
Cops-Robber games and the resolution of

Tseitin formulas

Nicola Galesi, Navid Talebanfard⋆, and Jacobo Torán

1 Universita di Roma La Sapienza, nicola.galesi@uniroma1.it
2 Czech Academy of Sciences, talebanfard@math.cas.cz

3 Universität Ulm, jacobo.toran@uni-ulm.de

Abstract. We characterize several complexity measures for the resolu-
tion of Tseitin formulas in terms of a two person cop-robber game. Our
game is a slight variation of the the one Seymour and Thomas used in or-
der to characterize the tree-width parameter. For any undirected graph,
by counting the number of cops needed in our game in order to catch
a robber in it, we are able to exactly characterize the width, variable
space and depth measures for the resolution of the Tseitin formula cor-
responding to that graph. We also give an exact game characterization
of resolution variable space for any formula.
We show that our game can be played in a monotone way. This implies
that the corresponding resolution measures on Tseitin formulas corre-
spond exactly to those under the restriction of regular resolution.
Using our characterizations we improve the existing complexity bounds
for Tseitin formulas showing that resolution width, depth and variable
space coincide up to a logarithmic factor, and that variable space is
bounded by the clause space times a logarithmic factor.

1 Introduction

Tseitin propositional formulas for a graph G = (V,E) encode the combinatorial
statement that the sum of the degrees of the vertices of G is even. Such formulas
provide a great tool for transforming in a uniform way a graph into a proposi-
tional formula that inherits some of the properties of the graph. Tseitin formulas
have been extensively used to provide hard examples for resolution or as bench-
marks for testing SAT-solvers. To name just a few examples, they were used for
proving exponential lower bounds on the minimal size required in tree-like and
regular resolution [17], in general resolution [18] and for proving lower bounds on
resolution proof measures as the width [7] and the space [9], or more recently for
proving time-space trade-offs in resolution [5, 6]. Due to the importance of these
formulas, it is of great interest to find ways to understand how different param-
eters on the underlying graphs are translated as some complexity measures of
the corresponding Tseitin formula. This was the key of the mentioned resolution
results. For example the expansion of the graph translated into resolution lower

⋆ Supported by ERC grant FEALORA 339691.

2 Nicola Galesi, Navid Talebanfard, and Jacobo Torán

bounds for the corresponding formula in all mentioned lower bounds, while the
carving-width or the cut-width of the graph were used to provide upper bounds
for the resolution width and size in [2, 5].

In this paper we obtain an exact characterization of the complexity measures
of resolution width, variable space and depth for any Tseitin formula in terms of
a cops-robber game played on its underlying graph. There exists a vast literature
on such graph searching games (see eg. [10]). Probably the best known game of
this kind is the one used by Seymour and Thomas [15] in order to characterize
exactly the graph tree-width parameter. In the original game, a team of cops
has to catch a robber that moves arbitrarily fast in a graph. Cops and robber
are placed on vertices, and have perfect information of the positions of the other
player. The robber can move any time from one vertex to any other reachable one
but cannot go through vertices occupied by a cop. Cops are placed or removed
from vertices and do not move. The robber is caught when a cop is placed on
the vertex where she is standing. The value of the game for a graph G is the
minimum number of cops needed to catch the robber on G. In [15] Seymour
and Thomas also showed that this game is monotone in the sense that there is
always an optimal strategy for the cops in which they never occupy the same
vertex again after a cop has been removed from it. In a previous version of the
game [13] the robber is invisible and the cops have to search the whole graph to
be sure to catch her. The minimum number of cops needed to catch the robber
in this game on G, characterizes exactly the path-width of G [8]. The invisible
cop game is also monotone [13].

Our game is just a slight variation from the original game from [15]. The only
differences are that the cops are placed on the graph edges instead of on vertices,
and that the robber is caught when she is completely surrounded by cops. We
show that the minimum number of cops needed to catch a robber on a graph
G in this game, exactly characterizes the resolution width of the corresponding
Tseitin formula. We also show that the number of times some cop is placed on an
edge of G exactly coincides with the resolution depth of the Tseitin formula on
G. Also, if we consider the version of the game with an invisible robber instead,
we exactly obtain the resolution variable space of the Tseitin formula on G.

We also show that the ideas behind the characterization of variable space in
terms of a game with an invisible robber, can in fact be extended to define a
new combinatorial game to exactly characterize the resolution variable space of
any formula (not necessarily a Tseitin formula). Our game is a non-interactive
version of the Atserias and Dalmau game for characterizing resolution width [4].

An interesting consequence of the cops-robber game characterizations is that
the property of the games being monotone can be used to show that for the
corresponding complexity measures, the resolution proof can be regular without
changing the bounds. As mentioned, the vertex-cops games are known to be
monotone. This did not need to be true for our game. In fact, the robber-marshals
game [11], another version of the game in which the cops are placed on the
(hyper)edges, is know to be non-monotone [1]. We are able to show that the
edge-cops game (for both cases of visible and invisible robber) is also monotone.

Cops-Robber games and the resolution of Tseitin formulas 3

This is done by reducing our edge game to the Seymour and Thomas vertex
game. This fact immediately implies that in the context of Tseitin formulas, the
width and variable space in regular resolution proofs is not worse that in general
resolution1. A long standing open question from Urquhart [18] asks whether
regular resolution can simulate general resolution on Tseitin formulas (in size).
Our results show that this is true for the measures of width and variable space.

