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Abstract6

Constraint handling rules are a committed-choice language consisting of multiple-heads guarded7

rules that rewrite constraints into simpler ones until they are solved. We propose a new proof-8

theoretical declarative linear semantics for Constraint Handling Rules. We demonstrate com-9

pleteness and soundness of our semantics w.r.t. operational ωt semantics. We propose also a10

translation from this semantics to linear logic.11

2012 ACM Subject Classification Theory of computation - Logic - Constraint and logic pro-12

gramming13

Keywords and phrases Constraint Handling Rules, Linear Logic14

Digital Object Identifier 10.4230/OASIcs...15

1 Introduction16

CHR (for constraint handling rules) [9, 10, 11, 12, 13, 14] are a committed-choice lan-17

guage consisting of multiple-heads guarded rules that rewrite constraints into simpler ones18

until they are solved. CHR are a special-purpose language concerned with defining de-19

clarative constraints in the sense of Constraint logic programming [16, 17, 18]. CHR are a20

language extension that allows to introduce user-defined constraints, i.e. first-order predic-21

ates, as for example less-than-or-equal (≤), into a given host language as Prolog, Lisp,22

Java or C/C++. CHR define simplification of user-defined constraints, which replaces23

constraints by simpler ones while preserving logical equivalence. For example the anti-24

symmetry of less-than-or-equal constraint: ((X ≤ Y ), (Y ≤ X)⇔ (X = Y )) where “(X ≤25

Y ), (Y ≤ X)” is the multiple head of the rule, X, Y are variables and “,” denotes con-26

junction. This rule means “if constraints (X ≤ Y ) and (Y ≤ X) are present then equal-27

ity (X = Y ) is enforced and constraints are solved”. CHR define also propagation over28

user-defined constraints that adds new constraints, which are logically redundant but may29

cause further simplifications. For example the transitivity of less-than-or-equal constraint:30

((X ≤ Y ), (Y ≤ Z)⇒ (X ≤ Z)). This rule means “if constraints (X ≤ Y ) and (Y ≤ Z)31

are present then constraint (X ≤ Z) is logically equivalent”. CHR allow to use guards,32

which are sequences of host language statements. For example the reflexivity of less-than-33

or-equal constraint: ((X ≤ Y )⇔ (X = Y ) | true) where (X = Y ) is a test and true is a34

reserved symbol that has for operational semantics “add nothing”. This rule means “if35

constraint (X ≤ Y ) is present and (X = Y ) is true then constraint (X ≤ Y ) is solved”.36

CHR finally define simpagation over user-defined constraints that mixes and subsumes37

simplification and propagation. The general schema of CHR (simpagation) rules is then38

(K1, . . . , Kn\D1, . . . , Dm ⇒ guard | G) with n + m 6= 0 and G = B1, . . . , Bp or G = true.39

Constraints K1, . . . , Kn are kept like in propagation and constraints D1, . . . , Dm are deleted40

like in simplification. If n = 0, a simpagation rule is a simplification rule, and if m = 0, a41

simpagation rule is a propagation rule. For example, the idempotency of less-than-or-equal42
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constraint: ((X ≤ Y )\(X ≤ Y )⇔ true). This rule means “if constraint (X ≤ Y ) is present43

twice, only one occurrence is kept”. This last example suggests that CHR is more about44

consumption than truth. CHR rules are applied on multi-sets of constraints. Repeated45

application of those rules on a multi-set of initial constraints incrementally solves these46

constraints. The committed-choice principle expresses a don’t care nondeterminism, which47

leads to efficient implementations.48

From the very beginning, [9, 10] gives a declarative semantics in terms of first-order49

classical logic: simplification rules are considered as logical equivalences and propagation50

rules as implications (with an equivalence-based semantics ωe [19]). But [10] gives also a51

first abstract (or high-order or theoretical) operational semantics ωt based on a transition52

system over sets (with some extensions to avoid the trivial nontermination of propagation53

rules [1]). The refined operational semantics ωr [8] is finer than the previous one w.r.t. to54

the classical implementations of CHR. Those operational semantics are in fact ad-hoc linear55

semantics [6]. In [5, 6, 4] two different proof-theoretical intuitionistic linear semantics for56

CHR are proposed based on (intuitionist) Linear Logic [15]. Those linear semantics for CHR57

have been extended to CHR∨[2] which introduces the don’t know nondeterminism1 in CHR58

[7].59

As emphasized in [6], "Many implemented algorithms do not have a first-order classical60

logical reading, especially when these algorithms are deliberately non-confluent", i.e. the61

committed-choice matters. Moreover "Considering arbitrary derivation from a given goal,62

termination (and confluence) under the abstract semantics ωt are preserved under the refined63

semantics ωr, but not the other way around. While it fixes the constraint and rule order64

for execution, the refined operational semantics is still nondeterministic" [14]. But if anyone65

wants, for example, to compile another high level language to CHR paradigm there must66

be only two sources of nondeterminism: the don’t care nondeterminism of the committed-67

choice and the don’t know nondeterminism of the disjunction of CHR∨ and no other hidden68

nondeterminism not controllable by the programmer. But in the already defined semantics69

of the literature and the current implementations, there is a third source of nondeterminism70

due to the management of the constraints as an unordered multi-set: the order in which71

the constraints are reactivated by the wake-up-policy function2 is left unspecified (page72

68 of [14]). And there is even a forth source of nondeterminism due to the management73

of the multiple heads of the simpagation rules. The matching order in the application of74

a simpagation rule is not deterministic and we do not know which constraints from the75

multi-set may be chosen and kept or deleted, if more than one possibility exists (page 6976

of [14]). Consider the following first-order CHR program with only one rule, which illustrates77

the first hidden nondeterminism:78

(a(X), a(Y ), s⇔ true)79

and {a(1), a(2), a(3), s} as the store (an unordered multi-set) of constraints. The final state80

may be {a(1)}, {a(2)} or {a(3)}. Even with the refined ωr semantics, the semantics of the81

CHR program rests unknown.82

We propose in this article a new proof-theoretical linear semantics for CHR by means83

of a sequent calculus system in which the store is managed as a multi-set as in the ωt84

semantics. This system is proved to be sound and complete w.r.t. the ωt semantics. We85

1 freely offered when the host language is Prolog
2 With first-order constraints, instantiation of some variables of the constraints makes them eligible to
the application of CHR rules.
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propose also a second new proof-theoretical linear semantics for CHR by means of a sequent86

calculus system in which the store is managed as a sequence. This system is proved to be87

sound. But, more important, this system is completely deterministic and overcomes the two88

sources of hidden nondeterminism defined above. Finally, we propose for those two systems89

a translation into the Linear Logic and we prove the soundness of this translation.90

