
Fast Sampling of Perfectly Uniform
Satisfying Assignments

Dimitris Achlioptas1,2, Zayd S. Hammoudeh1(�), and Panos Theodoropoulos2 ?

1 Department of Computer Science,
University of California, Santa Cruz, Santa Cruz, CA, USA

{dimitris, zayd}@ucsc.edu
2 Department of Informatics and Telecommunications

University of Athens, Athens, Greece
ptheodor@di.uoa.gr

Abstract. We present an algorithm for perfectly uniform sampling of
satisfying assignments, based on the exact model counter sharpSAT and
reservoir sampling. In experiments across several hundred formulas, our
sampler is faster than the state of the art by 10 to over 100,000 times.

1 Introduction

The DPLL [4] procedure forms the foundation of most modern SAT solvers. Its
operation can be modeled as the preorder traversal of a rooted, binary tree where
the root corresponds to the empty assignment and each edge represents setting
some unset variable to 0 or 1, so that each node of the tree corresponds to a
distinct partial assignment.

If the residual formula under a node’s partial assignment is empty of clauses,
or contains the empty clause, the node is a leaf of the tree. Naturally, the leaves
corresponding to the former case form a partition of the formula’s satisfying
assignments (models), each part called a cylinder and having size equal to 2z,
where z ≥ 0 is the number of unassigned variables at the leaf.

Generally, improved SAT solver efficiency is derived by trimming the DPLL
search tree. For instance, conflict-driven clause learning (CDCL) amounts to
adding new clauses to the formula each time a conflicting assignment is en-
countered. These added (learned) clauses make it possible to identify partial
assignments with no satisfying extensions higher up in the tree.

1.1 Model Counting

Naturally, we can view model counting as the task where each internal node of
the aforementioned tree simply adds the number of models of its two children.
With this in mind, we see that the aforementioned CDCL optimization carries
over, helping identify subtrees devoid of models sooner.
? Research supported by NSF grants CCF-1514128, CCF-1733884, an Adobe research
grant, and the Greek State Scholarships Foundation (IKY).



2 D. Achlioptas et al.

Despite the similarity with SAT solving, though, certain optimizations are
uniquely important to efficient model counting. Specifically, it is very common for
different partial assignments to have the same residual formula. While CDCL
prevents the repeated analysis of unsatisfiable residual formulas, it does not
prevent the reanalysis of previously encountered satisfiable residual formulas.
To prevent such reanalysis #SAT solvers, e.g., Cachet [9], try to memoize in a
cache the model counts of satisfiable residual formulas. Thus, whenever a node’s
residual formula is in the cache, the node becomes a leaf in the counting tree.
We will refer to the tree whose leaves correspond to the execution of a model
counter employing caching as a compact counting tree.

Another key optimization stems from the observation that as variables are
assigned values, the formula tends to break up into pieces. More precisely, given
a formula consider the graph having one vertex per clause and an edge for every
pair of clauses that share at least one variable. Routinely, multiple connected
components are present in the graph of the input formula. More importantly, as
variables are assigned, components split. Trivially, a formula is satisfiable iff all
its components are satisfiable. Determining the satisfiability of each component-
formula independently can confer dramatic computational benefits [1].

The DPLL-based model counter sharpSAT [11], originally released in 2006
by Thurley and iteratively improved since, is the state-of-the-art exact model
counter. It leverages all of the previously discussed optimizations and integrates
advanced branch-variable selection heuristics proposed in [10]. Its main advan-
tage over its predecessors stems from its ability to cache more components that
are also of greater relevance. It achieves this through a compact encoding of
cache entries as well as a cache replacement algorithm that takes into account
the current “context”, i.e., the recent partial assignments considered. Finally, it
includes a novel algorithm for finding failed literals in the course of Boolean Con-
straint Propagation (BCP), called implicit BCP, which makes a very significant
difference in the context of model counting.

