
Finding All Minimal Safe Inductive Sets

Ryan Berryhill1?, Alexander Ivrii3, and Andreas Veneris1,2

1 University of Toronto, Department of Electrical and Computer Engineering
{ryan,veneris}@eecg.utoronto.ca

2 University of Toronto, Department of Computer Science
3 IBM Research Haifa ALEXI@il.ibm.com

Abstract. Computing minimal (or even just small) certificates is a cen-
tral problem in automated reasoning and, in particular, in automated
formal verification. For unsatisfiable formulas in CNF such certificates
take the form of Minimal Unsatisfiable Subsets (MUSes) and have a wide
range of applications. As a formula can have multiple MUSes that each
provide different insights on unsatisfiability, commonly studied problems
include computing a smallest MUS (SMUS) or computing all MUSes
(AllMUS) of a given unsatisfiable formula. In this paper, we consider
certificates to safety properties in the form of Minimal Safe Inductive
Sets (MSISes), and we develop algorithms for exploring such certificates
by computing a smallest MSIS (SMSIS) or computing all MSISes (AllM-
SIS) of a given safe inductive invariant. More precisely, we show how the
well-known MUS enumeration algorithms CAMUS and MARCO can be
adapted to MSIS enumeration.

1 Introduction

Computing minimal (or even just small) certificates is a central problem in auto-
mated reasoning, and, in particular, in Model Checking. Given an unsatisfiable
Boolean formula in conjunctive normal form (CNF), a minimal unsatisfiable sub-
set (MUS) is a subset of the formula’s clauses that is itself unsatisfiable. MUSes
have a wide range of applicability, including Proof-Based Abstraction [18], im-
proved comprehension of verification results through vacuity [22], and much
more. It is not surprising that a large body of research is dedicated to efficiently
computing MUSes. As a formula can have multiple MUSes, each of which may
provide different insights on unsatisfiability, several algorithms have been devel-
oped to extract all MUSes from an unsatisfiable formula (AllMUS) [2,14,15,19,21],
and in particular a smallest MUS of an unsatisfiable formula (SMUS) [11]. For a
recent application of AllMUS and SMUS to Model Checking, see [8].

For safety properties, certificates come in the form of safe inductive invari-
ants. A recent trend, borrowing from the breakthroughs in Incremental Inductive
Verification (such as IMC [17], IC3 [6], and PDR [7]), is to represent such invariants
as a conjunction of simple lemmas. Lemmas come in the form of clauses encod-
ing facts about reachable states, and hence the invariant is represented in CNF.

? This work was completed while Ryan Berryhill was an intern at IBM Research Haifa



2

The problem of efficiently minimizing the set of such lemmas, and especially
constructing a minimal safe inductive subset (MSIS) of a given safe inductive
invariant has applications to SAT-based model checking [5, 10], and has been
further studied in [12].

By analogy to MUS extraction, in this paper we consider the problem of com-
puting all MSISes of a given safe inductive invariant (AllMSIS), and in particular
finding the smallest MSIS (SMSIS). The problem of minimizing safe inductive in-
variants appears on its surface to share many commonalities with minimizing
unsatisfiable subsets. However, a key aspect of MUS extraction is monotonic-
ity : adding clauses to an unsatisfiable formula always yields an unsatisfiable
formula. On the other hand, MSIS extraction seems to lack this monotonicity:
adding clauses to a safe inductive formula always yields a safe formula, but it
may not yield an inductive one. In spite of non-monotonicity, this paper lifts
existing MUS enumeration algorithms to the problem of MSIS enumeration.

The CAMUS [15] algorithm solves the AllMUS problem using a well-known
hitting set duality between MUSes and minimal correction subsets (MCSes).
This work defines analogous concepts for safe inductive sets called support sets
and collapse sets, and, using a hitting set duality between them, lifts CAMUS to
MSIS extraction. When considering MSIS (resp., MUS) extraction, the algorithm
works by enumerating the collapse sets (resp. MCSes) and then exploiting the
duality to enumerate MSISes (resp. MUSes) in ascending order of size (i.e., from
smallest to largest). When considering the AllMSIS problem, the collapse set
enumeration step fundamentally limits the algorithm’s anytime performance, as
MSIS discovery can only begin after that step. However, when considering SMSIS,
the ability to discover the smallest MSIS first is a significant advantage.

MARCO [14], another significant AllMUS algorithm, addresses this limitation
by directly exploring the power set of a given unsatisfiable CNF formula. In this
work, we translate MSIS extraction to a monotone problem and demonstrate how
to solve it with MARCO. This improves anytime performance when considering
the AllMSIS problem. However, when considering SMSIS, MARCO may have to
compute every MSIS before concluding that it has found the smallest one.

Towards the goal of better understanding the complexity of MSIS prob-
lems, we also lift some well-studied MUS-based decision problems to their MSIS
analogs and demonstrate complexity results for those problems. Specifically, we
prove that the MSIS identification problem “is this subset of a CNF formula an
MSIS?” is DP -complete (i.e., it can be expressed as the intersection of an NP-
complete language and a co-NP-complete language). Further, the MSIS existence
problem “does this inductive invariant contain an MSIS with k or fewer clauses?”
is found to be ΣP

2 -complete. Both of these results match the corresponding MUS
problems’ complexities.

Experiments are presented on hardware model checking competition bench-
marks. On 200 benchmarks, it is found that the CAMUS-based algorithm can find
all MSISes within 15 minutes for 114 benchmarks. The most successful MARCO-
based algorithm is almost as successful, finding all MSISes on 110 benchmarks



3

within the time limit. Further, the CAMUS-based algorithm solves the SMSIS prob-
lem within 15 minutes on 156 benchmarks.

The rest of this paper is organized as follows. Section 2 introduces necessary
background material. Section 3 formulates the AllMSIS and SMSIS problems.
Section 4 presents the CAMUS-inspired MSIS algorithm while section 5 presents
the MARCO-based one. Section 6 introduces complexity results for MSIS problems.
Section 7 presents experimental results. Finally, section 8 concludes the paper.