Finally we use the game characterization to improve the known relationships
between different complexity measures on Tseitin formulas. In particular we show
that for any graph G with n vertices, the resolution depth of the corresponding
formula is at most its resolution width times log n. From this follows that all the
three measures width, depth and variable space are within a logarithmic factor in
Tseitin formulas. Our results provide a family of a uniform class of propositional
formulas where clause space is polynomially bounded in the variable space. No
such result was known before as recently pointed to by Razborov in [14].

The paper is organized as follows. In Section 2, we have all the necessary
preliminaries on resolution and its complexity measures. In Section 3 we present
the characterization of variable space in resolution. In Section 4 we introduce our
variants of the Cops-Robber games on graphs and we show the characterizations
of width, variable space and depth of the Tseitin formula on G in terms of Cops-
Robber games played on G. In Section 5 we focus on the monotone version of
the games and we prove that all our characterizations can be made monotone. In
the last Section 6 we use all our previous results to prove the new relationships
between width, depth, variable space and clause space for Tseitin formulas. We
finish with some conclusions and open questions.

2 Preliminaries

Let [n] = {1, 2, ..., n}. A literal is either a Boolean variable x or its negation x̄.
A clause is a disjunction (possibly empty) of literals. The empty clause will be
denoted by �. The set of variables occurring in a clause C, will be denoted by
Vars(C). The width of a clause C is defined as W(C) := |Vars(C)|.

A CNF Fn over n variables x1, . . . , xn is a conjunction of clauses defined
over x1, . . . , xn. We often consider a CNF as a set of clauses and to simplify the
notation in this Section we omit the index n expressing the dependencies of Fn

from the n variables. The width of a CNF F is W(F) := maxc∈F W(C). A CNF
is a k-CNF if all clauses in it have width at most k.

The resolution proof system is a refutational propositional system for CNF
formulas handling with clauses, and consisting of the only resolution rule:

C ∨ x D ∨ x̄

C ∨D

A proof π of a clause C from a CNF F (denoted by F ⊢π C) is a sequence of
clauses π := C1, . . . , Cm, m ≥ 1 such that Cm = C and each Ci in π is either

1 The resolution depth is well know to coincide with the regular resolution depth for
any formula.

4 Nicola Galesi, Navid Talebanfard, and Jacobo Torán

a clause of F or obtained by the resolution rule applied to two previous clauses
(called premises) in the sequence. When C is the empty clause �, π is said to
be a refutation of F . Resolution is a sound a complete system for unsatisfiable
formulas in CNF.

Let π := C1, . . . , Cm be a resolution proof from a CNF F . The width of π is
defined as W(π) := maxi∈[m] W(Ci). The width needed to refute an unsatisfiable
CNF F in resolution is W(F ⊢) := minF⊢π�

W(π). The size of π is defined as
S(π) := m. The size needed to refute an unsatisfiable CNF F in resolution is
S(F ⊢) := minF⊢π�

S(π).
Resolution proofs F ⊢π C, can be represented also in two other notations:

as directed acyclic graphs (DAG) or as sequences of set of clauses M, called
(memory) configurations. As a DAG, π is represented as follows: source nodes
are labeled by clauses of F , the (unique) target node is labeled by C and each
non-source node, labeled by a clauseD, has two incoming edges from the (unique)
nodes labeled by the premises of D in π. Using this notation the size of a proof π,
is the number of nodes in the DAG representing π. The DAG notation allow to
define other proof measures for resolution proofs. The depth of a proof π, D(π) is
the length of the longest path in the DAG representing π. The depth for refuting
an unsatisfiable CNF F is D(F ⊢) := minF⊢π�

D(π).
The representation of resolution proofs as configurations was introduced in

[9, 3] in order to define space complexity measures for resolution proofs. A proof
π, F ⊢π C, is a sequence M1, . . . ,Ms such that: M1 = ∅, C ∈ Ms and for each
t ∈ [s− 1], Mt+1 is obtained from Mt, by one of the following rules:

[Axiom Download]: Mt+1 = Mt ∪ {D}, for D a clause in F ;
[Erasure]: Mt+1 ⊂ Mt ;
[Inference]: Mt+1 = Mt∪{D}, if A,B ∈ Mt and

A B
D

is a valid resolution rule.

π is a refutation if C is �.
The clause space of a configuration M is Cs(M) := |M|. The clause space

of a refutation π := M1, . . . ,Ms is Cs(π) := maxi∈[s] Cs(Mi). Finally the clause
space to refute an unsatisfiable F is Cs(F ⊢) := minF⊢π�

Cs(π). Analogously, we
define the variable space and the total space of a configuration M as Vs(M) :=
|
⋃

C∈M
Vars(C)| and Ts(M) :=

∑
C∈M

W(C). Variable space and total space
needed to refute an unsatisfiable F , are respectively Vs(F ⊢) := minF⊢π�

Vs(π)
and Ts(F ⊢) := minF⊢π�

Ts(π).

An assignment for a set of variables X, specifies a truth-value ({0, 1} value)
for all variables in X. Variables, literals, clauses and CNFs are simplified under
partial assignments (i.e. assignment to a subset of their defining variables) in the
standard way.

2.1 Tseitin formulas

Let G = (V,E) be a connected undirected graph with n vertices, and let ϕ :
V → {0, 1} be an odd marking of the vertices of G, i.e. satisfying the property

∑

x∈V

ϕ(x) = 1(mod 2).

Cops-Robber games and the resolution of Tseitin formulas 5

For such a graph we can define an unsatisfiable formula in conjunctive normal
form T(G,ϕ) in the following way: The formula has E as set of variables, and
is a conjunction of the CNF translation of the formulas Fx for x ∈ V , where
Fx expresses that e1(x) ⊕ · · · ⊕ ed(x) = ϕ(x) and e1(x) . . . ed(x) are the edges
(variables) incident with vertex x.