Our work builds directly on top of sharpSAT and benefits from all the ideas
that make it a fast exact model counter. Our contribution is to leverage this
speed in the context of sampling. Generically, i.e., given a model counter as
a black box, one can sample a satisfying assignment with 2n model counter
invocations by repeating the following: pick an arbitrary unset variable v; count
the number of models Z0, Z1, of the two formulas that result by setting v to 0,1,
respectively; set v to 0 with probability Z0/(Z0 + Z1), otherwise set it to 1.

As we discuss in Section 4 it is not hard to improve upon the above by modify-
ing sharpSAT so that, with essentially no overhead, it produces a single perfectly
uniform sample in the course of its normal, model counting execution. Our main
contribution lies in introducing a significantly more sophisticated modification,
leveraging a technique known as reservoir sampling, so that with relatively little
overhead, it can produce many samples. Roughly speaking, the end result is a
sampler for which one can largely use the following rule of thumb:

Generating 1,000 perfectly uniform models takes
about 10 times as long as it takes to count the models.



Fast Sampling of Perfectly Uniform Satisfying Assignments 3

2 Related Work

In digital functional verification design defects are uncovered by exposing the
device to a set of test stimuli. These stimuli must satisfy several requirements to
ensure adequate verification coverage. One such requirement is that test inputs
be diverse, so as to increase the likelihood of finding bugs by testing different
corners of the design.

Constrained random verification (CRV) [8] has emerged in recent years as
an effective technique to achieve stimuli diversity by employing randomization.
In CRV, a verification engineer encodes a set of design constraints as a Boolean
formula with potentially hundreds of thousands of variables and clauses. A con-
straint solver then selects a random set of satisfying assignments from this for-
mula. Efficiently generating these random models, also known as witness, re-
mains a challenge [3].

Current state of the art witness generators, such as UniGen2 [2], use a hash
function to partition the set of all witnesses into roughly equal sized groups. Se-
lecting such a group uniformly at random and then a uniformly random element
from within the selected group, produces an approximately uniform witness. This
approximation of uniformity depends on the variance in the size of the groups in
the initial hashing-based partition. In practical applications, this non-uniformity
is not a major issue.

Arguably the main drawback of hash-based witness generators is that their
total execution time grows linearly with the number of samples. Acceleration can
be had via parallelization, but at the expense of sacrificing witness independence.
Also, by their probabilistic nature, hash-based generators may fail to return the
requested number of models.

Our tool SPUR (Satisfying Perfectly Uniformly Random) addresses the prob-
lem of generating many samples by combining the efficiencies of sharpSAT with
reservoir sampling. This allows us to draw a very large number of samples per
traversal of the compact counting tree.

3 Caching and Component Decomposition

Most modern #SAT model counters are DPLL-based, and their execution can
be modeled recursively. For example, Algorithm 1 performs model counting with
component decomposition and caching similar to sharpSAT [11]. (We have sim-
plified this demonstrative implementation by stripping out efficiency enhance-
ments not directly relevant to this discussion including CDCL, unit clause prop-
agation, non-chronological backtracking, cache compaction, etc.)

The algorithm first looks for F and its count in the cache. If they are not
there, then if F is unsatisfiable or empty, model counting is trivial. If F has
multiple connected components, the algorithm is applied recursively to each one
and the product of the model counts is returned. If F is a non-empty, connected
formula not in the cache, then a branching variable is selected, the algorithm
is applied to each of the two restricted subformulas, and the sum of the model
counts is returned after it has been deposited in the cache along with F .