Section 2 presents the needed background on Linear Logic (Subsection 2.1) and CHR91

syntax and semantics (Subsection 2.2). Section 3 presents our two new linear sequent calculi92

for CHR, the ωl sequent calculus system in which the store is managed as a multi-set and the93

ω⊗l sequent calculus system in which the store is managed as a sequence (Subsection 3.1).94

Those systems are then translated into the Linear Logic and we prove the soundness of95

this translation (Subsection 3.2). We conclude by a discussion about the possible links to96

focusing proofs of [3] and on some remarks about our two new proof-theoretical semantics97

for CHR.98

2 Background99

2.1 Linear logic100

Linear Logic is a substructural logical formalism introduced in [15]. It is based on tokens101

which are built on predicate symbols and terms in the usual first-order manner. These102

tokens (w.r.t. atoms of classical first order logic) represent resources (w.r.t. truth). Linear103

Logic consumes and produces resources and is aware of their multiplicities. The linear-104

logic sequent calculus is based on the sequent, which is a pair of multi-sets of linear-logic105

formulas. Linear formulas are built on tokens and the following operators (we only present106

the useful ones for us): The symbol ⊗ stands for the multiplicative conjunction and is107

similar to conjunction of classical logic. The 1 symbol stands for the neutral of ⊗ and108

represents empty resource and corresponds to the true of classical logic. The symbol &109

stands for the additive conjunction. a&b represents an internal choice between a and b, it110

means that one can freely choose between a and b but not have a and b at the same time.111

The symbol( stands for the linear implication and apply modus ponens but by consuming112

the preconditions. The symbol 0 corresponds to the false of classical logic. The modality113

symbol ! marks the unlimited resources. The symbol ∃ (resp. ∀) stands for existential (resp.114

universal) first-order quantifications.115

In what follows we only use the fragment of the linear-logic sequent calculus that is116

relevant for us in its two-sided version (F , F1, F2 and L some linear formulas, Γ, Γ1, Γ2, ∆,117

∆1, ∆2 some multi-sets of formulas).118

Identity rules119

I
F ` F

Γ1 ` L L, Γ2 ` ∆
Cut

Γ1, Γ2 ` ∆
120

Multiplicative rules121

Γ, F1, F2 ` ∆
⊗L

Γ, F1 ⊗ F2 ` ∆

Γ1 ` ∆1, F1 Γ2 ` ∆2, F2 ⊗R
Γ1, Γ2 ` ∆1, ∆2, F1 ⊗ F2

Γ ` ∆ 1L1, Γ ` ∆

Γ1 ` F1, ∆1 Γ2, F2 ` ∆2
( L

Γ1, Γ2, F1 ( F2 ` ∆1, ∆2

122

Additive rules123

Γ, F1 ` ∆
&L1Γ, F1&F2 ` ∆

Γ, F2 ` ∆
&L2Γ, F1&F2 ` ∆

124
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Quantifier rules (t is a term)125

Γ, [x← t](F ) ` ∆
∀L

Γ, (∀x F ) ` ∆
Γ, [x← y](F ) ` ∆

∃L
Γ, (∃x F ) ` ∆

126

The usual proviso for the ∃L rule is assumed: the variable y must not be free in the127

formulas of the sequent conclusion of the inference rule.128

Exponential rules129

Γ, !F, !F ` ∆
!C

Γ, !F ` ∆
Γ, F ` ∆

!D
Γ, !F ` ∆

Γ ` ∆ !W
Γ, !F ` ∆

130

A proof tree is a finite labeled tree whose nodes are labeled with sequents such that every131

sequent node is the consequence of its direct children according to one of the inference132

rules of the calculus. A proof tree is a linear proof if all its leaves are axioms (i.e.133

instances of the Identity rule I).134

2.2 CHR language and its semantics135

In this article, we consider a first-order CHR program as an intensional version of the136

grounded corresponding propositional program with respect to its Herbrand universe based137

on the function and constant symbols of the program. A constraint is a predicate symbol138

with elements of the Herbrand universe as arguments. With this point of view, we omit139

the guard and there is no need of equivalence relation between variables. Moreover, there140

is no need for a wake up rule since there is no more variable to be woken up in the store of141

constraints.142

2.2.1 The syntax.143

The CHR formalism is defined as follows : a CHR rule is a rule of the form (K1, . . . , Km,144

D1, . . . , Dn, B1, . . . , Bp some constraints):145

[Simpagation rule] (K1, . . . , Km\D1, . . . , Dn ⇔ B) with n > 0, m > 0 or146

[Propagation rule] (K1, . . . , Km ⇒ B) with m > 0 or147

[Simplification rule] (D1, . . . , Dn ⇔ B) with n > 0148

and B = B1, . . . , Bp with p > 0 or true or false (two reserved symbols).149

2.2.2 The operational ωt semantics.150

An identified constraint A#i is a constraint A with some unique integer i, its identity.151

Function const, resp. id, gets from an identified constraint its constraint, resp. identity:152

const(A#i) = A, resp. id(A#i) = i. The id function and const are extended to sequences,153

sets and multi-sets of identified constraints in the obvious manner. An execution state154

is a tuple 〈Ω, S, H〉c where Ω (the current goal) stands for a multi-set of constraints to155

be executed, S (the current store) stands for a multi-set of identified constraints, H (the156

current propagation history) stands for a set of words, each recording the name of a rule and157

identities of identified constraints, c stands for a counter that represents the next free integer158

which can be used to number an identified constraint. For an initial goal Ω, the initial state159

is 〈Ω, ∅, ∅〉1. The operational semantics ωt is based on the following two transitions, which160

map a state to an other state (symbol ] stands for union of multi-sets):161

[Introduce] 〈{A} ] Ω, S, H〉c  t 〈Ω, {A#c} ] S, H〉c+1162

[Apply] 〈Ω, K# ]D# ] S, H〉c  t 〈B ] Ω, K# ] S, H ] {r.i1 . . . im}〉c where there exists163

a simpagation rule r@(K\D ⇔ B) such that K# = {K1#i1, . . . , Km#im} and D# =164

{D1#im+1, . . . , Dn#im+n} and K1, . . . , Km = K and D1, . . . , Dn = D and r.i1 . . . im 6∈165

H (r.i1 . . . im is the identity of the instantiated rule and r is a name for the rule).166
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The [Introduce] transition transports a constraint from the goal to the store and associates167

an identity to this constraint. A CHR rule (K\D ⇔ B) is applicable if the head of the rule168

