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Abstract. Boolean satisfiability (SAT) solvers are at the core of efficient ap-
proaches for solving a vast multitude of practical problems. Moreover, albeit tar-
geting an NP-complete problem, SAT solvers are increasingly used for tackling
problems beyond NP. Despite the success of SAT in practice, modeling with SAT
and more importantly implementing SAT-based problem solving solutions is of-
ten a difficult and error-prone task. This paper proposes the PySAT toolkit, which
enables fast Python-based prototyping using SAT oracles and SAT-related tech-
nology. PySAT provides a simple API for working with a few state-of-the-art
SAT oracles and also integrates a number of cardinality constraint encodings, all
aiming at simplifying the prototyping process. Experimental results presented in
the paper show that PySAT-based implementations can be as efficient as those
written in a low-level language.

1 Introduction
When compared with Satisfiability Modulo Theories (SMT), Answer Set Program-

ming (ASP) or Constraint Programming (CP), a well-known drawback of Propositional
Logic (concretely, its satisfiability (SAT) problem) is the low level at which the prob-
lem constraints are represented and the low-level programmatic interface that must be
used. These limitations hinder a wider adoption of SAT solvers, but in part they are also
one reason for the observed performance gains that SAT-based solutions often enable.
Moreover, it is generally perceived that SAT-based modeling is difficult and also error-
prone. Clearly, the aforementioned alternatives, SMT, ASP and CP, also enable some
sort of direct encoding to SAT, and then invoking a SAT solver, but often key aspects of
the problem formulation are lost. Other approaches that directly encode problems into
SAT have been considered, including NP-SPEC [10].

This paper describes PySAT, a toolkit that simplifies prototyping problem solvers
with SAT solvers as oracles. Similarly to existing solutions for SMT, the prototyping
language is Python, with a simple interface to an abstract SAT solver that abstracts most
details away, but also aims at compromising little in terms of performance. The paper
illustrates the ease of modeling reasonably challenging problems, concretely MUS ex-
traction, but also provides empirical evidence that the toolkit can achieve reasonably
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efficient implementations when compared with existing state-of-the-art tools. PySAT is
open source, and it is publicly available on GitHub. Furthermore, PySAT is also readily
installable as a Python package.

This paper is organized as follows. Basic definitions and notation are introduced
in the next section. Section 3 describes the toolkit, its design and interface. Section 4
outlines the implementation of a deletion-based MUS extractor. Section 5 presents ex-
perimental results comparing a PySAT-based prototype of a MaxSAT algorithm com-
pared to the state-of-the-art implementation. Section 6 overviews prior work related
with PySAT. Finally, the paper concludes in Section 7.

2 Preliminaries
This section introduces the notation and definitions used throughout the paper. Stan-

dard propositional logic definitions apply (e.g. [9]). CNF formulas are defined over a
set of propositional variables. A CNF formula F is a propositional formula represented
as a conjunction of clauses, also interpreted as a set of clauses. A clause is a disjunction
of literals, also interpreted as a set of literals. A literal is a variable or its complement.
Throughout the paper, SAT solvers are viewed as oracles. Given a CNF formula F , a
SAT oracle decides whether F is satisfiable, in which case it returns a satisfying assign-
ment. A SAT oracle can also return an unsatisfiable core U ⊆ F , if F is unsatisfiable.
Conflict-driven clause learning (CDCL) SAT solvers are summarized in [9].

CNF formulas are often used to model overconstrained problems, for example, the
maximum satisfiability (MaxSAT) problem and the minimal unsatisfiable subset (MUS)
extraction problem. In general, clauses in a CNF formula are characterized as hard,
meaning that these must be satisfied, or soft, meaning that these are to be satisfied, if at
all possible. A weight can be associated with each soft clause, and the goal of MaxSAT
is to find an assignment to the propositional variables such that the hard clauses are sat-
isfied, and the sum of the satisfied soft clauses is maximized. Algorithms for MaxSAT
have been overviewed in [1,9,30]. Recent algorithms based on implicit hitting sets have
been described in [4]. In the analysis of unsatisfiable CNF formulas, consider a given
unsatisfiable CNF formula F . An MUS of F is a set of clauses M ⊆ F which is both
unsatisfiable and irreducible. The goal of the MUS extraction problem is to determine
an MUS of a given unsatisfiable CNF formula.