2 Preliminaries

2.1 Basic Definitions

The following terminology and notation is used throughout this paper. A literal is
either a variable or its negation. A clause is a disjunction of literals. A Boolean
formula in Conjunctive Normal Form (CNF) is a conjunction of clauses. It is
often convenient to treat a CNF formula as a set of clauses. For a CNF formula
ϕ, c ∈ ϕ means that clause c appears in ϕ. A Boolean formula ϕ is satisfiable
(SAT) if there exists an assignment to the variables of ϕ such that ϕ evaluates
to 1. Otherwise it is unsatisfiable (UNSAT).

2.2 MUSes, MCSes and Hitting Set Duality

If ϕ is UNSAT, an UNSAT subformula ϕ1 ⊆ ϕ is called an UNSAT core of ϕ. If
the UNSAT core is minimal or irreducible (i.e., every proper subset of the core
is SAT) it is called a Minimal Unsatisfiable Subset (MUS). A subset C ⊆ ϕ is a
Minimal Correction Subset (MCS) if ϕ \ C is SAT, but for every proper subset
D ( C, ϕ \D is UNSAT. In other words, an MCS is a minimal subset such that
its removal would render the formula satisfiable.

The hitting set duality between MUSes and MCSes states that a subset C
of ϕ is a MUS if and only if C is a minimal hitting set of MCSes(ϕ), and vice
versa. For example, if C is a hitting set of MCSes(ϕ), then C contains at least
one element from every MCS and therefore corresponds to an UNSAT subset of
ϕ. Moreover, if C is minimal, then removing any element of C would result in at
least one MCS not being represented. Therefore, the resulting formula would be
SAT implying that C is in fact a MUS. For more details, see Theorem 1 in [15].

2.3 Safe Inductive Invariants and MSIS

Consider a finite transition system with a set of state variables V. The primed
versions V ′ = {v′|v ∈ V} represent the next-state functions. For each v ∈ V, v′

is a Boolean function of the current state and input defining the next state for
v. For any formula F over V, the primed version F ′ represents the same formula
with each v ∈ V replaced by v′.

A model checking problem is a tuple P = (Init, T r,Bad) where Init(V)
and Bad(V) are CNF formulas over V that represent the initial states and the



4

unsafe states, respectively. States that are not unsafe are called safe states. The
transition relation Tr(V,V ′) is a formula over V ∪V ′. It is encoded in CNF such
that Tr(v,v ′) is satisfiable iff state v can transition to state v ′.

A model checking instance is Unsafe iff there exists a natural number N
such that the following formula is satisfiable:

Init(v0) ∧
(N−1∧

i=0

Tr(vi,vi+1)
)
∧Bad(vN ) (1)

The instance is Safe iff there exists a formula Inv(V) that meets the follow-
ing conditions:

Init(v)⇒ Inv(v ) (2)

Inv(v) ∧ Tr(v,v′)⇒ Inv(v′) (3)

Inv(v)⇒ ¬Bad(v) (4)

A formula satisfying (2) satisfies initiation, meaning that it contains all ini-
tial states. A formula satisfying (3) is called inductive. An inductive formula
that satisfies initiation contains all reachable states and is called an inductive
invariant. A formula satisfying (4) is safe, meaning that it contains only safe
states. A safe inductive invariant contains all reachable states and contains no
unsafe states, so it is a certificate showing that P is Safe.

For a model checking problem P with a safe inductive invariant Inv0 in CNF,
a subset Inv1 ⊆ Inv0 is called a Safe Inductive Subset (SIS) of Inv0 relative to
P if Inv1 is also a safe inductive invariant. Furthermore, if no proper subset of
Inv1 is a SIS, then Inv1 is called a Minimal Safe Inductive Subset (MSIS).

2.4 Monotonicity and MSMP

Let R denote a reference set, and let p : 2R 7→ {0, 1} be a predicate defined over
elements of the power set of R. The predicate p is monotone if p(R) holds and
for every R0 ⊆ R1 ⊆ R, p(R0) ⇒ p(R1). In other words, adding elements to a
set that satisfies the predicate yields another set that satisfies the predicate.

Many computational problems involve finding a minimal subset that satisfies
a monotone predicate. Examples include computing prime implicants, minimal
models, minimal unsatisfiable subsets, minimum equivalent subsets, and minimal
corrections sets [16]. For example, for MUS extraction the reference set is the
original formula ϕ, and for a subset C ⊆ ϕ, the monotone predicate is p(C) = 1
iff C is UNSAT. The Minimal Set over a Monotone Predicate problem (MSMP) [16]
generalizes all of these notions to the problem of finding a subset M ⊆ R such
that p(M) holds, and for any M1 ( M , p(M1) does not hold. State-of-the-art
MSMP algorithms heavily rely on monotonicity.

On the other hand, MSIS extraction does not appear to be an instance of
MSMP. The natural choice of predicate is “p(Inv) = 1 iff Inv is a SIS.” This
predicate is not monotone, as adding clauses to a safe inductive invariant can
yield a non-inductive formula.



5

3 Problem Formulation: AllMSIS and SMSIS

Modern safety checking algorithms (such as IC3 [6] and PDR [7]) return safe
inductive invariants represented as a conjunction of clauses, and hence in CNF.
In general there is no guarantee that these invariants are simple or minimal.
On the other hand, some recent SAT-based model-checking algorithms [5, 10]
benefit from simplifying and minimizing these invariants. Given a safe inductive
invariant Inv0 in CNF, some common techniques include removing literals from
clauses of Inv0 [5] and removing clauses of Inv0 [5, 12].