(considered as a multi-set) K ]D is a subset of the multi-set const(S) of the constraints of169

the store S. If a CHR rule (K\D ⇔ B) is applicable then the CHR rule is applied: [Apply]170

transition removes identified constraints D1#im+1, . . . , Dn#im+n from the store and adds171

the constraints of B to the goal. If B = true nothing is added to the goal. This can only172

be done if the CHR rules has not already been fired with the same identity in order to173

forbid trivial loops. In the [Apply] transition, if B = false there is no transition at all. The174

transitions are non-deterministically applied until either no more transition is applicable (a175

successful derivation), or B = false (a failed derivation). In both cases a final state has been176

reached.177

I Example 1. Consider the following first-order CHR program of the introduction with only178

one rule179

(a(X), a(Y ), s⇔ true)180

and {a(1), a(2), a(3), s} as the store of constraints.181

We give an ωt derivation:182

〈{a(1), a(2), a(3), s}, ∅, ∅〉1
[Introduce]  t 〈{a(2), a(3), s}, {a(1)#1}, ∅〉2
[Introduce]  t 〈{a(2), s}, {a(1)#1, a(3)#2}, ∅〉3
[Introduce]  t 〈{a(2)}, {a(1)#1, a(3)#2, s#3}, ∅〉4

[Apply]  t 〈{a(2)}, ∅, {r.1.2.3}〉4
[Introduce]  t 〈∅, {a(2)#4}, {r.1.2.3}〉5

183

The store in the final state is {a(2)} but may be {a(1)} or {a(3)} since the order of184

[Introduce] derivation steps is arbitrary.185

The semantics of this program is only clear if we consider its extensional version with186

the grounded rules in this (arbitrary) order:187

(a(1), a(2), s⇔ true) (a(1), a(3), s⇔ true) (a(2), a(3), s⇔ true)188

and the initial store (a sequence) of constraints as, for example, a(1), a(2), a(3), s. When189

the constraint s is considered the constraints a(1), a(2) and a(3) are already in the store of190

constraints. The first rule is tried and the matching of its multiple head with the store of191

constraints is a success. Since it is a simplification rule, the constraints a(1) and a(2) are192

deleted from the store of constraints. The final store of constraints is then {a(3)}.193

The operational ωr semantics. There exists a refined operational semantics ωr [8]194

which considers the goal as a sequence instead of a multi-set. This semantics is very closed to195

the way it is usually implemented. It also uses a transition system with identified constraints,196

identities and propagation history. The operational semantics ωt is based on six transitions197

which map a state to another state.198

Linear-logic semantics of [6, 5]. This linear-logic semantics is directly inspired by199

the classical first-order logic semantics: goals (and stores of constraints) are translated200

to multiplicative conjunctions, simpagation rules (K\D ⇔ B) to the linear-logic formulas:201

!(K ⊗D) ( (K ⊗ B) and a CHR program to a large conjunction of linear-logic formulas.202

We denote by (.)L the above translation. A CHR program P has a computation with initial203

store S0 and final store Sn if and only if (P )L ` ((S0)L ( (Sn)L).204
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Axiomatic linear semantics of [5, 7]. The axiomatic linear semantics is based on the205

cut-rule of the linear logic and proper axioms: each CHR rule of the program is interpreted206

as an axiom. A goal is solved if there exists a linear proof of true in a linear-logic sequent207

calculus augmented by the proper axioms.208

None of the previous semantics offers a semantics for the example of the introduction209

since they all manage the store of constraints as an unordered multi-set.210

3 ωl and ω⊗
l sequent calculus211

In this section, we first define two sequent calculi: the ωl and the ω⊗l sequent calculi. The212

first one keeps the multi-sets of the ωt and ωr semantics while the second uses a sequence.213

Then we prove that the ωl system is sound and complete w.r.t. the ωt semantics while the214

ω⊗l system is sound (but not complete) w.r.t. the ωt semantics. Finally we give a translation215

from the ωl (and ω⊗l ) system to the linear-logic sequent calculus and prove the soundness216

of this translation.217

3.1 ωl and ω⊗
l systems218

We first define the notion of store for the ωl and ω⊗l systems.219

I Definition 2 (ωl and ω⊗l stores). An ωl store is a multi-set of identified constrains. An220

ω⊗l store is a sequence of identified constraints.221

The ωl and ω⊗l systems are based on two kinds of sequents: the focused sequent is focused222

on a particular identified constraint, the current identified constraint, while the non focused223

sequent works on a sequence of identified constraints, the current goal.224

We first define our sequents for the ωl and ω⊗l systems.225

I Definition 3 (non focused and focused ωl and ω⊗l sequents). A non focused sequent is226

a quadruple (Γ I Ω# J S↑ ` S↓) where S↓, the down store, and S↑, the up store, are227

two stores of identified constraints, Γ is a sequence of CHR rules and Ω#, the goal, is a228

sequence of identified constraints3.229

A focused sequent is a quintuple (Γ ! ∆ . a / S↑ ` S↓) where S↓, S↑ and Γ are defined230

as for the non focused sequent, ∆ is an ending sequence of Γ and a is an identified231

constraint.232

The intuitive meaning of a non focused sequent (Γ I Ω# J S↑ ` S↓) is to try and233

consume the identified constraints Ω#
4 with the sequence of CHR rules Γ thanks to the234

store S↑. The elements of the store S↓ are the unconsumed identified constraints: the235

identified constraints of S↑ that have not been consumed and those produced by Ω# and236

not consumed during this production.237

The intuitive meaning of a focused sequent (Γ ! ∆ . A#i / S↑ ` S↓) is the same as for238

a non focused sequent but restricted to a unique identified constraint A#i which may be239

consumed only by the sequence of CHR rules ∆ 5.240

In our sequent calculi, the final store of identified constraints is what we have to prove.241

Solve the problem represented by a CHR program and an initial goal is to prove true.242

Now we define the ω⊗l sequent calculus:243

3 Note that in the ωt semantics the goal is a set of constraints
4 i.e. to solve the constraints of const(Ω#)
5 the identified constraints produced by A#i may be consumed by the CHR rules of Γ
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I Definition 4 (ω⊗l sequent calculus system). The ω⊗l system is based on four types of ω⊗l244

inference rules (S↓, Sa
↓ , S↑, Sa

↑ , SB
↑ , SB

↓ , SΩ
↓ , SΩ

↑ , S, SK , SD, S⊆K , S⊆K
↑ some stores;245

K1, . . . , Km, D1, . . . , Dn, B1, . . . , Bp some constraints, B a sequence of constraints; a an246

identified constraint; Ω#, the goal, a sequence of identified constraints; i, i′ some integers).247

