d) a logical formula that encodes BNN using reified
linear constraints over Boolean variables (Section 4, ILP encoding [14]).

ENCBNN(I, d) =

(
q−1∧
k=1

ENCBLKk(xk,xk+1)

)
∧ ENCO(xq, d), (1)

8 GANs exhibit well-known issues with poor convergence that we did not observe as our dataset
is quite simple [12].



Constrained Image Generation Using BNN with Decision Procedures 5

where x1 = I is an input of the network, q is the number of layers in the network and d
is the output of the network. ENCBLKk denotes encoding of the intermediate layer and
ENCO denotes encoding of the last layer that maps the output of the qth layer (xq) to
the dispersion value d.

4.2 Geometric and process constraints.

Geometric constraints can be roughly divided into three types. The first type of constraints
defines the high-level structure of the image. The high-level structure of our images is
defined by the number of grains present in the image. Let w be the number of grains per
image. We define a grid of size t × t. Figure 2(a) shows an example of a grid of size
4 × 4. We refer to a cell (i, j) on the grid as a pixel as this grid encodes an image of
size t× t. Next we define the neighbor relation on the grid. We say that a cell (h, g) is a
neighbour of (i, j) if these cells share a side. For example, (2, 3) is a neighbour of (2, 4)
as the right side of (2, 3) is shared with (2, 4). Let NB(i, j) be the set of neighbors of
(i, j) on the gird. For example, NB(2, 3) = {(1, 3), (2, 2), (2, 4), (3, 3)}.

Fig. 2: Illustrative examples of additional structures used by constraint-based model.

Variables. For each cell we introduce a Boolean variable ci,j,r, i, j ∈ [t], r ∈ [w + 1].
ci,j,r = 1 iff the cell (i, j) belongs to the rth grain, r = 1, . . . , w. Similarly, ci,j,w+1 = 1
iff the cell (i, j) represents a void area.

Each cell is either a black or white pixel. We enforce that each cell contains either a
grain or a void area. ∑w+1

r=1 ci,j,r = 1 j, i ∈ [t] (2)

Grains do not overlap. Two cells that belong to different grains cannot be neighbours.

ci,j,r → ¬ch,g,r′ (h, g) ∈ NB(i, j), r′ ∈ [w] \ {r} (3)

Grains are connected areas. We enforce connectivity constraints for each grain. By
connectivity we mean that there is a path between two cells of the same grain using only
cells that belong to this grain. Unfortunately, enforcing connectivity constraints is very
expensive. Encoding the path constraint results in a prohibitively large encoding. To deal
with this explosion, we restrict the space of possible grain shapes. First, we assume that
we know the position of one pixel of this grain that we pick randomly. Let sr = (i, j)
be a random cell, r ∈ [w]. Then we implicitly build a directed acyclic graph (DAG) G
starting from this cell sr that covers the entire grid. Each cell of a grid is a node in this
graph. The node that corresponds to the cell sr does not have incoming arcs. There are
multiple ways to build a G from sr. Figure 2(a) and (d) show two possible ways to build



6 S. Korneev, N. Narodytska et al.

a G that covers a grid starting from cell (3, 3). We enforce that cell i, j belongs to the
rth grain if its center sr is equal to (i, j).

(ci,j,r), sr = (i, j), r ∈ [w + 1]. (4)

Next we define a parent relation in G. Let PRG(i, j) be the set of parents of cell (i, j)
in G. For example, PRG(2, 2) = {(2, 3), (3, 2)} in our example on Figure 2(a). Given a
DAG G, we can easily enforce connectivity relation w.r.t. G. The following constraint
ensures that a cell (i, j) cannot belong to the rth grain if none of its parents in G belongs
to the same grain.(

∧(h,g)∈PRG(i,j)¬ch,g,r
)
→ ¬ci,j,r, j, i ∈ [t], r ∈ [w + 1]. (5)

Note that by enforcing connectivity constraints on the void area, we make sure that
grains do not contain isolated void areas inside them.