4 D. Achlioptas et al.

Algorithm 1 Model counting with component decomposition and caching

1: function Counter(F )
2: if IsCached(F ) then
3: return CachedCount(F ) . Cache-hit leaf
4:
5: if Unsat(F ) then return 0

6: if Clauses(F ) = ∅ then return 2|Var(F )| . Cylinder leaf
7:
8: C1, . . . , Ck ← ComponentDecomposition(F ) . Component decomposition
9: if k > 1 then
10: for i from 1 to k do
11: Zi ← Counter(Ci)
12: Z ←

∏k
i=1 Zi

13: return Z
14:
15: v ← BranchVariable(F )
16: Z0 ← Counter(F ∧ v = 0)
17: Z1 ← Counter(F ∧ v = 1)
18: Z ← Z0 + Z1

19: AddToCache(F,Z) . The count of every satisfiable, connected
20: . subformula ever encountered is cached
21: return Z

4 How to Get One Uniform Sample

It is easy to modify Algorithm 1 so that it returns a single uniformly random
model of F . All we have to do is: (i) require the algorithm to return one model
along with the count (ii) select a uniformly random model whenever we reach a
cylinder, and (iii) at each branching node, when the two recursive calls return
with two counts and two models, select one of the two models with probability
proportional to its count, and store it along with the sum of the two counts
in the cache before returning it. In the following, F (σ) denotes the restriction
of formula F by partial assignment σ and Free(σ) denotes the variables not
assigned a value by σ.

An important observation is that the algorithm does not actually need to
select, cache, and return a random model every time it reaches a cylinder. It
can instead simply return the partial assignment corresponding to the cylinder.
After termination, we can trivially “fill out” the returned cylinder to a complete
satisfying assignment. This can be a significant saving as, typically, there are
many cylinders, but we only need to return one model. Algorithm 2 employs
this idea so that it returns a cylinder (instead of a model), each cylinder having
been selected with probability proportional to its size.

The correctness of Algorithm 2 would be entirely obvious in the absence of
model caching. With it, for any subformula, F ′, we only select a model at most
once. This is because after selecting a model τ of F ′ for the first time in line 20 we



Fast Sampling of Perfectly Uniform Satisfying Assignments 5

write τ along with F ′ in the cache, in line 21, and therefore, if we ever encounter
F ′ again, lines 2, 3 imply we will return τ as a model for F ′. Naturally, even
though we reuse the same model for a subformula encountered in completely
different parts of the tree, no issue of probabilistic dependence arises: since we
only return one sample overall, and thus for F ′, how could it?

It is crucial to note that this fortuitous non-interaction between caching and
sampling does not hold for multiple samples, since if a subformula appears at
several nodes of the counting tree, the sample models associated with these nodes
must be independent of one another.

Algorithm 2 Single model sampler

1: function OneModel(F, σ)
2: if IsCached(F (σ)) then
3: return CachedCount(F (σ)),CachedModel(F (σ))

4:
5: if Unsat(F (σ)) then return 0,−
6: if Clauses(F (σ)) = ∅ then return 2|Free(σ)|, σ

7:
8: C1, . . . , Ck ← ComponentDecomposition(F (σ))
9: if k > 1 then
10: for i from 1 to k do
11: Zi, σi ← OneModel(Ci, σ)
12: Z ←

∏k
i=1 Zi

13: τ ← σ1, . . . , σk
14: return Z, τ

15:
16: v ← BranchVariable(F (σ))
17: Z0, σ0 ← OneModel(F, σ ∧ v = 0)
18: Z1, σ1 ← OneModel(F, σ ∧ v = 1)
19: Z ← Z0 + Z1

20: τ ← σ0 with probability Z0/Z, otherwise τ ← σ1

21: AddToCache(F (σ), Z, τ)
22:
23: return Z, τ

5 How to Get Many Uniform Samples at Once

Consider the set C which for each leaf σj of the compact counting tree comprises
a pair (σj , cj), where cj is the number of satisfying extensions (models) of par-
tial assignment σj . The total number of models, Z, therefore equals

∑
j cj . Let

Bin (n, p) denote the Binomial random variable with n trials of probability p.
To sample s models uniformly, independently, and with replacement (u.i.r.),

we would like to proceed as follows:



6 D. Achlioptas et al.

1. Enumerate C, while enjoying full model count caching, as in sharpSAT.
2. Without storing the (huge) set C, produce from it a random setR comprising

pairs {(σi, si)}ti=1, for some 1 ≤ t ≤ s, such that:
(a) Each σi is a distinct leaf of the compact counting tree.
(b) s1 + · · ·+ st = s (we will eventually generate si extensions of σi u.i.r.).
(c) For every leaf σj of the compact counting tree and every 1 ≤ w ≤ s, the

probability that (σj , w) appears in R equals Pr[Bin (s, cj/Z) = w].