The non focused subsystem:248

The true axiom:249

trueΓ I true J S ` S250

The Left-elimination-of-conjunction inference rule:251

Γ I a J Sa
↑ ` Sa

↓ Γ I Ω# J Sa
↓ , SΩ

↑ ` SΩ
↓
⊗L

Γ I a, Ω# J Sa
↑ , SΩ

↑ ` SΩ
↓

252

The Exchange inference rule:253

Γ I Ω# J A′#i′, A#i, S↑ ` S↓
X

Γ I Ω# J A#i, A′#i′, S↑ ` S↓
254

with the proviso that A 6= A′.255

The focused subsystem:256

The Inactivate axiom:257

↑
Γ ! . a / S ` a, S258

The Weakening inference rule:259

Γ ! ∆ . a / S↑ ` S↓
W

Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ G), ∆ . a / S↑ ` S↓
260

with no j, (1 ≤ j ≤ n such that Dj = const(a) or 1 ≤ j ≤ m such that Kj = const(a)),261

SD ⊆ S↑, SK ⊆ S↑, SD]SK]{a} = {K1#i1, . . . , Km#im, D1#im+1, . . . , Dn#im+n}6.262

The Focusing inference rule:263

Γ ! Γ . a / S↑ ` S↓
FΓ I a J S↑ ` S↓

264

The Apply inference rule:265

266

Γ I B1#i′, . . . , Bp#(i′ + p) J SK , SB
↑ ` S⊆K , SB

↓ Γ I S⊆K J SB
↓ , S⊆K

↑ ` S↓
\ ⇔

Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ B1, . . . , Bp), ∆ . a / SD, SK , SB
↑ , S⊆K

↑ ` S↓
267

with either there exists j, 1 ≤ j ≤ n such that Dj = const(a), SK = K1#i1, . . . , Km#im,268

a inserted in SD at place j is equal to D1#im+1, . . . , Dn#im+n, or there exists j, 1 ≤ j ≤269

m such that Kj = const(a), a inserted in SK at place j is equal to K1#i1, . . . , Km#im,270

SD = D1#im+1, . . . , Dn#im+n; i′ a new integer, S⊆K is a subsequence of K1#i1, . . . ,271

Km#im.272

The ωl sequent calculus system is less structurally constrained than the ω⊗l system:273

I Definition 5 (ωl sequent calculus system). The ωl sequent calculus system is the ω⊗l274

sequent calculus system where the store of identified constraints and the multiple heads of275

rules are multi-sets instead of sequences and the Exchange inference rule is omitted.276

6 When used with multi-set operations, sequences are considered as multi-sets
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The non focused system splits the current goal and allocates the resources. If the current277

goal is the true goal then no identified constraint is consumed and the true axiom is applied.278

If the current goal is a sequence of identified constraints, the Left-elimination-of-conjunction279

inference rule is applied: The first identified constraint a of the sequence is isolated and a part280

of the resources Sa
↑ are allocated to solve the constraint const(a), the rest of the identified281

constraints, SΩ
↑ , and those produced by a but unconsumed, Sa

↓ , are allocated to the sequence282

of identified constraints S⊆K7. This inference rule realizes in fact a hidden use of the cut-283

rule of the linear-logic sequent calculus: the Sa
↓ is a lemma computed by the left subproof284

and used in the right subproof. Both operational semantics eliminate those instances of the285

cut-rule in order to linearize the derivation.286

The focused system chooses, if any, a CHR rule to be applied on the focused identified con-287

straint a. If no such CHR rule exists, the Inactivate axiom stores the identified constraint into288

the store. The Weakening inference eliminates, in the order of the sequence ∆, the first CHR289

rule (K1, . . . , Km\D1, . . . , Dn ⇔ B) that cannot be applied since there are no subset SK
290

and SD of S↑ such that SK ] SD ] {a} = {K1#i1, . . . , Km#im, D1#im+1, . . . , Dn#im+n}.291

The Focusing inference rule flips from the non focused ω⊗l system to the focused ω⊗l292

system by focusing on an identified constraint.293

TheApply inference rule flips from focused ω⊗l system to non focused ω⊗l system by apply-294

ing a CHR rule (K1, . . . , Km\D1, . . . , Dn ⇔ B) on the focused identified constraint a since295

there are two subsequences SK and SD of S↑ such that SK]SD]{a} = {K1#i1, . . . , Km#im,296

D1#im+1, . . . , Dn#im+n}. The solving of the constraint underlying the identified constraint297

a is reduced to the solving of the goal of the CHR rule B = B1, . . . , Bp and eventu-298

ally the solving of the constraints underlying S⊆K in the case that identified constraints299

from S⊆K ⊆ SK were not consumed during the process of consumption/production of300

B1#i′, . . . , Bp#i′+ p. As for the Left-elimination-of-conjunction inference rule a part of the301

resources SK ]SB
↑ is allocated to solve the goal B1#i′, . . . , Bp#(i′+ p), the rest of the iden-302

tified constraints S⊆K and those produced by B1#i′, . . . , Bp#(i′ + p) but unconsumed SB
↓303

are allocated to a sequence S⊆K . Since the ω⊗l system only applies a CHR rule if one of the304

identified constraints of its head is focused on, the calculus of (Γ I S⊆K J SB
↓ , S⊆K

↑ ` S↓)305

is necessary to the completeness. But S⊆K is not necessarily equal to K1#i1, . . . , Km#im306

since some identified constraints may have been consumed during the process of consump-307

tion/production of B1#i′, . . . , Bp#(i′+p). Moreover, S⊆K may be empty if all the resources308

have been consumed.309

In a classical implementation of CHR, S⊆K
↑ is captured by the flow SB

↑ /SB
↓ . In this310

configuration SB
↑ is not anymore the necessary resources to prove B and SB

↓ the resources311

produced but unconsumed by B but respectively the input store and the output store of the312

derivation of B.313

Once again, this Apply inference rule realizes in fact a hidden use of the cut-rule of the314

linear-logic sequent calculus: a lemma is computed by the left subproof and used in the right315

subproof. Both operational semantics eliminate those instances of the cut-rule in order to316

linearize the derivation.317

When the applied CHR rule is such that S⊆K = ∅ the Apply inference rule is simplified318

to319

Γ I B1#i′, . . . , Bp#(i′ + p) J SK , S↑ ` S↓
\ ⇔

Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ B1, . . . , Bp), ∆ . a / SD, SK , S↑ ` S↓
320