Given a DAG G, we can generate grains of multiple shapes. For example, Figure 2(b)
shows one possible grain. However, we also lose some valid shapes that are ruled out
by the choice of graph G. For example, Figure 2(c) gives an example of a shape that is
not possible to build using G in Figure 2(a). Note that there is no path from the center
(3, 3) of G to the cell (3, 1) that does not visit (3, 2). However, if we select a different
random DAG G′, e.g., Figure 2(d), then this shape is one of the possible shapes for G′.
In general, we can pick sr and DAG randomly, so we generate a variety of shapes.

Compactness of a grain. The second set of constraints is about restrictions on a single
grain. The compactness constraint is a form of convexity constraint. We want to ensure
that any two boundary points of a grain are close to each other. The reason for this
constraint is that grains are unlikely to have a long snake-like appearance as solid
particles tend to group together. Sometimes, we need to enforce the convexity constraint,
which is an extreme case of compactness. To enforce this constraint, we again trade-off
the variety of shapes and the size of the encoding. Now we assume that sr is the center of
the grain. Then we build virtual circles around this center that cover the grid. Figure 2(e)
shows examples of such circles. Let Cr(i, j) = {C1

r , . . . , C
q
r} be a set of circles that

are built with the cell sr as a center. The following constraint enforces that a cell that
belongs to the circle Cv

r can be in the rth grain only if all cells from the inner circle
Cv−s

r belong to the rth grain, where s is a parameter.

∨ch,g,r∈Cv−s
r
¬ch,g,r → ¬ci,j,r ci,j,r ∈ Cv

r , v ∈ [q], r ∈ [w] (6)

Note that if s = 1 then we generate convex grains. In this case, every pixel from Cv
r has

to belong to the rth grain before we can add a pixel from the circle Cv+1
r to this grain.

Boundary constraints. We also have a technical constraint that all cells on the boundary
of the grid must be void pixels. They are required to define boundary conditions for
PDEs on generated images.

(ci,j,w+1) j = t ∨ i = t (7)



Constrained Image Generation Using BNN with Decision Procedures 7

Connecting with BNN. We need to connect variables ci,j,r with the inputs of the network.
We recall that an input image is a black and white image, where black pixels correspond
to solid parts. Hence, if a cell belongs to a grain, i.e. ci,j,r is true and r 6= w + 1, then it
maps to a black pixel. Otherwise, it maps to a white pixel.

ci,j,r → Ii,j = 1 j, i ∈ [t], r ∈ [w],
ci,j,w+1 → Ii,j = 0 j, i ∈ [t].

(8)

Process constraints. Process constraints are enforced on the output of the network.
Given ranges [ai, bi], i ∈ [m] we have:

ai ≤ di ≤ bi i ∈ [m] (9)

Summary. To solve the constrained random image generation problem, we solve the
conjunctions of constraint (1)–(9). Randomness comes from the random seed that is
passed to the solver, a random choice of sr and G.

5 Experiments

We conduct a set of experiments with our constraint based approach. We ran our experi-
ments on Intel(R) Xeon(R) 3.30GHz. We use the timeout of 600 sec in all runs.
Training procedure. For the training sets, we consider the synthetic random images of
the unit cell of a periodic porous medium. For each generated image, we solve the partial
differential equation to define the rate of the transport process, d. We use synthetic
images because high-quality images of the natural porous medium are not available. The
usage of synthetic images is a standard practice when data supply is strictly limited. We
generated two datasets, D2 with 10K images and D3 with 5K images. Each image in D2