3 PySAT Toolkit Description
This section describes the design and implementation of the PySAT toolkit as well

as its capabilities. The toolkit aims at simplifying the work with SAT oracles. It is to be
used for fast prototyping solvers and tools that target tackling practical problems and
exploit the power of the state-of-the-art SAT technology.

The choice of the Python programming language was done having the following in
mind. First, the language is easy-to-use and proved itself a great language for fast proto-
typing. This enables users to focus on implementing and improving an algorithm rather
than struggling with its low-level details. Also, Python programs are typically easy to
debug. Second, Python is required for installation and, thus, ready for use on almost any
operating system of the POSIX family including plenty of Linux distributions, BSD and
MacOS among a multitude of others. Third, the use of Python enables a user to tightly
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Fig. 1: PySAT toolkit and its modules.

and easily integrate his/her tools with the existing technology that provides Python API,
e.g. such renowned packages for scientific computing as NumPy [32], SciPy [45] and
matplotlib [23], ILP solvers (ILOG CPLEX [19], Gurobi [18]), graph and network re-
lated libraries (e.g. networkX [31] and graphviz [17]), state-of-the-art machine learn-
ing, data analysis and mining toolkits including scikit-learn [44], PyTorch [42] and
pandas [34], among a number of other libraries and toolkits, which find myriads of
practical use cases.

3.1 PySAT Design

As the PySAT toolkit targets fast prototyping with SAT oracles, it provides interface
to a number of state-of-the-art CDCL SAT solvers including MiniSat 2.2 [12, 28] and
its GitHub version [29], and also Glucose 3 and Glucose 4.1 [3, 16]. Additionally, it
also includes a couple of SAT solvers augmented with extra reasoning capabilities,
namely Lingeling [7, 8, 21] strengthened with Gaussian elimination and cardinality-
based reasoning and MiniCard 1.2 [27], which besides clauses can natively work with
a special kind of constraints called cardinality constraints [9], i.e. constraints of the
form

∑n
i=1 li ◦ k where i, n, k ∈ N, each li is either a positive or a negative literal

of a Boolean variable and ◦ ∈ {<,≤,=, 6=,≥, >}. The module of the PySAT toolkit
responsible for providing an API to the SAT solvers is called solvers.

In many cases, SAT-based problem solving requires to efficiently deal with cardi-
nality constraints. MiniCard can handle them natively but other solvers need them to be
encoded into a CNF formula. There are multiple ways to encode cardinality constraints
into a set of clauses and most state-of-the-art cardinality encodings are supported by
PySAT including pairwise and bitwise encodings [37], sequential counters [47], sorting
networks [6], cardinality networks [2], ladder [15], totalizer [5], modulo totalizer [33],
and iterative totalizer [22]. This functionality is provided by the second module of the
toolkit, namely by the cardenc module.

Additionally, PySAT provides a user with an input/output interface for simplified
reading and writing formulas in the DIMACS format including plain CNF, partial CNF
and weighted partial CNF formulas (WCNF). This is covered by the third module of
the toolkit, which is referred to as formula.

As a result, the toolkit has three modules, two of which are implemented as C/C++
extensions (i.e. solvers and cardenc) and one module (formula) is a pure Python
module. The structure of the PySAT toolkit can be seen as shown in Figure 1.
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3.2 Provided Interface

Boolean variables in PySAT are represented as natural identifiers, e.g. numbers from
N. A positive (negative, resp.) literal in PySAT is assumed to be a positive (negative,
resp.) integer, e.g. -1 represents a literal ¬x1 while 5 represents a literal x5. A clause is
a list of literals, e.g. [-3, -2] is a clause (¬x3 ∨ ¬x2).

The pysat.solvers module provides an interface to SAT solvers directly as well
as the abstract Solver class. Each SAT solver can be used in the MiniSat-like in-
cremental fashion [13], i.e. with the use of assumption literals, and exhibits methods
add_clause(), solve(), get_model(), and get_core(). 1 Using a solver incre-
mentally can be helpful when multiple calls to the solver are needed in order to solve a
problem, e.g. in MaxSAT solving or in MUS/MCS extraction and enumeration. In this
case, a user needs to create a solver and feed it with a CNF formula only once while
calling it multiple times with different sets of assumption literals. Observe that instead
of using a solver incrementally, one can opt to create a new solver from scratch at every
invocation.