7 In the case of the ωl system, the elements of the multi-set S⊆K must be ordered in a sequence Ω⊆K
# .
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Moreover, when the applied CHR rule is a simplification rule (SK = ∅ and S⊆K = ∅)321

then the Apply inference rule is simplified to322

Γ I B1#i′, . . . , Bp#(i′ + p) J S↑ ` S↓
⇔

Γ ! (D1, . . . , Dn ⇔ B1, . . . , Bp), ∆ . a / SD, S↑ ` S↓
323

I Example 6. What follows is a proof 8 in the ωl system for the ωl sequent324

(Γ I d#1, a#2 J ` S↓) = (r1, r2, r3 I d#1, a#2 J ` c#6, f#5, g#4, d#1).325

with S↓ = {c#6, f#5, g#4, d#1}, Γ = r1@(d⇒ e), r2@(a\e⇔ g), r3@(a⇔ f, c)326

∇1

F ↑
Γ I g#4 J a#2, d#1 ` g#4, a#2, d#1

∇2
FΓ I a#2 J g#4, d#1 ` S↓
\ ⇔

Γ ! r2, r3 . a#2 / d#1, e#3 ` S↓
WΓ ! r1, r2, r3 . a#2 / d#1, e#3 ` S↓
FΓ I a#2 J d#1, e#3 ` S↓

⊗LΓ I d#1, a#2 J ` S↓

327

with ∇1:328

F ↑
Γ I e#3 J d#1 ` e#3, d#1

F ↑
Γ I d#1 J e#3 ` d#1, e#3

\ ⇔
Γ ! r1, r2, r3 . d#1 / ` d#1, e#3

FΓ I d#1 J ` d#1, e#3
329

and ∇2:330

F ↑
Γ I f#5 J g#4, d#1 ` f#5, g#4, d#1

F ↑
Γ I c#6 J f#5, g#4, d#1 ` S↓

⊗LΓ I f#5, c#6 J g#4, d#1 ` S↓ ⇔
Γ ! r3 . a#2 / g#4, d#1 ` S↓

WΓ ! r2, r3 . a#2 / g#4, d#1 ` S↓
WΓ ! r1, r2, r3 . a#2 / g#4, d#1 ` S↓

331

What follows is a proof in the ω⊗l system:332

∇1

F ↑
Γ I g#4 J a#2, d#1 ` g#4, a#2, d#1

∇2
FΓ I a#2 J g#4, d#1 ` S↓
\ ⇔

Γ ! r2, r3 . a#2 / e#3, d#1 ` S↓
WΓ ! r1, r2, r3 . a#2 / e#3, d#1 ` S↓
FΓ I a#2 J e#3, d#1 ` S↓

XΓ I a#2 J d#1, e#3 ` S↓
⊗LΓ I d#1, a#2 J ` S↓

333

Notice the use of the Exchange inference rule (X) in order to permute the identified334

constraints d#1 and e#3.335

We give the first contribution of this article: the soundness and completeness theorem336

of the ωl system w.r.t. the ωt semantics:337

8 In this example, we define the F ↑ axiom: r1,r2,...,rn I a J S` a,S as a shorthand for an instance of
a Focusing inference rule followed by many instances, as needed, of the Weakening inference rule and
followed by an instance of the Inactivate axiom.
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I Theorem 7 (Soundness and completeness of the ωl system w.r.t. the ωt semantics). Let Γ338

be a CHR program and B1, . . . , Bp some constraints. The initial goal B1, . . . , Bp is solved in339

the ωt semantics by Γ with a final store (a multi-set) of identified constraints Σ if and only340

if there exists an ωl proof of (Γ I B1#1, . . . , Bp#p J ` Σ).341

And as a corollary, we obtain the soundness of the ω⊗l system w.r.t. the ωt semantics:342

I Theorem 8 (Soundness of the ω⊗l system w.r.t. the ωt semantics). Let Γ be a CHR program343

and B1, . . . , Bp some constraints and Σ a store (a multi-set) of identified constraints. If there344

exists an ω⊗l proof of (Γ I B1#1, . . . , Bp#p J ` S), where S is a sequence of Σ then the345

initial goal B1, . . . , Bp is solved in the ωt semantics by Γ with a final store Σ.346

The ω⊗l system is not complete w.r.t. the ωt semantics since the Exchange inference rule347

is limited to identified constraints that are based on different constraints.348

I Example 9 (Example of the introduction continued). We can prove with the ω⊗l system349

the sequent (r I a(1)#1, a(2)#2, a(3)#3, s#4 J ` a(1)#1):350

351

F ↑
r I a(1)#1 J ` a(1)#1

F ↑
r I a(2)#2 J a(1)#1 ` a(2)#2, a(1)#1 ∇

⊗L

r I a(2)#2, a(3)#3, s#4 J a(1)#1 ` a(1)#1
⊗L

r I a(1)#1, a(2)#2, a(3)#3, s#4 J ` a(1)#1

352

with ∇ (S = a(3)#3, a(2)#2, a(1)#1):353

F ↑
r I a(3)#3 J a(2)#2, a(1)#1 ` S

true
r I true J a(1)#1 ` a(1)#1

⇔
r ! r . s#4 / S ` a(1)#1

F
r I s#4 J S ` a(1)#1

⊗L

r I a(3)#3, s#4 J a(2)#2, a(1)#1 ` a(1)#1

354

But not the sequent (r I a(3)#3, a(2)#2, a(1)#1, s#4 J ` a(2)#2) of Example 1 nor the355

sequent (r I a(3)#3, a(2)#2, a(1)#1, s#4 J ` a(3)#3) since the store S is a sequence356

(and not a multi-set) and the Exchange inference rule cannot be applied since the identified357

constraints a(1)#1, a(2)#2 and a(3)#3 are based on the same constraint a.358

3.2 Translation from ωl and ω⊗
l systems into Linear Logic359

We define a translation from the ωl system into the linear-logic sequent calculus and prove360

that the result of the translation of a ωl proof is a linear-logic proof in the sense of the361

definition of Section 2.1. We first give the translation of the CHR rules, then the translation362

for the ωl sequents and finally the translation for the ωl system. The translation from the ω⊗l363

system into the linear-logic sequent calculus is directly obtained from previous translation364

by omitting the Exchange inference rule (and by considering sequences as multi-sets).365

I Definition 10 (Translation of the CHR rules and CHR programs into linear-logic formulas).366

The CHR rules are translated into linear-logic formulas as follows thanks to the function367

(.)Γ:368

(K1, . . . , Km\D1, . . . , Dn ⇔ true)Γ =
∀x1 . . . ∀xm+n

((K1(x1)⊗ . . .⊗Km(xm)⊗Dm+1(xm+1)⊗ . . .⊗Dm+n(xm+n))
( (K1(x1)⊗ . . .⊗Km(xm)⊗ 1))