Given a set R as above, we can readily sample models corresponding to those
pairs (σi, si) in R for which either si = 1 (by invoking OneModel(F (σi))), or
for which Clauses(F (σi)) = ∅ (trivially). For each pair (σi, si) for which si > 1,
we simply run the algorithm again on F (σi), getting a set R′, etc.

Obviously, the non-trivial part of the above plan is achieving (2c) without
storing the (typically huge) set C. We will do this by using a very elegant idea
called reservoir sampling [12], which we describe next.

6 Reservoir Sampling

Let A be an arbitrary finite set and assume that we would like to select s elements
from A u.i.r. for an arbitrary integer s ≥ 1. Our task will be complicated by the
fact that the (unknown) set A will not be available to us at once. Instead, let
A1, A2, . . . , Am be an arbitrary, unknown partition of A. Without any knowledge
of the partition, or even of m, we will be presented with the parts in an arbitrary
order. When each part is presented we can select some of its elements to store,
but our storage capacity is precisely s, i.e., at any given moment we can only
hold up to s elements of A. Can we build a sample as desired?

Reservoir sampling is an elegant solution to this problem that proceeds as
follows. Imagine that (somehow) we have already selected s elements u.i.r. from
a set B, comprising a multiset S. Given a set C disjoint from B we can produce
a sample of s elements selected u.i.r. from B∪C, without access to B, as follows.
Note that in Step 3 of Algorithm 3, multiple instances of an element of B in S are
considered distinct, i.e., removing one instance leaves the rest unaffected. It is
not hard to see that after Step 4 the multiset S will comprise s elements selected
u.i.r. from B ∪ C. Thus, by induction, starting with B = ∅ and processing the
sets A1, A2, . . . one by one (each in the role of C) achieves our goal.

Algorithm 3 Turns a u.i.r. s-sample S ⊆ B to a u.i.r. s-sample of B ∪ C

1: Generate q ∼ Bin (s, |C|/|B ∪ C|).
2: Select q elements from C u.i.r.
3: Select q elements from S uniformly, independently, without replacement.
4: Swap the selected elements of S for the selected elements of C.



Fast Sampling of Perfectly Uniform Satisfying Assignments 7

6.1 Reservoir Sampling in the Context of Model Caching

In our setting, each set Ai amounts to a leaf of the compact counting tree. We
would like to build our sample set by (i) traversing this tree exactly as sharpSAT,
and (ii) ensuring that every time the traversal moves upwards from a leaf, we
hold s models selected u.i.r. from all satisying extensions of leaves encountered so
far. More precisely, instead of actual samples, we would like to hold a random set
R of weighted partial assignments satisfying properties (2a)–(2c) in Section 5.

To that end, it will be helpful to introduce the following distribution. Given
r bins containing s1, . . . , sr distinct balls, respectively, and q ≥ 0 consider the
experiment of selecting q balls from the bins uniformly, independently, without
replacement. Let q = (q1, . . . , qr) be the (random) number of balls selected from
each bin. We will write q ∼ D((s1, . . . , sr), q). To generate a sample from this
distribution, let b0 = 0; for i ∈ [r], let bi = s1 + · · · + si, so that b1 = s1 and
br = s1+. . .+sr := s. Let γ1, γ2, . . . , γq be i.i.d. uniform elements of [s]. Initialize
qi to 0 for each i ∈ [r]. For each i ∈ [q]: if γi ∈ (bz−1, bz], then increment qr by 1.