T(G,ϕ) encodes the combinatorial principle that for all graphs the sum of the
degrees of the vertices is even. T(G,ϕ) is unsatisfiable if and only if the marking
ϕ is odd. For an undirected graph G = (V,E), let ∆(G) denote its maximal
degree. It is easy to see that W(T(G,ϕ)) = ∆(G).

The following fact was proved several times (see for instance [9, 18]).

Fact 1 For an odd marking ϕ, for every x ∈ V there exists an assignment αϕ

such that αϕ(Fx) = 0, and αϕ(Fy) = 1 for all y 6= x. Moreover if ϕ is an even
marking, then T(G,ϕ) is satisfiable.

Consider a partial truth assignment α of some of the variables of T(G,ϕ). We
refer to the following process as applying α to (G,ϕ): Setting a variable e = (x, y)
in α to 0 corresponds to deleting the edge e in the graph G, and setting it to 1
corresponds to deleting the edge from the graph and toggling the values of ϕ(x)
and ϕ(y) in G. Observe that the formula T(G′, ϕ′) resulting after applying α to
(G,m) is still unsatisfiable.

3 A game characterization of resolution variable space

We start by giving a new characterization of resolution variable space. This result
holds for any CNF formula and is therefore quite independent of the rest of the
paper. We include it at the beginning since it will be used to show that the
invisible robber game characterizes variable space in Tseitin formulas.

The game is a non-interactive version of the Spoiler-Duplicator width game
from Atserias and Dalmau [4]:

Given an unsatisfiable formula F in CNF with variable set V , Player 1 con-
structs step by step a finite list L = L0, L1, . . . , Lk of sets of variables, Li ⊆ V.

Starting by the empty set, L0 = ∅, in each step he can either add variables to
the previous set, or delete variables from it. The cost of the game is the size of
the largest set in the list.

Once the Player 1 finishes his list, Player 2 has to construct dynamically a
partial assignment for the set of variables in the list. In each step i, the domain
of the assignment is the set of variables Li in the list at this step. She starts
giving some value to the first set of variables in the list, L1, in a way that no
clause of F is falsified. If variables are added to the set at any step, she has to
extend the previous partial assignment to the new domain in any way, but again,
no initial clause can be falsified. If a variable is kept from one set to the next
one in the list, its value in the assignment remains. If variables are removed from
the set at any step, the new partial assignment is the restriction of the previous
one to the new domain.

6 Nicola Galesi, Navid Talebanfard, and Jacobo Torán

If Player 2 manages to come to the end of the list without having falsified
any clause of F at any point, she wins. Otherwise Player 1 wins.

Define nisd(F) to be the minimum cost of a winning game for Player 1 on F .
We prove that for any unsatisfiable formula F the variable space of F coincides
exactly with nisd(F).

Theorem 1. Let F be an unsatisfiable formula, then nisd(F) ≤ Vs(F ⊢).

Proof. (sketch) Consider a resolution proof Π of F as a list of configurations.
The strategy of Player 1 consists in constructing a list L of sets of variables, that
in each step i contains the variables present in the i-th configuration. The cost
for this list is exactly Vs(Π).

We claim that any correct list of partial assignments of Player 2 that does not
falsify any clause in F , has to satisfy simultaneously all the clauses at the config-
urations in each step. The argument is completed by observing that there must
be a step in Π in which the clauses in the configuration are not simultaneously
satisfiable.

Theorem 2. Let F be an unsatisfiable formula, then Vs(F ⊢) ≤ nisd(F).

Proof. (sketch) Let L be the list of sets of variables constructed by Player 1,
containing at each step i a set Li of at most nisd(F) variables. We consider
for each step i a set of clauses Ci containing only the variables in Li. Initially
L1 is some set of variables and C1 is the set of all clauses that can be derived
by resolution (in any number of steps) from the clauses in F containing only
variables in L1. At any step i, if Li is constructed by adding some new variables
to Li−1, Ci is defined to be the set of clauses that can be derived from the
clauses in Ci−1 and the clauses in F containing only variables in Li. If Li is
constructed by subtracting some new variables from Li−1, Ci is defined to be the
set of clauses in Ci−1 that only have variables in the set Li. By definition Ci can
be always be constructed from Ci−1 by using only resolution steps, deletion or
inclusion of clauses in F , and therefore this list of sets of clauses can be written
as a resolution proof. At every step in this proof at most nisd(F) variables are
present.

We claim that if L is a winning strategy for Player 1, then at some point i,
Ci must contain the empty clause. This implies the result. To sketch a proof of
this claim let us define at each step i the set Ai of partial assignments for the
variables in Li that satisfy all the clauses in Ci, and the set Bi to be the set of
partial assignments for the variables in Li that do not falsify any initial clause
and can be constructed by Player 2 following the rules of the game. It can be
seen by induction on i that at each step, Ai = Bi. Since at some point i, Player
2 does not have any correct assignment that does not falsify a clause in F , it
follows that Ai = Bi = ∅, which means that Ci in unsatisfiable and must contain
the empty clause by the definition of Ci and the completeness of resolution.

Cops-Robber games and the resolution of Tseitin formulas 7

4 Cops and Robber Games

We consider a slight variation of the Cops and Robber game from Seymour and
Thomas [15] which they used to characterize exactly the tree-width of a graph.
We call our version the Edge (Cops and Robber) Game.

Initially a robber is placed on a vertex of a connected graph G. She can move
arbitrarily fast to any other vertex along the edges. The team of cops, directed
by one person, want to capture her, and can always see where she is. They are
placed on edges and do not move.