369
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(K1, . . . , Km\D1, . . . , Dn ⇔ false)Γ =
∀x1 . . . ∀xm+n

((K1(x1)⊗ . . .⊗Km(xm)⊗Dm+1(xm+1)⊗ . . .⊗Dm+n(xm+n))
( (K1(x1)⊗ . . .⊗Km(xm)⊗ 0))

370

(K1, . . . , Km\D1, . . . , Dn ⇔ B1, . . . , Bp)Γ =
∀x1 . . . ∀xm+n∃y1 . . . ∃yp

((K1(x1)⊗ . . .⊗Km(xm)⊗Dm+1(xm+1)⊗ . . .⊗Dm+n(xm+n))
( (K1(x1)⊗ . . .⊗Km(xm)⊗B1(y1)⊗ . . .⊗Bp(yp)))

371

(r, ∆)Γ = (r)Γ & (∆)Γ with r a CHR rule and ∆ a non empty sequence of CHR rules.372

CHR constant true is interpreted to 1, the neutral of ⊗ the multiplicative conjunction.373

CHR constant false is interpreted to 0 which has no elimination rule. Introduction of new374

identities are interpreted to existential quantifications in order to generate a brand new375

one each time while transmission of identities of identified constraints are interpreted by376

universal quantifications. In a CHR rule, symbol "⇔" is interpreted to linear implication377

and symbol "," is interpreted to the multiplicative conjunction ⊗. Finally, in CHR program,378

symbol "," is interpreted to the additive conjunction &, an (ordered) committed choice.379

I Example 11 (Example continued).

(r1)Γ = (d⇒ e)Γ = (∀x (∃y (d(x)( d(x)⊗ e(y))))
(r2)Γ = (a\e⇔ g)Γ = (∀x, x′ (∃y (a(x)⊗ e(x′)( a(x)⊗ g(y))))
(r3)Γ = (a⇔ f, c)Γ = (∀x (∃y, y′ (a(x)( f(y)⊗ c(y′))))

380

I Definition 12 (Translation of the ωl sequents into linear sequent). The ωl system language381

is translated into Linear Logic as follows thanks to three functions (.)Ω, (.)↑ and (.)↓ for382

translating respectively the goal, the up store and the down store of an ωl sequent.383 
(true)Ω = 1, (false)Ω = 0,

(A#i)Ω = A(i) a token, with A a constraint and i an identity,
((a, Ω#))Ω = ((a)Ω ⊗ (Ω#)Ω)
with a an identified constraint and Ω# a sequence of identified constraints

384


(A#i)↑ = A(i) a token, with A a constraint and i an identity,
(S)↑ = {(a)↑ | a ∈ S}
with a an identified constraint and S a store.

385


(A#i)↓ = A(i) a token, with A a constraint and i an identity,
(S)↓ =

⊗
a∈S (a)↓

with a an identified constraint and S a store.
386

For any ωl sequent is translated into a linear sequent as follows thanks to the function387

L(.) :388

L(Γ I Ω# J S↑ ` S↓) = !(Γ)Γ, (Ω#)Ω, (S↑)↑ ` (S↓)↓389

L(Γ ! ∆ . Ω# / S↑ ` S↓) = !(Γ)Γ, (∆)Γ&1, (Ω#)Ω, (S↑)↑ ` (S↓)↓390

L(Γ ! . Ω# / S↑ ` S↓) = !(Γ)Γ, (Ω#)Ω, (S↑)↑ ` (S↓)↓391

The goal and the down store of identified constraints of the ωl sequent are interpreted to392

multiplicative conjunctions of tokens while the up store of identified constraints is interpreted393

to a sequence of tokens. The multiplicative conjunction of the goal induces a sequence on394

the identified constraints of the goal. The multiplicative conjunction of the goal allows395

the introduction of the cut-rule of the Left-elimination-of-conjunction inference and Apply396

inference rules.397
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The CHR program is interpreted as a large additive conjunction of linear implications398

ended with the 1 constant in order to allow the move in the Inactivate inference rule of399

the identified constraint from the goal to the down store when no CHR rule is found to be400

applied.401

I Definition 13 (Translation of the ωl system into the linear-logic sequent calculus). The402

non focused ωl system:403

true axiom404

trueΓ I true J S ` S405

is translated into 9
406

I⊗
(S)↑ ` (S)↓

1L
1, (S)↑ ` (S)↓

!W
L(Γ I 1 J S ` S)

407

Left-elimination-of-conjunction inference rule:408

Γ I a J Sa
↑ ` Sa

↓ Γ I Ω# J Sa
↓ , SΩ

↑ ` SΩ
↓
⊗L

Γ I a, Ω# J Sa
↑ , SΩ

↑ ` SΩ
↓

409

is translated into410

L(Γ I a J Sa
↑ ` Sa

↓ )

L(Γ I Ω# J Sa
↓ , SΩ

↑ ` SΩ
↓ )

⊗L∗
!(Γ)Γ, (Ω#)Ω, (Sa

↓ )↓, (SΩ
↑ )↑ ` (SΩ

↓ )↓
Cut

!(Γ)Γ, !(Γ)Γ, (a)Ω, (Ω#)Ω, (Sa
↑ )↑, (SΩ

↑ )↑ ` (SΩ
↓ )↓

!C
!(Γ)Γ, (a)Ω, (Ω#)Ω, (Sa

↑ )↑, (SΩ
↑ )↑ ` (SΩ

↓ )↓
⊗L

L(Γ I (a, Ω#) J Sa
↑ , SΩ

↑ ` SΩ
↓ )

411

The focused ωl system:412

Weakening rule:413

Γ ! ∆ . a / S↑ ` S↓
W

Γ ! (K\D ⇔ B), ∆ . a / S↑ ` S↓
414

is translated into415

L(Γ ! ∆ . a / S↑ ` S↓)
&L2

L(Γ ! (K\D ⇔ B), ∆ . a / S↑ ` S↓)
416

Inactivate rule:417

↑
Γ ! . A#i / S ` A#i, S418

is translated into419

9 The following axiom I⊗: B1,B2,...,Bn ` B1⊗B2⊗...⊗Bn
is a shorthand for the following linear proof

I
B1 ` B1

I
Bn−1 ` Bn−1

I
Bn ` Bn

⊗R
Bn−1, Bn ` Bn−1 ⊗Bn

...
B2, . . . , Bn ` B2 ⊗ . . .⊗Bn

⊗R
B1, B2, . . . , Bn ` B1 ⊗B2 ⊗ . . .⊗Bn
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I⊗
A(i), (S)↑ ` (A(i)⊗ (S)↓)