In this paper, we address the problem of minimizing the set of clauses in a
given safe inductive invariant. We are interested in computing a smallest safe
inductive subset or computing all minimal safe inductive subsets, as stated below.
Enumeration of all minimal safe inductive subsets (AllMSIS): Given a
model checking problem P = (Init, T r,Bad) and safe inductive invariant Inv0,
enumerate all MSISes of Inv0.
Finding a smallest-sized safe inductive subset (SMSIS): Given a model
checking problem P = (Init, T r,Bad) and safe inductive invariant Inv0, find a
minimum-sized MSIS of Inv0.

On the surface, computing minimal safe inductive subsets of an inductive
invariant appears closely related to computing minimal unsatisfiable subsets of
an unsatisfiable formula. However, we are not aware of a direct simple translation
from SMSIS and AllMSIS to the analogous MUS problems. This may be due to
the lack of monotonicity noted in the previous subsection.

4 MSIS Enumeration Using Hitting Set Duality

In this section we examine precise relationships between different clauses in a
safe inductive invariant. We define the notions of a support set and a collapse set
of an individual clause in the invariant, which are somewhat analogous to MUSes
and MCSes, respectively. A hitting set duality is identified between support and
collapse sets and used to develop an MSIS enumeration algorithm. The algorithm
is based on CAMUS [15], a well-known algorithm for MUS enumeration. We present
a detailed example to illustrate the concepts and algorithm.

4.1 Inductive Support and Collapse Sets

For a clause c in an inductive invariant Inv, c is inductive relative to Inv by
definition. However, it may be the case that c is inductive relative to a small
subset of Inv. The notions of support sets, borrowed from [4], and minimal
support sets formalize this concept:

Definition 1. Given a model checking problem P = (Init, T r,Bad), a safe in-
ductive invariant Inv, and a clause c ∈ Inv, a support set Γ of c is a subset of
clauses of Inv relative to which c is inductive (i.e., the formula Γ ∧c∧Tr∧¬c′ is
UNSAT). A minimal support set Γ of c is a support set of c such that no proper
subset of Γ is a support set of c.



6

Intuitively, minimal support sets of c ∈ Inv correspond to MUSes of Inv∧c∧
Tr ∧ ¬c′ (where the minimization is done over Inv). Thus support sets provide
a more refined knowledge of why a given clause is inductive. Note that as c
appears unprimed in the formula, it never appears in any of its minimal support
sets. Support sets have various applications, including MSIS computations [12]
and a recent optimization to IC3 [3]. The set of all minimal support sets of c is
denoted MinSups(c), and MinSup(c) denotes a specific minimal support set of c.

Inspired by the duality between MUSes and MCSes, we also consider sets of
clauses that cannot be simultaneously removed from a support set. Collapse sets
and minimal collapse sets, defined below, formalize this concept.

Definition 2. Given a model checking problem P = (Init, T r,Bad), a safe in-
ductive invariant Inv, and a clause c ∈ Inv, a collapse set Ψ of c is a subset of
clauses of Inv such that Inv \ Ψ is not a support set of c. A minimal collapse
set Ψ of c is a collapse set such that no proper subset of Ψ is a collapse set of c.

We denote by MinCols(c) the set of all collapse sets of c. Somewhat abusing the
notation, we define the support sets and collapse sets of ¬Bad as related to safety
of P . Formally, Γ ⊆ Inv0 is a support set of ¬Bad iff Γ ∧ Bad is UNSAT. The
set Ψ ⊆ Inv0 is a collapse set of ¬Bad if Inv0 \ Ψ is not a support set of ¬Bad.
Minimal support sets and minimal collapse sets of ¬Bad are defined accordingly.
The following lemma summarizes the relations between various definitions.

Lemma 1. Let Inv1 be a SIS of Inv0.

1. There exists Γ ∈ MinSups(¬Bad) such that Γ ⊆ Inv1;
2. For each c ∈ Inv1, there exists Γ ∈ MinSups(c) such that Γ ⊆ Inv1;
3. For each Ψ ∈ MinCols(¬Bad) we have that Ψ ∩ Inv1 6= ∅;
4. For each c ∈ Inv1 and for each Ψ ∈ MinCols(c) we have that Ψ ∩ Inv1 6= ∅.

The following example illustrates the concept of support sets, which are some-
what analogous to MUSes. The example is extended throughout the paper to
illustrate additional concepts and algorithms.

Running Example: Let us suppose that Inv = {c1, c2, c3, c4, c5, c6} is a safe
inductive invariant for P . Omitting the details on the actual model check-
ing problem, let us suppose that the minimal support sets are given as fol-
lows: MinSups(¬Bad) = {{c1, c2}, {c1, c3}}, MinSups(c1) = {∅}, MinSups(c2) =
{{c4}, {c6}}, MinSups(c3) = {{c5}}, MinSups(c4) = {{c2, c5}}, MinSups(c5) =
{{c3}}, MinSups(c6) = {∅}. In particular, all the following formulas are unsatisfi-
able: c1∧c2∧¬Bad, c1∧c3∧¬Bad, c1∧Tr∧¬c′1, c4∧c2∧Tr∧¬c′2, c6∧c2∧Tr∧¬c′2,
c5 ∧ c3 ∧Tr ∧¬c′3, c2 ∧ c5 ∧ c4 ∧Tr ∧¬c′4, c3 ∧ c5 ∧Tr ∧¬c′5, c6 ∧Tr ∧¬c′6. Con-
versely, the following formulas are satisfiable: c1 ∧¬Bad, c2 ∧¬Bad, c3 ∧¬Bad,
c2 ∧Tr∧¬c′2, c3 ∧Tr∧¬c′3, c2 ∧ c4 ∧Tr∧¬c′4, c5 ∧ c4 ∧Tr∧¬c′4, c5 ∧Tr∧¬c′5.

Further, the following example illustrates the “dual” concept of collapse sets,
which are somewhat analogous to MCSes.