contains two grains and each image in D3 contains three grains. All images are black and
white images of size 16 by 16. These images were labeled with dispersion coefficients
along the x-axis which is a number between 0.4 and 1. We performed quantization on
the dispersion coefficient value to map d into an interval of integers between 40 and
100. Intuitively, the larger the volume of the solid grains in the domain the lower the
dispersion value, since the grain creates an obstacle for the transport. In the datasets, we
don’t use images with large enough grains to have the dispersion rate lower than 0.4 (or
re-scaled to 40 for BNN), since the shape diversity of large grains is low. We use mean
absolute error (MAE) to train BNN. BNN consists of three blocks with 100 neurons per
inner layers and one output. The MAE is 4.2 for D2 and 5.1 for D3. We lose accuracy
compared to non-binarized networks, e.g, MAE for the same non-binarized network
is 2.5 for D2. However, BNNs are much easier to reason about, so we work with this
subclass of networks.
Image generation.We use CPLEX and the SMT solver Z3 to solve instances pro-
duced by constraints (1)–(9). In principle, other solvers could be evaluated on these
instances. The best mode for Z3 was to use an SMT core based on CDCL and a
theory solver for nested Pseudo-Boolean and cardinality constraints. We noted that
bit-blasting into sorting circuits did not scale, and Z3’s theory of linear integer arithmetic
was also inadequate. We considered six process constraints for d, namely, d ∈ [a, b],



8 S. Korneev, N. Narodytska et al.

[a, b] ∈ {[40, 50), . . . , [90, 100]}. For each interval [a, b], we generate 100 random
constrained problems. The randomization comes from a random seed that is passed
to the solver, the position of centers of each grain and the parameter s in the con-
straint (6). We used the same DAG G construction as in Figure 2(a) in all problems.

Solver D2 D3

[40,50) [50,60) [60,70) [70,80) [80,90) [90,100] [40,50) [50,60) [60,70) [70,80) [80,90) [90,100]
CPLEX 100 99 99 98 100 41 100 100 96 99 100 84

Z3 98 89 81 74 56 12 100 97 97 97 96 54

Table 1: The number of solved instances in each interval [a, b].

Table 1 shows summary of our results for CPLEX and Z3 solvers. As can be seen
from this table, these instances are relatively easy for the CPLEX solver. It can solve
most of them within the given timeout. The average time for D2 is 25s and for D3 is
12s with CPLEX. Z3 handles most benchmarks, but we observed it gets stuck on
examples that are very easy for CPLEX, e.g. the interval [80, 90) for D2. We hy-
pothesize that this is due to how watch literals are tracked in a very general way
on nested cardinality constraints (Z3 maintains a predicate for each nested PB con-
straint and refreshes the watch list whenever the predicate changes assignment), when
one could instead exploit the limited way that CPLEX allows conditional constraints.
The average time for the dataset D2 is 94s and for the dataset D3 is 64s with Z3.

0 100 200 300 400 500
Solved instances

100

75

50

25

0

25

50

75

100

Ab
so

lu
te

 E
rro

r

Fig. 3: The absolute error between d and its
true value.

Figures 1(c)–(e) show examples of gener-
ated images for ranges [40, 50), [60, 70)
and [90, 100] for D2 (the top row) and
D3 (the bottom row). For the process we
consider, as the value of the dispersion
coefficient grows, the black area should
decrease as there should be fewer grain
obstacles for a flow to go through the
porous medium. Indeed, images in Fig-
ures 1(c)–(e) follow this pattern, i.e. the
black area on images with d ∈ [40, 50) is
significantly larger than on images with
d ∈ [90, 100]. Moreover, by construc-
tion, they satisfy geometric constraints
that GANs cannot handle. For each im-
age we generated, we run a PDE solver to compute the true value of the dispersion
coefficient on this image. Then we compute the absolute error between the value of d
that our model computes and the true value of the coefficient. Figure 3 shows absolute
errors for all benchmarks that were solved by CPLEX. We ordered solved benchmarks
by dispersion coefficient values, breaking ties arbitrarily. First, this figure shows that our
model generates images with given properties. The mean absolute error is about 10 on
these instances. Taking into account that BNN has MAE of 4.2 on D2, MAE of 10 on
new generated instances is a reasonable result. Ideally, we would like MAE to be zero.
However, this error depends purely on the BNN we used. To reduce this error, we need
to improve the accuracy of BNN as it serves as an approximator of a PDE solver. For
example, we can use more binarized layers or use additional non-binarized layers. Of