Definition 3. (Edge Cops-Robber Game) Player 1 takes the role of the cops. At
any stage he can place a cop on any unoccupied edge or remove a cop from and
edge. The robber (Player 2) can then move to any vertex that is reachable from
his actual position over a path without cops. Both teams have at any moment
perfect information of the position of the other team. Initially no cop is on the
graph. The game finishes when the robber is captured. This happens when the
vertex she occupies is completely surrounded by cops.

The value of the game is the maximum number of edge-cops present on the
edges at any point in the game. We define ec(G) as the minimum value in a
finishing Edge Game on G.

The only difference between our Edge Cops-Robber Game and the Cops-
Robber game from Seymour and Thomas in that here the cops are placed on the
edges, while in [15] they were placed on the vertices and that our game ends with
the robber surrounded while in the Seymour-Thomas game a cop must occupy
the same vertex as the robber.

4.1 The cops-robber game characterizes width on Tseitin formulas

The edge-cops game played on a connected graph G characterizes exactly the
minimum width of a resolution refutation of T(G,ϕ) for any odd marking ϕ. In
order to show this, we use the Atserias-Dalmau game [4] introduced to charac-
terize resolution width. We prove that ec(G) = sd(T(G,ϕ)) where sd(T(G,ϕ))
denotes the value of the Atserias-Dalmau game played on T(G,ϕ). We use the
simplified explanation of the game from [16].

Spoiler and Duplicator play on a CNF formula F. Spoiler wants to falsify
a clause of the formula, while Duplicator tries to prevent this from happening.
During the game they construct a partial assignment α of the variables in F and
the game ends when α falsifies a clause from F. Initially α is empty. At each step,
Spoiler can select an unassigned variable x or forget (unassign) a variable from
α. In the first case the Duplicator assigns a value to x, in the second case she
does not do anything. The value of a game is the maximum number of variables
that are assigned in α at some point during the game. sd(F) is the minimum
value of a finishing game on F .

Atserias and Dalmau [4] proved that this measure characterizes the width of
a resolution refutation of any unsatisfiable F , W(F ⊢) = max{W(F), sd(F)− 1}

8 Nicola Galesi, Navid Talebanfard, and Jacobo Torán

2. Let us observe how the game goes when played on the formula T(G,ϕ). In a
finishing game on T(G,ϕ) Spoiler and Duplicator construct a partial assignment
α of the edges. Applying α to the variables of T(G,ϕ) a new graph G′ and
marking ϕ′ are produced. Consider a partial truth assignment α of some of
the variables. Assigning a variable e = {x, y} in α to 0 corresponds to deleting
the edge e in the graph, and setting it to 1 corresponds to deleting the edge
from the graph and toggling the values of ϕ(x) and ϕ(y). The formula T(G′, ϕ′)
resulting after applying α to (G,ϕ) is still unsatisfiable. We will call a connected
component of G′ for which the sum of the markings of its vertices is odd, an odd
component. Initially G is an odd component under ϕ. By assigning an edge, an
odd component can be divided in at most two smaller components, an odd one
and an even one. The only way for Spoiler to end the game is to construct an
assignment α that assigns values to all the edges of a vertex, contradicting its
marking under α. This falsifies one of the clauses corresponding to the vertex.

Theorem 4. For any connected graph G and any odd marking ϕ, ec(G) =
sd(T(G,ϕ)).

Proof. In order to compare both games, the team of cops will be identified
with the Spoiler and the robber will be identified with the Duplicator. Since the
variables in T(G,ϕ) are the edges of G, the action of Spoiler selecting (forgetting)
a variable in the Atserias-Dalmau game will be identified with placing (removing)
a cop on that edge.

We show first that ec(G) ≤ sd(T(G,ϕ)). No matter what the strategy of
Duplicator is, Spoiler has a way to play in which he spends at most sd(T(G,ϕ))
points at the Spoiler-Duplicator game on T(G,ϕ). In order to obtain a value
smaller or equal than sd(T(G,ϕ)) in the Edge Game, the cops just have to imitate
Spoiler’s strategy on T(G,ϕ). At the same time, they compute a strategy for
Duplicator that simulates the position of the robber. This is done by considering
a Duplicator assigning values in such a way that there is always a unique odd
component which corresponds to the subgraph of G isolated by cops where the
robber is. At any step in the Edge Game, we the following invariant is kept:

The partial assignment produced in the Spoiler-Duplicator game on T(G,ϕ)
defines a unique odd component corresponding to the component of the robber.

If in a step of the Spoiler-Duplicator game the edge selected by Spoiler does
not cut the component where the robber is, Player 1 can simulate Duplicator’s
assignment for this variable in a way in which a unique odd component is kept
and continue with the next decision of Spoiler. At a step right after the compo-
nent of the robber is cut by the cops, Player 1 can compute an assignment of
Duplicator for the last occupied edge, which would create a labeling that identi-
fies the component where the robber as the unique odd component of the graph.
This is always possible. Then Player 1 just needs to continue the imitation of
Spoiler’s strategy for the assignment produced by Duplicator.

2 In the original paper [4] it is stated that W(F ⊢) = sd(F) − 1, by inspecting the
proof it can be seen that the formulation involving the width of F is the correct one

Cops-Robber games and the resolution of Tseitin formulas 9

At the end of the game Spoiler falsifies an initial clause, and the vertex
corresponding to this clause is the unique odd component under the partial
assignment. Therefore the cops will be on the edges of a falsified clause, thus
catching the robber on the corresponding vertex.