Running Example (cont.): The minimal collapse sets are given as follows:
MinCols(¬Bad) = {{c1}, {c2, c3}}, MinCols(c1) = {∅}, MinCols(c2) = {{c4, c6}},



7

MinCols(c3) = {{c5}}, MinCols(c4) = {{c2}, {c5}}, MinCols(c5) = {{c3}},
MinCols(c6) = {∅}.

One way to construct a (not necessarily minimal) SIS of Inv is to choose
a minimal support for each clause in the invariant, and then, starting from the
support of ¬Bad, recursively add all the clauses participating in the supports. In
the running example, we only need to make the choices for MinSup(¬Bad) and
for MinSup(c2), as all other minimal supports are unique. The following example
illustrates three different possible executions of such an algorithm, demonstrating
that such an approach does not necessarily lead to an MSIS.

Running Example (cont.): Fixing MinSup(¬Bad) = {c1, c2} and MinSup(c2) =
{c4} leads to Inv1 = {c1, c2, c3, c4, c5}. The clauses c1 and c2 are chosen to sup-
port ¬Bad, c4 is chosen to support c2, c5 is needed to support c4, and c3 is
needed to support c5. A second possibility fixes MinSup(¬Bad) = {c1, c2} and
MinSup(c2) = {c6}, which leads to Inv2 = {c1, c2, c6}. A third possibility chooses
MinSup(¬Bad) = {c1, c3} and leads to the Inv3 = {c1, c3, c5}, regardless of the
choice for MinSup(c2).

We can readily see that certain choices for minimal supports to do not pro-
duce a minimal safe inductive invariant. Indeed, Inv3 is minimal but Inv1 is
not. The problem has exactly two MSISes represented by Inv2 and Inv3, and
both also happen to be smallest minimal inductive invariants.

4.2 CAMUS for MSIS Extraction

Our MSIS enumeration algorithm is strongly motivated by CAMUS [15], which
enumerates all MUSes of an unsatisfiable formula in CNF. Given an unsatisfiable
formula ϕ, CAMUS operates in two phases. The first enumerates all MCSes of ϕ
using a MaxSAT-based algorithm. The second phase enumerates all MUSes of
ϕ based on the hitting set duality between MCSes and MUSes. Our algorithm
performs similar operations involving the analogous concepts of support and
collapse sets.

4.3 The CAMSIS Algorithm

Given a model checking problem P = (Init, T r,Bad) and safe inductive invariant
Inv0 for P , the algorithm also operates in two phases. The first phase iterates
over all c ∈ Inv0 ∪ {¬Bad} and computes the set MinCols(c) of all minimal
collapse sets of c. This is analogous to the first phase of CAMUS and is done very
similarly. Indeed, collapse sets of c are enumerated by computing an UNSAT
core of Inv0 ∧ c∧Tr∧¬c′, while minimizing with respect to the clauses of Inv0.

Now, one possibility is to enumerate all minimal support sets of each c ∈
Inv0 ∪ {¬Bad}, based on the duality between MinCols(c) and MinSups(c), and
then to enumerate all MSISes of Inv0 using a dedicated algorithm that chooses
support sets in a way to produce minimal invariants. Instead, we suggest Al-
gorithm 1 to enumerate MSISes of Inv0 directly, only based on MinCols (and



8

without computing MinSups first). One can think of this as a SAT-based algo-
rithm for hitting-set duality “with a twist.” It uses the last two statements in
Lemma 1 to construct a formula in which satisfying assignments correspond to
SISes, and then finding all satisfying assignments that correspond to MSISes.

Algorithm 1 CAMSIS

Input: Inv0 = {c1, . . . , cn}, MinCols(¬Bad), MinCols(c) for every c ∈ Inv0
Output: MSISes(Inv0) relative to P

1: introduce new variable sc for each c ∈ Inv0
2: ϑ1 =

∧
{d1,...,dk}∈MinCols(¬Bad) (sd1 ∨ · · · ∨ sdk )

3: ϑ2 =
∧

c∈Inv0

∧
{d1,...,dk}∈MinCols(c) (¬sc ∨ sd1 ∨ · · · ∨ sdk )

4: ϑ = ϑ1 ∧ ϑ2

5: j ← 1
6: loop
7: while (ϑ ∧ AtMost({sc1 , . . . , scn}, j)) is SAT (with model M) do
8: Let Inv = {ci | M |= (sci = 1)}
9: ϑ← ϑ ∧ (

∨
ci∈Inv ¬sci)

10: MSISes← MSISes ∪ {Inv}
11: end while
12: break if ϑ is UNSAT
13: j ← j + 1
14: end loop
15: return MSISes

The algorithm accepts the initial safe inductive invariant Inv0 = {c1, . . . , cn},
the set of minimal collapse sets of ¬Bad, and the set of minimal collapse sets
for each clause in the invariant. All SAT queries use an incremental SAT solver.
On line 1, an auxiliary variable sc is introduced for each clause c. The intended
meaning is that sc = 1 iff c is selected as part of the MSIS. On lines 2–4,
the algorithm constructs a formula ϑ that summarizes Lemma 1. First, for each
minimal collapse set Ψ of ¬Bad, at least one clause of Ψ must be in the invariant.
This ensures that the invariant is safe. Further, for each selected clause c (i.e.,
where sc = 1) and for each minimal collapse set Ψ of c, at least one clause of
Ψ must be in the invariant. This ensures that each selected clause is inductive
relative to the invariant, thereby ensuring that the resulting formula is inductive.

The algorithm uses the AtMost cardinality constraint to enumerate solutions
from smallest to largest. The loop on line 6 searches for MSISes using ϑ. It
starts by seeking MSISes of cardinality 1 and increases the cardinality on each
iteration. Each time an MSIS is found, all of its supersets are blocked by adding
a clause on line 9. Line 12 checks if all MSISes have been found using ϑ without
any AtMost constraint. This check determines if any MSISes of any size remain,
and if not the algorithm exits the loop. The following example illustrates an
execution of the algorithm.