>>> from pysat.solvers import Glucose3
>>> g = Glucose3()
>>> g.add_clause([-1, 2])
>>> g.add_clause([-2, 3])
>>>
>>> print g.solve()
True
>>> print g.get_model()
[-1, -2, 3]
>>> g.delete()

The pysat.formula module can be used for performing input/output operations
when working with DIMACS formulas. This can be done using classes CNF and WCNF
of this module. CNF and WCNF objects have a list of clauses, which can be added to a
SAT oracle directly. The cardenc module operates through the pysat.card interface
and provides access to the atmost(), atleast(), and equals() methods (they return
an object of class CNF) of the abstract class CardEnc, e.g. in the following way:

>>> from pysat.card import *
>>> am1 = CardEnc.atmost(lits=[1, -2, 3], encoding=EncType.pairwise)
>>> print am1.clauses
[[-1, 2], [-1, -3], [2, -3]]
>>>
>>> from pysat.solvers import Solver
>>> with Solver(name=’m22’, bootstrap_with=am1.clauses) as s:
... if s.solve(assumptions=[1, 2, 3]) == False:
... print s.get_core()
[3, 1]

1 The method get_model() (get_core(), resp.) can be used if a prior SAT call was made and
returned True (False, resp.). The get_core() method additionally assumes the SAT call
was provided with a list of assumptions.
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input : Unsatisfiable CNF F
output : MUSM
M← F
foreach ci ∈M do

if not SAT(M\ {ci}) then
M←M\ {ci}

end
end
returnM

(a) Pseudo-code of deletion-based MUS extraction.

# oracle: SAT solver (initialized)
# as: full set of assumptions
i = 0
while i < len(as):

ts = as[:i] + as[(i + 1):]
if oracle.solve(assumptions=ts):

i += 1
else:

as = ts
return as

(b) Its possible implementation with PySAT.

Fig. 2: An example of a PySAT-based algorithm implementation.

3.3 Installation

The PySAT library can be installed from the PyPI repository [40] simply by execut-
ing the following command:

$ pip install python-sat

Alternatively, one can manually clone the library’s GitHub repository [41] and compile
all of its modules following the instructions of the README file.

4 Usage Example
Let us show how one can implement prototypes with the use of PySAT. Here we

consider a simple deletion-based algorithm for MUS extraction [46]. Its main proce-
dure is shown in Figure 2a. The idea is to try to remove clauses of the formula one
by one while checking the formula for unsatisfiability. Clauses that are necessary for
preserving unsatisfiability comprise an MUS of the input formula and are reported as
a result of the procedure. Figure 2b shows a possible PySAT-based implementation.
The implementation assumes that a SAT oracle denoted by variable oracle is already
initialized, and contains all clauses of the input formula F . Another assumption is that
each clause ci ∈ F is augmented with a selector literal ¬si, i.e. considering clause
ci ∨ ¬si. This facilitates simple activation/deactivation of clause ci depending on the
value of variable si. Finally, a list of assumptions as is assumed to contain all clause
selectors, i.e. as = {si | ci ∈ F}. Observe that the implementation of the MUS ex-
traction algorithm is as simple as its pseudo-code. This simplicity is intrinsic to Python
programs, and enables users to think on algorithms rather than implementation details.

5 Experimenting with MaxSAT
One of the benefits provided by the PySAT toolkit is that it enables users to proto-

type quickly and sacrifice just a little in terms of performance. In order to confirm this
claim in practice, we developed a simple (non-optimized) PySAT-based implementa-
tion of the Fu&Malik algorithm [14] for MaxSAT. The implementation is referred to as
fm.py. The idea is to compare this implementation to the state-of-the-art MaxSAT solver
MiFuMaX [20], which can be seen as a well thought and efficient implementation of the
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Fig. 3: Performance of fm.py and MiFuMaX on the MSE17 benchmarks.