The proof of ec(G) ≥ sd(T(G,ϕ)) is very similar. Now we consider that there
is a strategy for Player 1 in the Edge Game using at most ec(G) cops, and we
want to extract from it a strategy for the Spoiler. He just needs to select (remove)
variables is the same way as the cops are being placed (removed). This time, all
through the game we have the following invariant:

The component isolated by cops in which the robber is, is an odd component
in the Spoiler-Duplicator game.

When the variable (edge) selected does not cut the component where the
robber is, he does not need to do anything. When the last selected variable cuts
the component of the robber, by choosing a value for this variable Duplicator
decides which one of the two new components is the odd one. Spoiler figures
that the robber has gone to the new odd component and asks the cops what
to do next in this situation. When the robber is caught, this will be in an odd
component of size 1 which all its edges assigned. This partial assignment falsifies
the corresponding clause in T(G,ϕ).

Corollary 5. For any connected graph G and any odd marking ϕ,

W(T(G,ϕ) ⊢) = max{∆(G), ec(G)− 1}.

4.2 An invisible robber characterizes variable space on Tseitin

formulas

Consider now the cops game in which the robber is invisible. That means that
the cops strategy cannot depend on the robber and the cops have to explore the
whole graph to catch her. As in the visible version of the game, the robber is
caught if all the edges around the vertex in which she is, are occupied by cops.
For a graph G let iec(G) be the minimum number of edge-cops needed to catch
an invisible robber in G. Let T(G,ϕ) be the Tseitin formula corresponding to G.
We show that iec(G) corresponds exactly with Vs(T(G,ϕ)).

Theorem 6. Vs(T(G,ϕ)) = iec(G).

Proof. (sketch)
(i) Vs(T(G,ϕ) ⊢) ≤ iec(G). We use the game characterization of variable space.
Consider the strategy of the cops. At each step the set of variables constructed
by Spoiler corresponds to the set of edges (variables) where the cops are. Now
consider any list of partial assignments that Player 2 might construct. Any such
assignment can be interpreted as deleting some edges and moving the robber
to an odd component in the graph. But the invisible robber is caught at some
point, no matter what she does, and this corresponds to a falsified initial clause.

(ii) iec(G) ≤ Vs(T(G,ϕ) ⊢). Now we have a strategy for Spoiler, and the cops
just need to be placed on the edges corresponding to the variables selected by

10 Nicola Galesi, Navid Talebanfard, and Jacobo Torán

Player 1. If the robber could escape, by constructing a list of partial assignments
mimicking the robber moves (that is, each time the cops produce a new cut in the
component where the robber is, she sets the value of the last assigned variable to
make odd the new component where the robber has moved to), Player 2 never
falsifies a clause in T(G,ϕ).

4.3 A game characterization of depth on Tseitin formulas

We consider now a version of the game in which the cops have to remain on their
edges until the end of the game and cannot be reused.

Definition 7. For a graph G let iec(G) be the minimum number of edge-cops
needed in order to catch a visible robber on G, in the cops-robber game, with the
additional condition that the cops once placed, cannot be removed from the edges
until the end of the game.

Theorem 8. For any connected undirected graph G and any odd marking ϕ of
G, D(T(G,ϕ) ⊢) = iec(G).

Proof. (sketch)
(i) D(T(G,ϕ) ⊢) ≤ iec(G). Based on the strategy of the cops, we construct a

regular resolution proof tree of T(G,ϕ) in which the variables are resolved in the
order (from the empty clause) as the cops are being placed on the edges. Starting
at the node in the tree corresponding to the empty clause, in each step when a
cop is placed on edge e we construct two parent edges, one labeled by e and the
other one by e. A node in the tree is identified by the partial assignment defined
by the path going from the empty clause to this node. Each time the cops produce
a cut in G, such an assignment defines two different connected components in G,
one with odd marking and one with even marking. We consider at this point the
resolution of the component with the odd marking, following the cop strategy
for the case in which the robber did go to this component.

(ii) iec(G) ≤ D(T(G,ϕ) ⊢) Consider a resolution proof Π of T(G,ϕ). Start-
ing by the empty clause, the cops are placed on the edges corresponding to the
variables being resolved. At the same time a partial assignment is being con-
structed (by the robber) that defines a path in the resolution that goes through
the clauses that are negated by the partial assignment. If removing these edges
where the cops are produces a cut in G, the cops continue from a node in the
resolution proof corresponding to an assignment for the last chosen variable that
gives odd value to the component where the robber has moved. At the end a
clause in T(G,ϕ) is falsified, which corresponds to the cops being placed in the
edges around the robber. The number of cops needed is at most the resolution
depth.

5 Regular resolution and monotone games

We show in this section that the fact that the games can be played in a monotone
way, implies that width and variable space in regular resolution are as good as
in general resolution in the context for Tseitin formulas.

Cops-Robber games and the resolution of Tseitin formulas 11

We need some further notation. For a set S and k > 0, we denote the set of
subsets of S of size at most k by Sk.

5.1 The visible robber

We recall the game of [15]. Let G = (V,E) be a simple graph and let Y ⊆ V .
A Y -flap is the vertex set of a connected component in G \ Y . A position in
this game is a pair (Y,Q) where Y ⊆ V and Q is an Y -flap. The game starts in
position (∅, V). Assume that position (Yi, Qi) is reached. The cops-player chooses
Yi+1 such that either Yi ⊆ Yi+1 or Yi+1 ⊆ Yi. Then the robber-player chooses
a Yi+1-flap Qi+1 such that Qi ⊆ Qi+1 or Qi+1 ⊆ Qi. The cops-player wins
when Qi ⊆ Yi+1. We say that a sequence of positions (Y0, Q0), . . . , (Yt, Qt) is
monotone if for all 0 ≤ i ≤ j ≤ k ≤ t, Yi ∩ Yk ⊆ Yj . The main result of Seymour
and Thomas is that if k cops can win the game, they can also win monotonically.
We will use this result to prove an analogous statement about our games where
we put the cops on edges.