9

Running Example (cont.): Initially, ϑ = (s1) ∧ (s2 ∨ s3) ∧ (¬s2 ∨ s4 ∨ s6) ∧
(¬s3∨s5)∧ (¬s4∨s2)∧ (¬s4∨s5)∧ (¬s5∨s3). Let S = {s1, . . . , s6}. It is easy to
see that both ϑ∧ AtMost(S, 1) and ϑ∧ AtMost(S, 2) are UNSAT. Suppose that
the first solution returned for ϑ ∧ AtMost(S, 3) is s1 = 1, s2 = 0, s3 = 1, s4 =
0, s5 = 1, s6 = 0. It corresponds to a (minimum-sized) safe inductive invariant
{c1, c3, c5}. It is recorded and ϑ is modified by adding the clause (¬s1∨¬s3∨¬s5).
Rerunning on ϑ ∧ AtMost(S, 3) produces another solution s1 = 1, s2 = 1, s3 =
0, s4 = 0, s5 = 0, s6 = 1, corresponding to the MSIS {c1, c2, c6}. It is recorded
and ϑ is modified by adding (¬s1∨¬s2∨¬s6). Now ϑ∧AtMost(S, 3) is UNSAT.
In addition, ϑ is UNSAT and the algorithm terminates.

We now prove the algorithm’s completeness and soundness. The proof relies
on the fact that satisfying assignments of the formula ϑ constructed on line 4
are safe inductive subsets of the given inductive invariant. The theorem below
demonstrates this fact.

Theorem 1. Each satisfying assignment M |= ϑ corresponds to a SIS of Inv0.

Proof. ϑ is the conjunction of ϑ1 and ϑ2. Each clause of ϑ2 relates to a clause
c ∈ Inv0 and collapse set Ψ of c. It requires that either c is not selected or an
element of Ψ is selected. ϑ2 contains all such constraints, so it requires that for
each clause c ∈ Inv0, either c is not selected or a member of every minimal
collapse set of c is selected. By duality, this is equivalent to requiring a support
set of c is selected. Therefore ϑ2 requires that an inductive formula is selected.

ϑ1 encodes the additional constraint that a support set of ¬Bad is selected. In
other words, it requires that a safe formula is selected. Since each clause of Inv0
must satisfy initiation by definition, a satisfying assignment of ϑ corresponds to
a safe inductive invariant contained within Inv0.

ut

Corollary 1. Algorithm 1 returns the set of all MSISes of Inv0.

Proof. The algorithm finds only minimal models of ϑ and finds all such models.

Several simple optimizations are possible. The technique in [12] describes an
algorithm to identify certain clauses that appear in every inductive invariant. If
such a set N is known in advance, it is sound to add constraints (sc) to ϑ for
each c ∈ N and start the search from cardinality |N |. Further, it is possible to
start by finding collapse sets only for the clauses in N , and then find collapse
sets for the clauses in those collapse sets, and so on until a fixpoint is reached.

5 MARCO and MSIS Extraction

In this section we show how the MARCO algorithm for MUS enumeration [14] can
be adapted for MSIS enumeration. In Section 5.1 we present the MARCO algo-
rithm from [14] trivially extended to a more general class of monotone predicate
problems [16]. In Section 5.2 we describe a monotone reformulation of the MSIS
extraction problem and fill in the missing details on the special functions used
by the MARCO algorithm.



10

5.1 MARCO algorithm for MSMP

Algorithm 2 displays the basic MARCO algorithm from [14] trivially extended to
the more general class of monotone predicates [16]. The algorithm accepts a
monotone predicate p and a set F satisfying p(F ) = 1. It returns the set of all
minimal subsets of F satisfying p. Recall that the monotonicity of p means that
p(F0)⇒ p(F1) whenever F0 ⊆ F1.

Algorithm 2 MARCO for MSMP

Input: monotone predicate p, formula F in CNF s.t. p(F ) = 1
Output: set M of all minimal subsets of F that satisfy p

1: map← >
2: while map is SAT do
3: seed← getUnexplored(map)
4: if p(seed) = 0 then
5: mss← grow(seed)
6: map← map ∧ blockDown(mss)
7: else
8: mus← shrink(seed)
9: M ←M ∪ {mus}

10: map← map ∧ blockUp(mus)
11: end if
12: end while
13: return M

MARCO directly explores the power set lattice of the input set F . In greater
detail, it operates as follows. Seeds are selected using a Boolean formula called
the map, where each satisfying assignment corresponds to an unexplored element
of the power set. This is handled by the getUnexplored procedure on line 3.
The map has a variable for each element of F , such that the element is selected
as part of the seed iff the variable is assigned to 1. Initially, the map is empty
and the first seed is chosen arbitrarily.

If p(seed) = 0, the grow procedure attempts to expand it to a larger set
mss that also does not satisfy p (line 5). This can be accomplished by adding
elements of F \ seed and checking if the result satisfies p. If so, the addition
of the element is backed out, otherwise it is kept. Once every such element has
been tried, the result it a maximal set that does not satisfy p. Since any subset
of such a set does not satisfy p, the algorithm blocks mss and all of its subsets
from consideration as future seeds by adding a new clause to the map (line 6).

Conversely, if p(seed) = 1, it is shrunk to a minimal such set (an MSMP)
by removing clauses in a similar fashion using the shrink procedure (line 8).
Subsequently, the minimal set and all of its supersets are blocked by adding a
clause to the map (line 10). This is because a strict superset of such a set is not
minimal, and therefore not an MSMP.



11

MUS enumeration is a concrete instantiation of this algorithm. The natural
choice of predicate is p(F ) = 1 iff F is unsatisfiable. The shrink subroutine
returns a MUS of seed. The grow subroutine returns a maximal satisfiable subset
of F containing seed.