Constrained Image Generation Using BNN with Decision Procedures 9

course, increasing the power of the network leads to computational challenges solving
the corresponding logical formulas.
Limitation of the approach. The main limitation of the presented approach is its scala-
bility. In our experiments, we used small images that represent a unit cell of a periodic
porous medium. Conceptually, our approach can handle larger images, but scalability of
the underlying decision procedures becomes the main bottleneck. Unfortunately, scala-
bility is the main limiting factor in all decision based approaches to analysis of NNs at
the moment [17,19,14]. In the future, we are hoping to develop efficient domain specific
decision procedures for NN analysis. The second limitation is the set of topological
constraints that we can handle. Many real applications require sophisticated restrictions
on the topology of solid and void areas and do not exhibit periodic structure. It is an
interesting research direction to formalize these constraints and use decision procedures
to generate rich topologies.

6 Related work

There are two lines of work related. The first line of work uses constraint to enhance
machine learning techniques with declarative constraints, e.g. in solving constrained
clustering problems and in data mining techniques that handle domain specific con-
straints [20,21,22]. One recent example is the work of Ganji et al. [21] who proposed a
logical model for constrained community detection. The second line of research explores
embedding of domain-specific constraints in the GAN training procedure [13,23,24,8,25].
Work in this area is targeting various applications in physics and medicine that impose
constraints, like sparsity constraints, high dynamic range requirements (e.g. when pixel
intensity in an image varies by orders of magnitude), location specificity constraints
(e.g. shifting pixel locations can change important image properties), etc. However, this
research area is emerging and the results are still preliminary.

7 Conclusion

In this paper we considered the constrained image generation problem for a physical
process. We showed that this problem can be encoded as a logical formula over Boolean
variables. For small porous media, we show that the generation process is computationally
feasible for modern decision procedures.There are a lot of interesting future research
directions. First, the main limitation of our approach is scalability, as we cannot use
large networks with a number of weights in the order of hundreds of thousands, as it
is required by industrial applications. However, constraints that are used to encode, for
example, binarized neural networks are mostly pseudo-Boolean constraints with unary
coefficients. Hence, it would be interesting to design specialized procedures to deal with
this fragment of constraints. Second, we need to investigate different types of neural
networks that admit encoding into SMT or ILP. For instance, there is a lot of work on
quantized networks that use a small number of bits to encode each weight, e.g. [26].
Finally, can we use similar techniques to reveal vulnerabilities in neural networks? For
example, we might be able to generate constrained adversarial examples or other special
types of images that expose undesired network behaviour.



10 S. Korneev, N. Narodytska et al.

References

1. Arunachalam, H., Korneev, S., Battiato, I., Onori, S.: Multiscale modeling approach to
determine effective lithium-ion transport properties. In: 2017 American Control Conference
(ACC). (May 2017) 92–97

2. Battiato, I., Tartakovsky, D.: Applicability regimes for macroscopic models of reactive
transport in porous media. 120-121 (03 2011) 18–26

3. Hermann, H., Elsner, A.: Geometric models for isotropic random porous media: A review.
2014 (04 2014)

4. Pyrcz, M., Deutsch, C.: Geostatistical Reservoir Modeling. (2014)
5. Hornung, U., ed.: Homogenization and Porous Media. Springer-Verlag New York, Inc., New

York, NY, USA (1997)
6. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A.C., Bengio, Y.: Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N.D., Weinberger, K.Q., eds.: Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada. (2014) 2672–2680

7. Goodfellow, I.J.: NIPS 2016 tutorial: Generative adversarial networks. CoRR abs/1701.00160
(2017)

8. Osokin, A., Chessel, A., Salas, R.E.C., Vaggi, F.: Gans for biological image synthesis. In:
2017 IEEE International Conference on Computer Vision (ICCV). (Oct 2017) 2252–2261