!W
L(Γ ! . A#i / S ` A#i, S)

420

The Focusing rule:421

Γ ! Γ . a / S↑ ` S↓
FΓ I a J S↑ ` S↓

422

is translated into423

L(Γ ! Γ . a / S↑ ` S↓)
!D

!(Γ)Γ, !(Γ)Γ, (a)Ω, (S↑)↑ ` (S↓)↓
!C

L(Γ I a J S↑ ` S↓)
424

The Apply rule with425

(K1, . . . , Km\D1, . . . , Dn ⇔ B)Γ =
∀x1 . . . ∀xm+n∃y1 . . . ∃yp((K1(x1)⊗ . . .⊗Km(xm)⊗Dm+1(xm+1)⊗ . . .⊗Dm+n(xm+n))
( (K1(x1)⊗ . . .⊗Km(xm)⊗B1(y1)⊗ . . .⊗Bp(yp)))

426

such that K⊗ = K1(i)⊗ . . .⊗Km(i + m), D⊗ = D1(i + m + 1)⊗ . . .⊗Dn(i + m + n),427

B = B1, . . . , Bp, B# = B1#i′, . . . , Bp#(i′ + p), i′ = i + m + n + 1 and p > 0, and428

B⊗ = B1(i′)⊗ . . .⊗Bp(i′ + p) = (B1#i′, . . . , Bp#(i′ + p))Ω.429

The Apply rule430

Γ I B# J SK , SB
↑ ` S⊆K , SB

↓ Γ I Ω⊆K
# J SB

↓ , S⊆K
↑ ` S↓

\ ⇔
Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ B), ∆ . a / SD, SK , SB

↑ , S⊆K
↑ ` S↓

431

is translated into432

433
I⊗

(a)Ω, (SD)↑, (SK)↑ ` K⊗ ⊗D⊗ ∇
( L

!(Γ)Γ, (K⊗ ⊗D⊗( K⊗ ⊗B⊗), (a)Ω, (SD)↑, (SK)↑, (SB
↑ )↑, (S⊆K

↑ )↑ ` (S↓)↓
∃L*∀L*

!(Γ)Γ, (K1, . . . , Km\D1, . . . , Dn ⇔ B)Γ, (a)Ω, (SD)↑, (SK)↑, (SB
↑ )↑, (S⊆K

↑ )↑ ` (S↓)↓
&L1

L(Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ B), ∆ . a / SD, SK , SB
↑ , S⊆K

↑ ` S↓)

434

with ∇ =435

436

L(Γ I B# J SK , SB
↑ ` S⊆K , SB

↓ )

L(Γ I Ω⊆K
# J SB

↓ , S⊆K ` S↓)
⊗L∗

!(Γ)Γ, (Ω⊆K
# )Ω ⊗ (SB

↓ )↓, (S⊆K)↑ ` (S↓)↓
Cut

!(Γ)Γ, !(Γ)Γ, (SK)↑, B⊗, (SB
↑ )↑, (S⊆K

↑ )↑ ` (S↓)↓
!C

!(Γ)Γ, (SK)↑, B⊗, (SB
↑ )↑, (S⊆K

↑ )↑ ` (S↓)↓
⊗L∗

!(Γ)Γ, K⊗ ⊗B⊗, (SB
↑ )↑, (S⊆K

↑ )↑ ` (S↓)↓

437

Note that since Ω⊆K
# is a sequence over S⊆K , it may be chosen such that (Ω⊆K

# )Ω =438

(S⊆K)↓. If S⊆K = ∅ or B = true or B = false the above translation is simplified in a439

straightforward manner.440
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The linear cut-rule is used in the translation of the Left-elimination-of-conjunction infer-441

ence rule in order to transmit the down store of the left subproof to the right subproof. This442

down store which is a multiplicative conjunction is then split into a sequence of identified443

constraints thanks to linear-logic ⊗ left elimination ⊗L-rule.444

Weakening inference rule tries the CHR rules in the order of the CHR program thanks445

to the linear-logic &L2 rule.446

The linear cut-rule is also used in the translation of the Apply inference rule in order447

to transmit the down store of the left subproof to the the right subproof if SK has not448

been completely consumed by the subproof (ie. S⊆K 6= ∅). This down store which is a449

multiplicative conjunction is then split into a sequence of identified constraints thanks to450

the linear-logic ⊗ left elimination ⊗L-rule.451

We now establish the second contribution of this article, the soundness of the translation452

from the ωl system to the linear-logic sequent calculus:453

I Theorem 14. The result of the translation by Definitions 10, 12 and 13 of an ωl proof454

is a linear proof.455

As a direct corollary, the soundness of the translation from the ω⊗l system to the linear-logic456

sequent calculus with the same translation that for the ωl system (instances of the Exchange457

inference rule are simply ignored):458

I Theorem 15. The result of the translation by Definitions 10, 12 and 13 of an ω⊗l proof459

is a linear proof.460

4 Discussion461

[3] proposes a normalization process of the Linear Logic proofs to a subclass of proofs,462

called the "focusing" proofs, which is complete (any derivable formula in Linear Logic has463

a focusing proof). Focusing proofs are expressed in a Triadic system, which respects the464

symmetry of Linear Logic. This process of normalization informally interleaves a don’t care465

nondeterministic phase on asynchronous formulae and a phase applied on a synchronous466

focused formula. This last phase is a critical section and don’t know nondeterminism can467

only appear during this phase. Since our ω⊗l system is completely deterministic, the two468

phases of the ω⊗l system are not based on the same principles as the two phases of the469

Triadic system. But, since the Triadic system is complete w.r.t. Linear Logic, it would be470

interesting to translate the ωl and ω⊗l proofs in focusing proofs to understand the semantics471

of CHR in terms of synchronous and asynchronous connectors.472

5 Conclusion473

We have proposed in this article two new proof-theoretical linear sequent systems for the474

semantics of CHR. The ω⊗l system makes the semantics of the language completely determ-475

inistic. This semantics overcomes the hidden nondeterminism due to the management of476

the store of identified constraints and the multiple head of rules as multi-sets. But we can477

reintroduce the don’t care nondeterminism of the committed choice principle if we allow the478

weakening inference rule even if the CHR rule is applicable (and of course also the don’t479

know nondeterminism). Due to the lack of space, we cannot present a restricted version of480

the Apply inference rule (with S⊆K replaces only by K) which corresponds more faithfully481

to the ωr semantics.482
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6 Appendix523

In order to prove the soundness and completeness of the ωl system w.r.t. the ωt semantics,524

we first introduce the ωt sequent calculus system that imitates faithfully the ωt semantics.525