5.2 A monotone version of MSIS enumeration

Suppose that we are given a safe inductive invariant Inv0. In order to extract
MSISes of Inv0 with MARCO, it is necessary to construct a monotone predicate
such that the minimal subsets satisfying this monotone predicate are MSISes.
As we saw before, the predicate p(F ) = “is F a SIS of Inv0?” is not monotone.
However, let us define the predicate p0(F ) = “does F contain a SIS of Inv0?’

Lemma 2. The predicate p0 defined above is monotone. Furthermore, minimal
subsets of Inv0 satisfying p0 are MSISes of Inv0.

Proof. To show monotonicity of p0, suppose that F0 ⊆ F1 ⊆ Inv0 and suppose
that G ⊆ F0 is a SIS of F0. Then G is also a SIS of F1. For the second property,
note that a minimal set that contains a SIS must be a SIS itself. ut

In order to apply p0 for computing MSISes, we need to specify the missing
subroutines of the MARCO algorithm, or equivalently we need to show how to
compute p0(seed), and how to implement shrink and grow.

In order to compute p0(seed), we need check whether seed contains a SIS.
We accomplish this using the algorithm MaxIndSubset that computes a maximal
inductive subset of a potentially non-inductive set of clauses. Following [12], we
compute MaxIndSubset(R) of a set of clauses R by repeatedly removing those
clauses of R that are not inductive with respect to R, and we check whether the
fixpoint R0 of this procedure is safe using a SAT solver. In particular we can
replace the condition p0(F ) = “does F contain a SIS” by an equivalent condition
“is MaxIndSubset(F ) safe?”

The shrink procedure involves finding an MSIS of MaxIndSubset(seed). A
basic algorithm that finds a single MSIS is presented in [5]. Given a safe inductive
invariant R, this algorithm repeatedly selects a clause c in R and checks whether
MaxIndSubset(R\{c}) is safe. If so, then R is replaced by MaxIndSubset(R\{c}).
For more details and optimizations, refer to [12].

The grow procedure expands a seed that does not contain a SIS to a maximal
subset of Inv0 that does not contain a SIS. A basic algorithm repeatedly selects
a clause c ∈ Inv0 \ seed and checks whether p0(seed ∪ {c}) = 0. If so, then seed
is replaced by seed ∪ {c}. The following continuation of the running example
demonstrates several iterations of MARCO.

Running Example (cont.): Assume that grow and shrink are implemented
as described above, and the clauses are always processed in the order of their
index. On the first iteration, suppose getUnexplored(map) returns seed = ∅.
The grow procedure initially sets mss = seed = ∅ and makes the following
queries and updates:



12

– MaxIndSubset({c1}) = {c1} is not safe; mss← mss ∪ {c1};
– MaxIndSubset({c1, c2}) = {c1} is not safe; mss← mss ∪ {c2};
– MaxIndSubset({c1, c2, c3}) = {c1} is not safe; mss← mss ∪ {c3};
– MaxIndSubset({c1, c2, c3, c4}) = {c1} is not safe; mss← mss ∪ {c4};
– MaxIndSubset({c1, c2, c3, c4, c5}) = {c1, c2, c3, c4, c5} is safe;
– MaxIndSubset({c1, c2, c3, c4, c6}) = {c1, c2, c6} is safe.

Thus at the end we obtain mss = {c1, c2, c3, c4}. Next, map is updated to
map ∧ blockDown({c1, c2, c3, c4}), forcing seed to include either c5 or c6 from
thereon. On the second iteration, let’s suppose that getUnexplored(map) re-
turns seed = {c1, c2, c3, c4, c5, c6}. The shrink procedure initially sets mus =
MaxIndSubset(seed) = {c1, c2, c3, c4, c5, c6} and makes the following queries and
updates:

– MaxIndSubset(mus \ {c1}) = {c2, c3, c4, c5, c6} is not safe;
– MaxIndSubset(mus \ {c2}) = {c1, c3, c5, c6} is safe; mus← {c1, c3, c5, c6};
– MaxIndSubset(mus \ {c3}) = {c1, c6} is not safe;
– MaxIndSubset(mus \ {c5}) = {c1, c6} is not safe;
– MaxIndSubset(mus \ {c6}) = {c1, c3, c5} is safe; mus← {c1, c3, c5}.

Hence at the end we obtain mus = {c1, c3, c5}. This allows to update map to
map∧ blockUp{c1, c3, c5}, forcing seed to exclude either c1, c3 or c5 thereafter.

It is important to note that in practice grow and shrink are implemented
using additional optimizations. The example uses the simple versions for ease-
of-understanding.

6 Complexity of MSIS and MUS

This section briefly summarizes complexity results for the MUS and MSIS iden-
tification and existence problems. The results for MUS are well-known while, as
far as we know, the results for MSIS are novel. Note that the algorithms pre-
sented in sections 4 and 5 solve the function problems of AllMSIS and SMSIS.
The complexity of related MUS problems has been studied in works such as [13].
In this section, we study closely-related decision problems, which are also solved
implicitly by the presented algorithms. We present the problems and their known
complexity classes below.

Lemma 3. The MUS existence problem “does F0 have a MUS of size k or less?”
is ΣP

2 -complete.

Lemma 4. The MUS identification problem “is F1 a MUS of F0?’ is DP -
complete.

Proofs of the above lemmas are presented in [9] and [20], respectively. The
novel result for the MSIS existence problem relies on a reduction from the MUS
existence problem. The problem is similarly stated as “does Inv0 have an MSIS
of size k or less?” To see that it is in ΣP

2 , notice that it can be solved by a



13

non-deterministic Turing machine that guesses a subset of Inv0 and checks if
it is a SIS, which requires only a constant number of satisfiability queries. We
demonstrate that it is ΣP

2 -Hard by reduction from the MUS existence problem.