9. Korneev, S.: Using convolutional neural network to calculate effective properties of porous
electrode. https://sccs.stanford.edu/events/sccs-winter-seminar-dr-slava-korneev

10. Harikesh Arunachalam, Svyatoslav Korneev, S.O., Battiato, I.: Using convolutional neural net-
work to calculate effective properties of porous electrode. In: Journal of The Electrochemical
Society(in preparation to submit). (February 2018)

11. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolu-
tional generative adversarial networks. CoRR abs/1511.06434 (2015)

12. Chintala, S.: How to train a GAN? tips and tricks to make GANs work.
https://github.com/soumith/ganhacks

13. Luke de Oliveira, M.P., Nachman, B.: Tips and tricks for training gans with physics constraints.
In: Workshop at the 31st Conference on Neural Information Processing Systems (NIPS), Deep
Learning for Physical Sciences. (December 2017)

14. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying properties
of binarized deep neural networks. CoRR abs/1709.06662 (2017)

15. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized Neural Networks.
In Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R., eds.: Advances in Neural
Information Processing Systems 29. Curran Associates, Inc. (2016) 4107–4115

16. Cheng, C., Nührenberg, G., Ruess, H.: Verification of binarized neural networks. CoRR
abs/1710.03107 (2017)

17. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: An efficient smt solver
for verifying deep neural networks. arXiv preprint arXiv:1702.01135 (2017)

18. Cheng, C., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural networks. In:
Automated Technology for Verification and Analysis. Volume 10482. (2017) 251–268

19. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety Verification of Deep Neural Networks.
In: CAV. Volume 10426 of Lecture Notes in Computer Science., Springer (2017) 3–29

20. Dao, T., Duong, K., Vrain, C.: Constrained clustering by constraint programming. Artif.
Intell. 244 (2017) 70–94



Constrained Image Generation Using BNN with Decision Procedures 11

21. Ganji, M., Bailey, J., Stuckey, P.J.: A declarative approach to constrained community detection.
In Beck, J.C., ed.: Principles and Practice of Constraint Programming - 23rd International Con-
ference, CP 2017, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings.
Volume 10416 of Lecture Notes in Computer Science., Springer (2017) 477–494

22. Guns, T., Dries, A., Nijssen, S., Tack, G., Raedt, L.D.: Miningzinc: A declarative framework
for constraint-based mining. Artif. Intell. 244 (2017) 6–29

23. Luke de Oliveira, M.P., Nachman, B.: Generative adversarial networks for simulation. In:
18th International Workshop on Advanced Computing and Analysis Techniques in Physics
Research. (August 2017)

24. Hu, Y., Gibson, E., Lee, L., Xie, W., Barratt, D.C., Vercauteren, T., Noble, J.A.: Freehand
ultrasound image simulation with spatially-conditioned generative adversarial networks.
In: Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke
Imaging and Treatment,CMMI 2017, RAMBO 2017, SWITCH 2017, Held in Conjunction
with MICCAI 2017, Québec City, QC, Canada, September 14, 2017, Proceedings. Volume
10555 of Lecture Notes in Computer Science., Springer (2017) 105–115

25. Ravanbakhsh, S., Lanusse, F., Mandelbaum, R., Schneider, J.G., Póczos, B.: Enabling dark
energy science with deep generative models of galaxy images. In Singh, S.P., Markovitch, S.,
eds.: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA., AAAI Press (2017) 1488–1494

26. Deng, L., Jiao, P., Pei, J., Wu, Z., Li, G.: Gated XNOR networks: Deep neural networks
with ternary weights and activations under a unified discretization framework. CoRR
abs/1705.09283 (2017)


	Constrained Image Generation Using Binarized Neural Networks with Decision Procedures