With this in mind, imagine that we have already processed t leaves so that
Zt = Z = |A1|+ · · · |At| and that the reservoir contains R = {(σi, si)}ri=1, such
that

∑r
i=1 si = s. Let σ be the current leaf (partial assignment), let A be the set

of σ’s satisfying extensions, and let w = |A|. To update the reservoir, we first de-
termine the random number, q ≥ 0, of elements from A to place in our s-sample,
as a function of w,Z. Having determined q we draw from D((s1, . . . , sr), q) to
determine how many elements to remove from each set already in the reservoir,
by decrementing its weight si (if si ← 0 we remove (σi, 0) from the reservoir).
Finally, we add (σ, q) to the reservoir to represent the q elements of A.

Note that, in principle, we could have first selected s elements u.i.r. from A
and then 0 ≤ q ≤ s among them to merge into the reservoir (again represented
as (σ, q)). This viewpoint is useful since, in general, instead of merging into the
existing reservoir 0 ≤ q ≤ s elements from a single cylinder of size w, we will
need to merge q elements from a set of size w that is the union of ` ≥ 1 disjoint
sets, each represented by a partial assignment σj , such that we have already
selected aj elements from each set, where

∑`
j=1 ai = s. Indeed, Algorithm 4

below is written with this level of generality in mind, so that our simple single
cylinder example above corresponds to merging 〈w, {(σ, s)}〉 into the reservoir.

Algorithm 4 Merges R = 〈Z, {(σi, si)}ri=1〉 with 〈w, {(σj , aj)}`j=1〉

1: function ReservoirUpdate(R, 〈w, {(σj , aj)}`j=1〉)
2: Z ← Z + w
3: q ∼ Bin (s, w/Z)
4: Generate (β1, . . . , β`) ∼ D((a1, . . . , a`), q)
5: Generate (γ1, . . . , γr) ∼ D((s1, . . . , sr), q)
6: R′ ← 〈Z, {(σj , βj)}`j=1 ∪ {(σi, si − γi)}ri=1〉
7: Discard any partial assignment in R′ whose weight is 0
8: return R′



8 D. Achlioptas et al.

7 A Complete Algorithm

To sample s models u.i.r. from a formula F , we create an empty reservoir R
of capacity s and invoke SPUR(F, ∅, R). The call returns the model count of
F and modifies R in place to contain pairs {(σi, si)}ti=1, for some 1 ≤ t ≤ s,
such that

∑t
i=1 si = s. Thus, SPUR partitions the task of generating s samples

into t independent, smaller sampling tasks. Specifically, for each 1 ≤ i ≤ t, if
Clauses(F (σi)) = ∅, then sampling the si models is trivial, while if si = 1,
sampling can be readily achieved by invoking OneModel on F (σi). If none of
the two simple cases occurs, SPUR is called on F (σi) requesting si samples.

Algorithm 5 Counts models and fills up a reservoir with s samples

1: function SPUR(F, σ,R)
2: if IsCached(F (σ)) then
3: ReservoirUpdate(R, 〈CachedCount(F (σ)), (σ, s)〉)
4: return CachedCount(F (σ))

5:
6: if Unsat(F (σ)) then return 0

7: if Clauses(F (σ)) = ∅ then
8: ReservoirUpdate(R, 〈2|Free(σ)|, (σ, s)〉)
9: return 2|Free(σ)|

10:
11: C1, . . . , Ck ← ComponentDecomposition(F (σ))
12: if k > 1 then
13: for i from 1 to k do
14: Create a new reservoir Ri of capacity s
15: Zi ← SPUR(Ci, ∅, Ri)
16: w ←

∏k
i=1 Zi

17: A← Stitch(σ,R1, R2, . . . , Rk)
18: ReservoirUpdate(R, 〈w,A〉)
19: return w
20:
21: v ← BranchVariable(F (σ))
22: Z0 ← SPUR(F, σ ∧ v = 0, R)
23: Z1 ← SPUR(F, σ ∧ v = 1, R)
24: AddToCache(F, Z0 + Z1)
25: return Z0 + Z1