Hence we prove the soundness and completeness of this ωt system w.r.t. the ωt semantics526

and then prove the soundness and completeness of ωl system w.r.t. ωt system.527

We first define what is a ωt sequent.528

I Definition 16 (ωt sequent). An ωt sequent is a triplet (Γ I Ω J S ` ) where S, the529

store of identified constraints, is a multi-set of identified constraints, Ω, the current goal, is530

a multi-set of constraints and Γ, the program, is a sequence of CHR rules.531

Notice that in a ωt sequent, compare to ωl or ω⊗l sequents, the final store is empty. It532

will be only known at the (unique) leaf of the ωt proof.533

Now we are able to define our ωt system.534

I Definition 17 (ωt system). The symbol Γ denotes a program, Ω a multi-set of constraints,535

S, SK , SD some sets of identified constraints, A, K1, . . . , Km, D1, . . . , Dn some constraints,536

i, i1 . . . , im+n some distinct integers, B a sequence of constraints. The ωt system is the set537

of the following ωt inference rules:538

ωt axiom:539

ωt

Γ I J S `540

with no simpagation rule (K1, . . . , Km\D1, . . . , Dn ⇔ B) ∈ Γ such that SK =541

{K1#i1, . . . , Km#im} and SD = {D1#im+1, . . . , Dn#im+n} and SK ∪ SD ⊆ S.542

ωt-Tokenize inference rule:543

Γ I Ω J A#i, S `
#

Γ I A, Ω J S `
544

A usual proviso for quantifier elimination is assumed: i must be a brand new integer.545

ωt-Apply inference rule10:546

Γ I B, Ω J SK , S `
\ ⇔

Γ I Ω J SK , SD, S `
547

with (K1, . . . , Km\D1, . . . , Dn ⇔ B) in Γ and SK = {K1#i1, . . . , Km#im} and SD =548

{D1#im+1, . . . , Dn#im+n}.549

ωt-true Apply inference rule:550

Γ I Ω J SK , S `
\ ⇔

Γ I Ω J SK , SD, S `
551

with (K1, . . . , Km\D1, . . . , Dn ⇔ true) in Γ and SK = {K1#i1, . . . , Km#im} and SD =552

{D1#im+1, . . . , Dn#im+n}.553

We define also what are a ωt proof tree and an ωt proof.554

10 If B is the sequence B1, . . . , Bp, p > 0 then B, Ω means {B1, . . . , Bp} ] Ω.
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I Definition 18 (ωt proof tree and ωt proof). The set of ωt proof trees is the least set of555

trees containing all one-node trees labeled with an ωt sequent, and closed under the rules556

of Definition 17 in the following sense: For any ωt proof tree ∇ whose root is labeled with557

sequent ωt, s (and whose unique leaf is labeled with sequent s′′) and for any instance of an558

inference rule s
s′ of Definition 17, the tree ∇s′ is an ωt proof tree whose root is labeled with559

s′ (and whose unique leaf is labeled with s′′).560

An ωt proof of a sequent s is any ωt proof tree whose root is labeled with s and whose561

unique leaf is labeled with an ωt axiom.562

The following lemma expressing the completeness of the ωt system w.r.t. the ωt semantics563

is straightforward.564

I Lemma 19 (Completeness of the ωt system w.r.t. ωt semantics). Let Γ be a program, Ω565

and Ω′ two goals, S and S′ two stores, c and c′ integers such that c ≤ c′, H and H ′ two566

propagation histories such that H ⊆ H ′.567

If 〈Ω, S, H〉c  ∗t 〈Ω′, S′, H ′〉c′ is an ωt derivation then there exists an ωt proof tree whose568

root is (Γ I Ω J S ` ) and such that there is only one sequent leaf (Γ I Ω′ J S′ ` ).569

The following lemma expressing the soundness of the ωt system w.r.t. the ωt semantics570

is a little more difficult since the policy applied to avoid trivial loops has to be maintained.571

I Lemma 20 (Soundness of ωt system w.r.t. ωt semantics). Let Γ be a program, Ω and Ω′572

two multi-sets of constraints, Ω# and Ω′# two multi-sets of identified constraints and H a573

set of identities of instantiated rules.574

If (Γ I Ω# J S ` ) admits an ωt proof tree such that there is only one sequent leaf575

(Γ I Ω′# J S′ ` ) with no identity of an instantiated rule in the ωt proof tree appearing576

twice nor in H, then there exists an ωt derivation 〈Ω, S, H〉i  ∗t 〈Ω′, S′, H ′〉i′+1 with i (resp.577

i′) the integer introduced by the first (last) instance of the ωt-Tokenize inference rule in the578

ωt proof tree and H ′ is the union of H and all the identities of the instantiated rules of the579

ωt proof tree.580

The following theorem of completeness and soundness of the ωt system w.r.t. the ωt581

semantics is a direct corollary of the two previous lemmas.582

I Theorem 21 (Soundess and completeness of ωt system w.r.t. ωt semantics). Let Γ be a583

program and Ω an initial goal.584

〈Ω, ∅, ∅〉1 admits a successful ωt derivation if and only if (Γ I Ω J ` ) admits an ωt585

proof with no identity of instantiated rule appearing twice.586

I Lemma 22 (Completeness of ωl system w.r.t. ωt system). Let Γ be a CHR program and587

B1, . . . , Bp some constraints.588

If the ωt sequent (Γ I B1, . . . , Bp J ` ) admits an ωt proof with a last sequent589

(Γ I J S ` ) then the ωl sequent (Γ I B1#1, . . . , Bp#p J ` S) admits an ωl proof.590

I Lemma 23 (Soundness of ωl system w.r.t. ωt system). Let Γ be a CHR program and591

B1, . . . , Bp some constraints.592

If the ωl sequent (Γ I B1#1, . . . , Bp#p J ` S) admits an ωl proof then the ωt sequent593

(Γ I B1, . . . , Bp J ` ) admits an ωt proof with a last sequent (Γ I J S ` ).594

I Theorem 24 (Completeness of ωl system w.r.t. ωt system). Let Γ be a CHR program and595

B1, . . . , Bp some constraints.596

The ωt sequent (Γ I B1, . . . , Bp J ` ) admits an ωt proof with a last sequent (Γ I J S ` )597

if and only if the ωl sequent (Γ I B1#1, . . . , Bp#p J ` S) admits an ωl proof.598
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Proof of Theorem 24. Direct consequence of Lemmas 22 and 23. J599

Proof of Theorem 7. Direct consequence of Theorems 21 and 24. J600

Proof of Theorem 8. The soundness is a direct consequence of Theorem 7. J601
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