We extend the framework of Seymour and Thomas to talk about edges. Now
we have X ⊆ E. An X-flap is the edge set of a connected component in G\X. A
position is a pair (X,R) with X ⊆ E and R an X-flap. Assume that a position
(Xi, Ri) is reached. The cops-player chooses Xi+1 such that either Xi ⊆ Xi+1 or
Xi+1 ⊆ Xi. Then the robber-player chooses an Xi+1-flap Ri+1 such that either
Ri ⊆ Ri+1 or Ri+1 ⊆ Ri. The cops win when Ri ⊆ Xi+1. Note that under this
definition if some X isolates more than one vertex, then we will have multiple
empty sets as X-flaps. However if the robber moves to such an X-flap she will
immediately lose as in the next round the cops remain where they are and ∅ ⊆ X.

Similarly a sequence of positions (X0, R0), . . . , (Xt, Rt) is monotone if for all
0 ≤ i ≤ j ≤ k ≤ t, Xi ∩Xk ⊆ Xj .

Given a graph G = (V,E) the line graph of G is L(G) = (V ′, E′) defined as
follows: for every edge e ∈ E we put a vertex we ∈ V ′. We then set

E′ = {{we1 , we2} : e1, e2 ∈ E, e1 ∩ e2 6= ∅}.

For X ⊆ E define L(X) := {we : e ∈ X} and for Y ⊆ V ′ define L−1(Y) = {e :
we ∈ Y }.

Proposition 9. Let G = (V,E) be a graph and let X ⊆ E. It follows that R ⊆ E

is an X-flap if and only L(R) is an L(X)-flap.

Proof. It is enough to show that any e1, e2 ∈ E \ X are reachable from each
other in G \ X if and only if we1 and we2 are reachable from each other in
L(G) \L(X). Let P = e1, f1, . . . , ft, e2 be a path in G \X connecting e1 and e2.
By construction we have a path we1 , wf1 , . . . , wft , we2 in L(G) \ L(X).

Conversely let we1 , wf1 , . . . , wft , we2 be a path of minimum length between
we1 and we2 in L(G) \ L(X). It is easy to see that e1, f1, . . . , ft, e2 is a path
between e1 and e2 in G \X.

Theorem 10. Assume that there is a strategy for the edge-cops game on G with
k cops. Then there exists a strategy for the vertex-cops game in L(G) with k cops.

12 Nicola Galesi, Navid Talebanfard, and Jacobo Torán

Proof. Fix a strategy σ for the edge-cops on G, i.e., for every X ∈ Ek and every
X-flap R, σ(X,R) ∈ Ek which guarantees that the robber will eventually be
captured. We will inductively construct a sequence {(Yi, Qi)} of positions in the
vertex game on L(G), where Qis are the responses of the robber, while keeping
a corresponding sequence {(Xi, Ri)} for the edge game on G. The vertex game
starts in position (Y0, Q0) = (∅, V ′) and the edge game starts in (X0, R0) =
(∅, E). We have X1 = σ(X0, R0). In general we set Yi = L(Xi) and after the
robber has responded with Qi we define Ri = L−1(Qi), from which we construct
Xi+1 = σ(Xi, Ri) and so on. That Ri is an Xi-flap follows immediately from
Proposition 9. To see that this is indeed a winning strategy, note that at some
point we reach a position with Ri ⊆ Xi+1. This happens only when Qi ⊆ Yi+1.

Theorem 11. Assume that there is a monotone strategy for the vertex-cops
game in L(G) with k cops. Then there exists a monotone strategy with k cops
for the edge-cops game in G.

Proof. We will construct a sequence {(Xi, Ri)} of positions in the edge game on
G while keeping a corresponding sequence {(Yi, Qi)} of positions in the vertex
game on L(G). Note that Ri will be the response of the robber on G. Let σ be
a monotone strategy with k vertex-cops on L(G). We will inductively construct
Xi = {e : we ∈ Yi} and after the robber has responded with Ri we define
Qi = L(Ri). Proposition 9 implies that Qi is a Yi-flap. Since σ is a winning
strategy at some point we reach a position with Qi ⊆ Yi+1. This happens only
when Ri ⊆ Xi+1. The monotonicity of the strategy follows immediately.

5.2 The invisible robber

In a similar way as we did with the visible robber game, we can reduce the edge-
game with an invisible robber to the invisible robber vertex-game of Kirousis and
Papadimitriou [12] (we will call this game KP). In their game cops are placed
on vertices. An edge is cleared if both its endpoints have cops. An edge can be
recontaminated if it is connected to an uncleared edge passing through no cops. It
is shown in [12] that the cops can optimally clear all the edges without occupying
any vertex twice.

Theorem 12. Assume that k cops can win the edge-game capturing an invisible
robber on G. Then k cops can capture the robber in KP game on L(G).

Theorem 13. Assume that k cops can monotonically capture the robber in KP
game on L(G). Then k cops can monotonically capture the invisible robber in
the edge-game on G.

Corollary 14. Let G = (V,E) be a simple connected graph and let ϕ be any
odd marking of G. Assume that there exist a resolution refutation of T(G,ϕ)
of variable space at most k. Then there exists a regular resolution refutation of
T(G,ϕ) of variable space at most k.