If a formula has k > 1 components, SPUR is invoked recursively on each
component Ci with a new reservoir Ri (also passed by reference). When the
recursive calls return, each reservoir Ri comprises some number of partial as-
signments over the variables in Ci, each with an associated weight (number of
samples), so that the sum of the weights equals s. It will be convenient to think
of the content of each reservoir Ri as a multiset containing exactly s strings from
{0, 1, ∗}Var(Ci). Under this view, to Stitch together two reservoirs R1, R2, we



Fast Sampling of Perfectly Uniform Satisfying Assignments 9

fix an arbitrary permutation of the s strings in, say, R1, pick a uniformly random
permutation of the strings in R2, and concatenate the first string in R1 with the
first string in R2, the second string in R1 with the second string in R2, etc. To
stitch together multiple reservoirs we proceed associatively. The final result is a
set {(σj , aj)}`j=1, for some 1 ≤ ` ≤ s, such that

∑`
j=1 aj = s.

8 Evaluation and Experiments

We have developed a prototype C++ implementation [6] of SPUR on top of
sharpSAT (ver. 5/2/2014) [11]. This necessitated developing multiple new mod-
ules as well as extensively modifying several of the original ones.

8.1 Uniformity Verification

Since sharpSAT is an exact model counter, the samples derived from SPUR
are perfectly uniform. Since we use reservoir sampling, they are also perfectly
independent. As a test of our implementation we selected 55 formulas with model
counts ranging from 2 to 97,536 and generated 4 million models of each one.

For each formula F we (i) recorded the number of times each of its M(F )
models was selected by SPUR, and (ii) drew 4 million times from the multino-
mial distribution with M(F ) outcomes, corresponding to ideal u.i.r. sampling.
We measured the KL-divergence of these two empirical distributions from the
multinomial distribution with M(F ) outcomes, so that the divergence of the
latter provides a yardstick for the former. The ratio of the two distances was
close to 1 over all formulas, and the product of the 55 ratios was 0.357.

One of the formulas we considered was case110 with 16,384 models, which
was used in the verification of the approximate uniformity of UniGen2 in [2].
Figure 1 plots the output of UniGen2 and SPUR against a background of the
ideal multinomial distribution (with mean 244.14...). Each point (x, y) represents
the number of models, x, that were generated y times across all 4,000,000 trials.

200 220 240 260 280
0

100

200

300

400

500

O
cc
ur
re
nc
es

Multinomial
SPUR
UniGen2

Fig. 1. Uniformity comparison between an ideal uniform sampler, SPUR and UniGen2
on the “case110” benchmark on four million samples.



10 D. Achlioptas et al.

8.2 Running Time

To demonstrate the empirical performance of SPUR we ran it on several hundred
formulas, along with UniGen2 (ver. 9/28/2017), an almost-uniform, almost-i.i.d.
SAT witness generator, representing the state of the art prior to our work.

Benchmarks: We considered 586 formulas, varying in size from 14 to over 375,000
variables. They are the union of the 369 formulas used to benchmark UniGen2
in [7] (except for approximately 20 proprietary formulas with suffix _new that
are not publicly available) and the 217 formulas used to benchmark sharpSAT
in [11]. Of the latter we removed from consideration the 100 formulas in the
flat200 graph coloring dataset, since on all of them UniGen2 timed out, while
SPUR terminated successfully in a handful of seconds. This left 486 formulas.