Theorem 2. MUS existence problem ≤P
m MSIS existence problem

Proof. Let (C, k) be an instance of the MUS existence problem. Construct an
MSIS existence instance as follows:

InvC = {(ci ∨ ¬Bad) : ci ∈ C}
Init = ¬Bad
Tr = {(v′i = vi) : vi ∈ V ars(C)}

where Bad is a new variable that does not appear in C. InvC is a safe inductive
invariant because:

1. Init⇒ InvC since ¬Bad satisfies every clause
2. InvC is inductive because every formula is inductive for Tr
3. InvC ⇒ ¬Bad since InvC ∧Bad is equi-satisfiable with C, which is UNSAT

Next, we show that every MSIS of InvC corresponds to a MUS of C. For any
D ⊆ C, let InvD = {(ci ∨ ¬Bad) : ci ∈ D}. Note that:

1. Every InvD satisfies initiation
2. Every InvD is inductive
3. InvD ∧Bad is equi-satisfiable with D. It is UNSAT iff D is UNSAT.

The three points above imply InvD is a SIS iff D is an UNSAT core, so InvD is
an MSIS iff D is a MUS. This implies that InvC contains an MSIS of size k or
less iff C contains a MUS of size k or less. ut
Corollary 2. MUS identification problem ≤P

m MSIS identification problem

Proof. Follows from the same reduction used to prove Theorem 2.

We now present the proof that the MSIS identification problem is DP -
complete. It is DP -Hard due to Corollary 2. The proof that it is in DP is
presented in Theorem 3 below.

Theorem 3. The MSIS identification problem “is Inv1 an MSIS of Inv0?” is
in DP .

Proof. Let Inv0 be an safe inductive invariant for P = (Init, T r,Bad). Let L1

be the language “subsets of Inv0 that do not (strictly) contain a SIS.” L1 is
in NP. Given a C0 ⊆ Inv0, MaxIndSubset(C0) [12] would execute at most |C0|
satisfiability queries to determine that C0 does not contain a SIS. All of the
queries return SAT in this case. Given a C ∈ L1, executing MaxIndSubset on
the |C| strict subsets of cardinality |C|−1 yields O(|C|2) satisfying assignments.
They form a certificate for a positive instance with size polynomial in |C|.

Let L2 be the language “subsets of Inv0 that are SISes.” L2 is in co-NP.
This follows from the fact that C ⊆ Inv is a SIS if C ∧ Tr ∧ ¬C ′ and C ∧ Bad
are both UNSAT. The satisfying assignment for the disjunction of those two
formulas forms a certificate for a negative instance (where C is not a SIS).

The language “MSISes of Inv0” is L1 ∩ L2, so it is in DP . ut



14

7 Experimental Results

This section presents empirical results for the presented algorithms and the MSIS
algorithm of [12] on safe single-property benchmarks from the 2011 Hardware
Model Checking Competition [1]. This particular benchmark set was chosen be-
cause it has a large number of problems solved during the competition. Experi-
ments are executed on a 2.00 GHz Linux-based machine with an Intel Xeon E7540
processor and 96 GB of RAM. In order to generate inductive invariants for min-
imization, our implementation of IC3 is run with a 15 minute time limit, which
produces invariants in 280 cases. In 77 cases, IC3 generates a minimal invariant
(including cases where the given property is itself inductive). These benchmarks
are removed from further consideration, as are 3 additional benchmarks for which
none of the minimization algorithms terminated within the time limit. For each
of the 200 remaining testcases, CAMSIS (Section 4.3), MSIS [12], and MARCO (Sec-
tion 5) are used to minimize the inductive invariant. Motivated by [14], we con-
sider 3 slightly different versions of MARCO, by forcing getUnexplored to return
either any seed satisfying the map (MARCO-ARB), the seed of smallest possible
cardinality (MARCO-UP), or the seed of largest possible cardinality (MARCO-DOWN).
In this way, MARCO-UP favors earlier detection of msses, while MARCO-DOWN favors
earlier detection of muses (using the terminology of Algorithm 2). Each of the
above techniques is run with a time limit of 15 minutes, not including the time
required to run IC3.

Table 1. Summary of Results

preparation k = 1 k = 5 k = 10 k = 100 k = ALL

MSIS 200

5,944

CAMSIS 165 156 155 155 155 114

34,212 42,907 43,842 43,853 44,047 79,908

MARCO-UP 146 145 145 142 110

58,904 60,461 60,725 62,021 83,934

MARCO-ARB 143 139 138 127 101

56,175 60,297 61,687 71,747 93,251

MARCO-DOWN 199 184 176 145 100

7,917 21,007 29,305 57,217 92,970

Table 1 summarizes the results. For each technique and for several different
values of k, the first line reports the number of testcases on which the technique
is able to find k MSISes (or all MSISes if this number does not exceed k).
The second line reports the total time, in seconds. In addition, for the CAMSIS

algorithm, the column “preparation” reports the number of testcases in which
it was able to enumerate all collapse sets, and the total time for doing so.

First we note that while CAMSIS spends a significant amount of time to com-
pute the collapse sets, it is the winning algorithm when computing all or a large
number of MSISes. It is also the winning algorithm for computing the guaran-



15

teed smallest MSIS, succeeding in 156 cases. In contrast, the best MARCO-based
approach for computing all or the smallest MSIS only succeeds in 110 cases. It is
interesting to note that this is the approach favoring earlier detection of msses
rather than muses. On the other hand, the MARCO-DOWN approach, which is tai-
lored towards finding muses, shows much better anytime behavior, prevailing
over the other algorithms when computing a small number of MSISes (such as 1,
5 or 10). We note that the result for MARCO-DOWN for k = 1 is not surprising, as
in this case the first assignment returned by getUnexplored returns the original
invariant as the seed, so MARCO-DOWN simply reduces to finding any arbitrary
MSIS of the original invariant. Finally, we note that the MARCO-ARB algorithm is
in general worse than either MARCO-DOWN or MARCO-UP.