Cops-Robber games and the resolution of Tseitin formulas 13

6 New relations between complexity measures for Tseitin

formulas

For any unsatisfiable formula F the following inequalities hold:

W(F ⊢) ≤ Vs(F ⊢) (1)

Vs(F ⊢) ≤ D(F ⊢) (2)

Cs(F ⊢) ≤ D(F ⊢) + 1 (3)

Cs(F ⊢) ≥ W(F ⊢)−W(F) + 1 (4)

Here equation 1 follows by definition, equation 2 is proved in [19], equation
4 is the Atserias-Dalmau [4] width-space inequality and equation 3 follows from
the following two observations:

1. Any resolution refutation π can be transformed, doubling subproofs, in a
tree-like refutation with the same depth of the original proof π.

2. The clause space of a treelike refutation is at most as large as its depth+1
[9].

In general the relationship between variable space and clause space is not clear.
It is also an open problem to know whether variable space and depth are poly-
nomially related (see [14, 19]) and if clause space is polynomially bounded in
variable space (see Razborov in [14], Open problems). In this Section we answer
this questions in the context of Tseitin formulas. We show in Corollary 17 below
that for any Tseitin formula T(G,ϕ) corresponding to a graph G with n vertices,

D(T(G,ϕ) ⊢) ≤ W(T(G,ϕ) ⊢) log n (5)

From this and the inequalities above it follow the following new relations:

D(T(G,ϕ) ⊢) ≤ Vs(T(G,ϕ) ⊢) log n (6)

Cs(T(G,ϕ) ⊢) ≤ Vs(T(G,ϕ) ⊢) log n+ 1 (7)

Vs(T(G,ϕ) ⊢) ≤ (Cs(T(G,ϕ) ⊢) +∆(G)− 1) log n. (8)

Where the last equation follow since W(T(G,ϕ)) = ∆(G).
That is, in the context of Tseitin formulas T(G,ϕ):

1. If G is a graph of bounded degree, the width, depth, variable space and
clause space for refuting T(G,ϕ) differ by at most a log n factor.

2. For any graph G the clause space of refuting T(G,ϕ) is bounded above by
the a log n factor of the variable space of refuting T(G,ϕ).

To prove our results, we need two preliminary lemmas.

Lemma 15. Let T(G,ϕ) be a Tseitin formula and Π be a width k resolution
refutation of T(G,ϕ). From Π it is possible to find in linear time in |Π| a set
W of at most k + 1 variables such that any assignment of these variables when
applied to G in the usual way, defines a graph G′ and a labeling ϕ′ in which there

is some odd connected component with at most ⌈ |V |
2 ⌉ vertices.

14 Nicola Galesi, Navid Talebanfard, and Jacobo Torán

Proof. We use again the Spoiler and Duplicator game from [4]. A way for Spoiler
to pay at most k + 1 points on the game on T(G,ϕ) is to use the structure of
Π starting at the empty clause and query each time the variable that is being
resolved at the parent clauses. When Duplicator assigns a value to this variable,
Spoiler moves to the parent clause falsified by the partial assignment and deletes
from this assignment any variables that do not appear in the parent clause. In
this way he always reaches at some point an initial clause, falsifying it and thus
winning the game. At any point at most k + 1 variables have to be assigned.
To this strategy of Spoiler, Duplicator can oppose the following strategy: She
applies the partial assignment being constructed to the initial graph G producing
a subgraph G′ and a new labeling ϕ′. Every time a variable e has to be assigned,
if e does not produce a new cut in G′ she gives to e an arbitrary value. If
e cuts an odd component in G′ she assigns e with the value that makes the
largest of the two new components an odd component. In case e cuts an even
component in two, Duplicator gives to e the value which keeps both components
even. Observe that with this strategy there is always a unique odd component.
Even when Spoiler releases the value of some assigned variable he cannot create
more components, he either keeps the same number of components or connects
two of them.

While playing the game on T(G,ϕ) with these two strategies, both players
define a path from the empty clause to an initial one. There must be a first clause
K along this path in which the constructed partial assignment constructed in
the game at the point t in which K is reached, when applied to G, defines a

unique odd component of size at most ⌈ |V |
2 ⌉. This is so because the unique odd

component initially has size |V | while at the end has size 1. This partial assign-
ment has size at most k + 1. Not only the odd component, but any component

produced by the partial assignment has size at most ⌈ |V |
2 ⌉. This is because at the

point before t the odd component was larger than ⌈ |V |
2 ⌉ and therefore any other

component had to be smaller than this. At time t Spoiler chooses a variable that
when assigned cuts the odd component in two pieces. Duplicator assigns it in
such a way that the largest of these two components is odd and has size at most

⌈ |V |
2 ⌉. Therefore the other new component must have at most this size.
Any other assignment of these variables also produces an odd component of

size at most ⌈ |V |
2 ⌉. They correspond to other strategies and they all produce the

same cuts and components in the graph, just different labellings of the compo-
nents. Since the initial formula was unsatisfiable there must always be at least
one odd component. In order to find the set W of variables, one just has to move
on refutation Π simulating Spoiler and Duplicator strategies. This can be done
in linear time in the size of Π.

Theorem 16. There is an algorithm that on input a connected graph G = (V,E)
with an odd labeling ϕ and a resolution refutation Π of T(G,ϕ) with width k,
produces a tree-like resolution refutation Π ′ of T(G,ϕ) of depth k log(|V |).

Proof. Let W = {e1, . . . e|W |} be a set of variables producing an odd connected

component of size at most ⌈ |V |
2 ⌉, as guaranteed by Lemma 15. We can construct

Cops-Robber games and the resolution of Tseitin formulas 15

a tree-like resolution of depth |W | of the complete formula FW with 2|W | clauses,
each containing all variables in W but with a different sign combination.