An important distinction between the two sets of formulas is that all formulas
from [7] come with a sampling set, i.e., a relatively small subset, S, of variables.
When such a set is given as part of the input, UniGen2 samples (near-)uniformly
from the elements of {0, 1}S that have at least one satisfying extension (model).
For all but 17 of the 369 formulas, the provided set was in fact an independent
support set, i.e., each of element of {0, 1}S was guaranteed to have at most one
satisfying extension. Thus for these 352 formulas UniGen2 is, in fact, sampling
satisfying assignments, making them fair game for comparison (if anything such
formulas slightly favor UniGen2 as we do not include the time required to extend
the returned partial assignments to full assignments which, in principle, could be
substantial.) None of the 117 formulas used to benchmark sharpSAT come with
such a set (since sharpSAT does not support counting the size of projections of
the set of models). Of these 486-17 = 469 formulas, 2 are unsatisfiable, while for
another 22 UniGen2 crashed or exited with an error. (SPUR did not crash or
report an error on any formulas.) Of the remaining 445 formulas, 72 caused both
SPUR and UniGen2 to time out. We report on the remaining 373 formulas.

For each formula we generated between 1,000 and 10,000 samples, as origi-
nally performed by Chakraborty et. al. [2] and report the results in detail. Our
main finding is that SPUR is on average more than 400× faster than UniGen2,
i.e., the the geometric mean3 of the speedup exceeds 400×. We also compared
the two algorithms when they only generate 55 samples per formula. In that
setting, the geometric mean of the speedup exceeds 150×.

Experiment Setup: All experiments were performed on a high-performance clus-
ter, where each node consists of two Intel Xeon E5-2650v4 CPUs with up to
10 usable cores and 128GB of DDR4 DRAM. All our results were generated
on the same hardware to ensure a fair comparison. UniGen2’s timeout was set
to 10 hours; all other UniGen2 hyperparameters, e.g., κ, startIteration, etc.,
were left at their default values. The timeout of SPUR was set to 7 hours and
its maximum cache size was set to 8GB. All instances of the two programs run
on a single core at a time.
3 The arithmetic mean [of the speedup] is even greater (always). For the aptness of
using the geometric mean to report speedup factors see [5].



Fast Sampling of Perfectly Uniform Satisfying Assignments 11

8.3 Comparison

Table 1 reports the time taken by SPUR and UniGen2 to generate 1,000 samples
for a representative subset of the benchmarks. Included in the table is also the
speedup factor of SPUR relative to UniGen2, i.e., the ratio of the two execution
times. Since sharpSAT represents the execution time floor for SPUR we also
provide the ratio between SPUR’s execution time and of a single execution of
sharpSAT. Numbers close to 1 substantiate the heuristic claim “if you can count
the models with sharpSAT, you can sample.”

Table 1. Time (sec) comparison of SPUR and UniGen2 to generate 1,000 samples.

Benchmark #Var #Clause SPUR
sharpSAT

UniGen2
(sec)

SPUR
(sec) Speedup

case5 176 518 19.1 633 0.84 753
registerlesSwap 372 1,493 7.0 28,778 0.26 110,684
s953a_3_2 515 1,297 13.4 1139 1.03 1,105
s1238a_3_2 686 1,850 7.0 610 2.31 264
s1196a_3_2 690 1,805 10.0 516 2.10 245
s832a_15_7 693 2,017 13.5 56 0.81 69

case_1_b12_2 827 2,725 1.4 689 29 23
squaring30 1,031 3,693 3.7 1,079 4.58 235

27 1,509 2,707 1.0 99 0.017 5,823
squaring16 1,627 5,835 1.9 11,053 78 141
squaring7 1,628 5,837 1.4 2,185 38 57

111 2,348 5,479 1.0 163 0.029 5,620
51 3,708 14,594 1.5 714 0.11 6,490
32 3,834 13,594 1.0 181 0.051 3,549
70 4,670 15,864 1.0 196 0.056 3,500
7 6,683 24,816 1.0 173 0.077 2,246

Pollard 7,815 41,258 6.0 181 355 0.51
17 10,090 27,056 1.6 192 0.092 2,086
20 15,475 60,994 2.7 289 2.05 140

reverse 75,641 380,869 6.2 TIMEOUT 2.66 >13,533

Figure 2 compares the time required to generate 1,000 witnesses with SPUR
and UniGen2 for the the full set of 373 benchmarks. The axes are logarithmic and
each mark represents a single formula. Formulas for which a timeout occurred
appear along the top or right border, depending on which tool timed out. (For
marks corresponding to timeouts, the axis of the tool for which there was a
timeout was co-opted to create a histogram of the number of timeouts that
occurred.) These complete results can be summarized as follows:

• SPUR was faster than UniGen2 on 371 of the 373 benchmarks.
• On 369 of the 373, SPUR was more than 10× faster.
• On over 2/3 of the benchmarks, it was more than 100× faster.