Fu&Malik algorithm written in C++ and available online [26]. MiFuMaX has proven its
efficiency by winning the unweighted category in the MAX-SAT evaluation 2013 [24].

For the comparison, we chose all (i.e. unweighted and weighted) benchmarks from
MaxSAT Evaluation 2017 [25]. The benchmarks suite contains 880 unweighted and
767 weighted MaxSAT instances. The experiments were performed in Ubuntu Linux
on an Intel Xeon E5-2630 2.60GHz processor with 64GByte of memory. The time limit
was set to 1800s and the memory limit to 10GByte for each individual process to run.

The cactus plot depicting the performance of MiFuMaX and fm.py is shown in Fig-
ure 3. As to be expected, our simple implementation of the Fu&Malik algorithm is out-
performed by MiFuMaX. However, one could expect a larger performance gap between
the two implementations given the optimizations used in MiFuMaX. Observe that Mi-
FuMaX solves 384 unweighted and 226 weighted instances while fm.py can solve 376
and 219 unweighted and weighted formulas, respectively. The performance of the two
implemetations is detailed in Figure 4. In both cases (unweighted and weighted bench-
marks) MiFuMaX tends to be at most a few times faster than fm.py. Also note that even
though surprising, there are instances, which are solved by fm.py more efficiently than
by MiFuMaX. Overall, the performance of fm.py demonstrates that a PySAT-based
implementation of a problem solving algorithm can compete with a low-level imple-
mentation of the same algorithm, provided that most of the computing work is done by
the underlying SAT solver, which is often the case in practice.

6 Related Work
A number of Python APIs for specific SAT solvers have been developed in the recent

past. These include PyMiniSolvers [39] providing an interface to MiniSat and Mini-
Card, satispy [43] providing an API for MiniSat and lingeling, pylgl [38] for working
with lingeling, and the Python API for CryptoMiniSat [11, 48, 49]. Compared to these
solutions, PySAT offers a wider range of SAT solvers accessed through a unified inter-
face, more functionality provided (e.g. unsatisfiable core and proof extraction), as well
as a number of encodings of cardinality constraints. Cardinality constraints (as well
as pseudo-Boolean constraints) can be alternatively manipulated using encodings pro-
vided by some other libraries. One such example is the PBLib library [35,36]. However,
PBLib currently does not expose a Python API.



7

10−2 10−1 100 101 102 103 104

fm.py

10−2

10−1

100

101

102

103

104

pM
iF

uM
aX

1800 sec. timeout

18
00

se
c.

tim
eo

ut
(a) MSE17 unweighted benchmarks

10−3 10−2 10−1 100 101 102 103 104

fm.py

10−3

10−2

10−1

100

101

102

103

104

w
M

iF
uM

aX

1800 sec. timeout

18
00

se
c.

tim
eo

ut

(b) MSE17 weighted benchmarks

Fig. 4: Detailed comparison of fm.py and MiFuMaX.

7 Conclusions
Despite the remarkable progress observed in SAT solvers for over two decades, in

many settings the option of choice is often not a SAT solver, even when this might actu-
ally be the ideal solution. One reason for overlooking SAT solvers is the apparent diffi-
culty of modeling with SAT, and of implementing basic prototypes. This paper describes
PySAT, a Python toolkit that enables fast prototyping with SAT solvers. The Python in-
terface offers (incremental) access to a blackbox exposing the basic interface of a SAT
solver, but which compromises little in terms of performance. The toolkit also offers ac-
cess to a number of often-used implementations of cardinality constraints. A simple im-
plementation of a MaxSAT solver shows performance comparable with a state-of-the-
art C++ implementation. The PySAT tookit is publicly available as open source from
GitHub, and also as a Python package on most POSIX-compliant OSes. It is expected
that the community will contribute to improving the toolkit further, with additional fea-
tures, but also with proposals for improvements. Several extensions are planned. These
include the integration of more SAT solvers (e.g. CryptoMiniSat and other MiniSat- and
Glucose-based solvers), lower level access to the SAT solver’s parameters and policies
when necessary (e.g. setting preferred “polarities” of the variables), high-level support
for arbitrary Boolean formulas (e.g. by Tseitin-encoding them [50] internally), and en-
codings of pseudo-Boolean constraints.
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