By the Lemma, each assignment of the variables, when applied to G produces

a subgraph Gi and a labeling ϕi with an odd component with at most ⌈ |V |
2 ⌉ ver-

tices. The problem of finding a tree-like refutation for T(G,ϕ) has been reduced
to finding a tree-like resolution refutation for each of the formulas T(Gi, ϕi).

But each of the graphs Gi have an odd component with at most ⌈ |V |
2 ⌉ vertices

and the problem is to refute the Tseitin formulas corresponding to these compo-
nents. After at most log(|V |) iterations we reach Tseitin formulas with just two
vertices that can be refuted by trees of depth one. Since W has width at most
k+1 literals, in each iteration the refutation trees have depth at most k. Putting
everything together we get a tree-like refutation of depth at most k log(|V |).

Corollary 17. For any graph G = (V,E) and any odd labeling ϕ,
D(T(G,ϕ) ⊢) ≤ W(T(G,ϕ) ⊢) log(|V |).

Corollary 18. For any graph G = (V,E) and any odd labeling ϕ

Cs(T(G,ϕ) ⊢) ≤ Vs(T(G,ϕ) ⊢) log(|V |).

7 Conclusions and Open Problems

We have shown that the measures of width, depth and variable space in the
resolution of Tseitin formulas can be exactly characterized in terms of a graph
searching game played on the underlying graph. Our game is a slight modifi-
cation of the well known cops-robber game from Seymour and Thomas. The
main motivation for this characterization is the fact that some results in graph
searching can be used to solve questions in proof complexity. Using the mono-
tonicity properties of the Seymour and Thomas game, we have proven that the
measures of width and variable space in regular resolution coincide exactly with
those of general resolution in the context of Tseitin formulas. Previously it was
only known that for Tseitin formulas, regular width was within a constant factor
of the width in general resolution [2]. The game characterization also inspired
new relations between the three resolution measures on Tseitin formulas and we
proved that they are all within a logarithmic factor.

We have also obtained a game characterization of variable space for the
resolution of general CNF formulas, as a non-interactive version of the Atserias
and Dalmau game [4] for resolution width.

Still open is whether for Tseitin formulas, regular resolution can also simulate
general resolution in terms of size, as asked by Urquhart [18]. Also game charac-
terizations for other resolution measures like size or space, either for Tseitin or
general formulas, would be a very useful tool in proof complexity.

Acknowledgments. The authors would like to thank Osamu Watanabe and the ELC
project were this research was started. We are also grateful to Dimitrios Thilikos and
to the anonymous referees for helpful comments.

16 Nicola Galesi, Navid Talebanfard, and Jacobo Torán

References

1. I. Adler. Marshals, monotone marshals, and hypertree width. Journal of Graph

Theory 47, 275–296, 2004.
2. M. Alekhnovich and A. A. Razborov. Satisfiability, branch-width and Tseitin tau-
tologies. Computational Complexity 20(4), 649–678, 2011.

3. M. Alekhnovich and E. Ben-Sasson and A. A. Razborov and A. Wigderson. Space
Complexity in Propositional Calculus SIAM J. Comput. 31(4), 1184–1211, 2002.

4. A. Atserias and V. Dalmau. A combinatorial characterization of resolution width.
18th IEEE Conference on Computational Complexity 239–247, 2003.

5. P. Beame, C. Beck and R. Impagliazzo. Time-space trade-offs in resolution: Super-
polynomial lower bounds for superlinear space. SIAM J.Comput. 49, 4, 1612–1645,
2016.

6. C. Beck, J. Nordström and B. Tang. Some trade-off results for polynomial calculus:
extended abstract. Proc. of the 45th ACM Symposium on the Theory of Computing,
813–822 (2013).

7. E. Ben-Sasson and A. Wigderson. Short Proofs are Narrow - Resolution made
Simple. Journal of the ACM 48(2): 149–169, 2001.

8. J.A. Ellis, I.H. Sudborough and J.S. Turner. The vertex separation and search
number of a graph. Information and Computation 113(1) 50–79, 1994.

9. J.L. Esteban and J., Torán. Space bounds for resolution. Information and Compu-

tation 171(1): 84–97, 2001.
10. F.V. Fomin and D. Thilikos. An annotated bibliography on guaranteed graph
searching. Theoretical Computer Science 399 236–245, 2008.

11. G. Gottlob, N. Leone, F. Scarello. Robbers, marshals and guards: game theoretic
and logical characterizations of hypertree width. Journal of Comput. System Sci. 66,
775–808, 2003.

12. L. M. Kirousis and C. H. Papadimitriou. Searching and Pebbling. Theoretical

Computer Science 47(3):205–218, 1986.
13. A.S. LaPaugh. Recontamination does not help to search a graph. Tech. report
Electrical Engineering and Comp. Science Dept. Princeton University, 1883.

14. A. Razborov. On space and depth in resolution. Computational Complexity 1–49,
2017.

15. P.D. Seymour and R. Thomas. Graph searching and a Min-Max theorem of tree-
width. Journal of combinatorial theory Series B 58, 22-35, 1993.

16. J. Torán, Space and Width in Propositional Resolution. Computational Complexity

Column, Bulletin of EATCS 83: 86–104, 2004.
17. G.S. Tseitin. On the complexity of derivation in propositional calculus. In Stud-

ies in Constructive Mathematics and Mathematical Logic, Part 2., pages 115–125.
Consultants Bureau, 1968.

18. A. Urquhart. Hard examples for resolution. Journal of the ACM 34, 209–219,
1987

19. A. Urquhart. The depth of resolution proofs. Studia Logica 99, 349–364, 2011