12 D. Achlioptas et al.

• The geometric mean of the speedup exceeds 400×.
• On over 70% of the benchmarks, SPUR generated 1,000 samples within at

most 10× of a single execution of sharpSAT.
• SPUR was 3 times more likely than UniGen2 to successfully generate wit-

nesses for large formulas, (e.g., >10,000 variables).

0.1sec 1sec 10sec 1min 1hr 10hr

0.1sec

1sec

10sec

1min

1hr

7hr

UniGen2

SP
U

R

UniGen2 Time Out
SPUR Time Out

Fig. 2. Comparison of the running time to generate 1,000 samples between UniGen2
and SPUR over 373 formulas.

References

[1] Bayardo, Jr., R.J., Pehoushek, J.D.: Counting models using connected compo-
nents. In: Proceedings of the 17th National Conference on Artificial Intelligence
and 12th Conference on Innovative Applications of Artificial Intelligence. pp. 157–
162. AAAI Press (2000)



Fast Sampling of Perfectly Uniform Satisfying Assignments 13

[2] Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: On parallel
scalable uniform SAT witness generation. In: Proceedings of the 21st International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 304–319. TACAS-15 (2015)

[3] Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity
in sat witness generator. In: Proceedings of the 51st Annual Design Automation
Conference. pp. 60:1–60:6. DAC ’14, ACM, New York, NY, USA (2014), http:
//doi.acm.org/10.1145/2593069.2593097

[4] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (Jul 1962)

[5] Fleming, P.J., Wallace, J.J.: How not to lie with statistics: The correct way to
summarize benchmark results. Commun. ACM 29(3), 218–221 (Mar 1986), http:
//doi.acm.org.oca.ucsc.edu/10.1145/5666.5673

[6] SPUR source code. https://github.com/ZaydH/spur
[7] Meel, K.: Index of UniGen verification benchmarks. https://www.cs.rice.edu/

CS/Verification/Projects/UniGen/Benchmarks/
[8] Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:

Constraint-based random stimuli generation for hardware verification. In: Pro-
ceedings of the 18th Conference on Innovative Applications of Artificial Intelli-
gence - Volume 2. pp. 1720–1727. IAAI’06, AAAI Press (2006)

[9] Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: Proceedings of the
7th International Conference on Theory and Applications of Satisfiability Testing.
SAT-04 (2004)

[10] Sang, T., Beame, P., Kautz, H.: Heuristics for fast exact model counting. In:
Proceedings of the 8th International Conference on Theory and Applications of
Satisfiability Testing. pp. 226–240. SAT-05 (2005)

[11] Thurley, M.: sharpSAT: Counting models with advanced component caching and
implicit BCP. In: Proceedings of the 9th International Conference on Theory and
Applications of Satisfiability Testing. pp. 424–429. SAT-06 (2006)

[12] Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1),
37–57 (Mar 1985), http://doi.acm.org/10.1145/3147.3165

http://doi.acm.org/10.1145/2593069.2593097
http://doi.acm.org/10.1145/2593069.2593097
http://doi.acm.org.oca.ucsc.edu/10.1145/5666.5673
http://doi.acm.org.oca.ucsc.edu/10.1145/5666.5673
https://github.com/ZaydH/spur
https://www.cs.rice.edu/CS/Verification/Projects/UniGen/Benchmarks/
https://www.cs.rice.edu/CS/Verification/Projects/UniGen/Benchmarks/
http://doi.acm.org/10.1145/3147.3165

	 Fast Sampling of Perfectly Uniform Satisfying Assignments 