To give some intuition on the nature of the problems considered, Table 2
shows the number of MSISes for the 115 testcases solved by at least one AllMSIS
algorithm. The largest number of MSISes was 149280. Incidentally, this the only
of the 115 benchmarks for which CAMSIS could not find every MSIS.

Table 2. Total Number of MSISes (115 benchmarks)

MSISes 1 2–10 11–100 101–1000 > 1000

Frequency 55 20 17 11 12

A more in-depth analysis shows that while on average the MSIS technique
from [12] is significantly better for finding a single MSIS than CAMSIS for finding
a smallest-size MSIS, there are several cases where CAMSIS significantly outper-
forms MSIS. In other words, in some cases first finding all the collapse sets and
then finding a minimum inductive invariant using hitting set duality is faster
than looking for a minimal inductive invariant directly.

8 Conclusion and Future Work

This work lifts the MUS extraction algorithms of CAMUS and MARCO to the non-
monotone problem of MSIS extraction. The former is accomplished by identifying
a hitting set duality between support sets and collapse sets, which is analogous
to the MCS/MUS duality exploited by CAMUS. The latter is accomplished by
converting MSIS extraction to a monotone problem and applying MARCO directly.
Further, complexity results are proven demonstrating that MSIS identification
is DP -complete and the MSIS existence problem is ΣP

2 -complete, both of which
match the corresponding MUS problems.

The work of [14] suggests many optimizations to MARCO algorithm, it would
be interesting to explore these in our context. It would also be of interest to
determine if the predicates used to convert the non-monotone MSIS problems
into a monotone one suitable for use with MARCO can be applied in CAMSIS.
Further, we intend to lift other MUS extraction algorithms such as dualize-and-
advance (DAA) [2] to MSIS problems. Finally, further study of the application
of MARCO to non-monotone problems and the complexity of doing so is a natural
extension of this work.



16

References

1. Hardware Model Checking Competition 2011. http://fmv.jku.at/hwmcc11
2. Bailey, J., Stuckey, P.: Discovery of minimal unsatisfiable subsets of constraints

using hitting set dualization. Practical Aspects of Declarative Languages pp. 174–
186 (2005)

3. Berryhill, R., Ivrii, A., Veira, N., Veneris, A.: Learning support sets in IC3 and
Quip: The good, the bad, and the ugly. In: 2017 Formal Methods in Computer
Aided Design (FMCAD) (2017)

4. Berryhill, R., Veira, N., Veneris, A., Poulos, Z.: Learning lemma support graphs in
Quip and IC3. In: Proceedings of the 2nd International Verification and Security
Workshop. IVSW’17 (2017)

5. Bradley, A.R., Somenzi, F., Hassan, Z., Zhang, Y.: An incremental approach to
model checking progress properties. In: 2011 Formal Methods in Computer-Aided
Design (FMCAD). pp. 144–153 (Oct 2011)

6. Bradley, A.: Sat-based model checking without unrolling. In: International Conf.
on Verification, Model Checking, and Abstract Interpretation. VMCAI’11 (2011)

7. Eén, N., Mishchenko, A., Brayton, R.: Efficient implementation of property di-
rected reachability. In: Proceedings of the International Conference on Formal
Methods in Computer-Aided Design. FMCAD ’11 (2011)

8. Ghassabani, E., Whalen, M., Gacek, A.: Efficient generation of all minimal induc-
tive validity cores. In: 2017 Formal Methods in Computer Aided Design (FMCAD)
(2017)

9. Gupta, A.: Learning Abstractions for Model Checking. Ph.D. thesis, Pittsburgh,
PA, USA (2006), aAI3227784

10. Hassan, Z., Bradley, A.R., Somenzi, F.: Incremental, inductive CTL model check-
ing. In: Computer Aided Verification - 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings. pp. 532–547 (2012), http:

//dx.doi.org/10.1007/978-3-642-31424-7_38

11. Ignatiev, A., Previti, A., Liffiton, M.H., Marques-Silva, J.: Smallest MUS extraction
with minimal hitting set dualization. In: Principles and Practice of Constraint
Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31
- September 4, 2015, Proceedings. pp. 173–182 (2015), https://doi.org/10.1007/
978-3-319-23219-5_13

12. Ivrii, A., Gurfinkel, A., Belov, A.: Small inductive safe invariants. In: Proceedings
of the 14th Conference on Formal Methods in Computer-Aided Design. FMCAD
’14 (2014)

13. Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets
for monotone predicates. Artif. Intell. 233, 73–83 (2016)

14. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (Apr 2016), https://doi.org/10.1007/

s10601-015-9183-0

15. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning 40(1), 1–33 (Jan 2008),
https://doi.org/10.1007/s10817-007-9084-z

16. Marques-Silva, J., Janota, M., Belov, A.: Minimal Sets over Monotone Predicates
in Boolean Formulae (2013), https://doi.org/10.1007/978-3-642-39799-8_39

17. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Jr., W.A.H.,
Somenzi, F. (eds.) CAV. Lecture Notes in Computer Science, vol. 2725, pp. 1–13.
Springer (2003)



17

18. McMillan, K.L., Amla, N.: Automatic Abstraction without Counterexamples. In:
Garavel, H., Hatcliff, J. (eds.) TACAS. Lecture Notes in Computer Science, vol.
2619, pp. 2–17. Springer (2003)

19. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Proceedings of the
2010 Conference on Formal Methods in Computer-Aided Design. pp. 221–229.
FMCAD ’10 (2010)

20. Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. Journal of Com-
puter and System Sciences 37(1), 2 – 13 (1988)

21. Previti, A., Marques-Silva, J.: Partial MUS enumeration. In: Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence. AAAI’13 (2013)

22. Simmonds, J., Davies, J., Gurfinkel, A., Chechik, M.: Exploiting Resolution Proofs
to Speed Up LTL Vacuity Detection for BMC. In: FMCAD. pp. 3–12. IEEE Com-
puter Society (2007)


