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Abstract. Restarts are a critically important heuristic in most modern
conflict-driven clause-learning (CDCL) SAT solvers. The precise reason
as to why and how restarts enable CDCL solvers to scale efficiently re-
mains obscure. In this paper we address this question, and provide some
answers that enabled us to design a new effective machine learning-based
restart policy. Specifically, we provide evidence that restarts improve the
quality of learnt clauses as measured by one of best known clause quality
metrics, namely, literal block distance (LBD). More precisely, we show
that more frequent restarts decrease the LBD of learnt clauses, which in
turn improves solver performance. We also note that too many restarts
can be harmful because of the computational overhead of rebuilding the
search tree from scratch too frequently. With this trade-off in mind, be-
tween that of learning better clauses vs. the computational overhead of
rebuilding the search tree, we introduce a new machine learning-based
restart policy that predicts the quality of the next learnt clause based
on the history of previously learnt clauses. The restart policy erases the
solver’s search tree during its run, if it predicts that the quality of the
next learnt clause is below some dynamic threshold that is determined
by the solver’s history on the given input. Our machine learning-based
restart policy is based on two observations gleaned from our study of
LBDs of learnt clauses. First, we discover that high LBD percentiles
can be approximated with z-scores of the normal distribution. Second,
we find that LBDs, viewed as a sequence, are correlated and hence the
LBDs of past learnt clauses can be used to predict the LBD of future
ones. With these observations in place, and techniques to exploit them,
our new restart policy is shown to be effective over a large benchmark
from the SAT Competition 2014 to 2017.

1 Introduction

The Boolean satisfiability problem is a fundamental problem in computer science:
given a Boolean formula in conjunctive normal form, does there exist an assign-
ment to the Boolean variables such that the formula evaluates to true? Boolean
satisfiability is the quintessential NP-complete [13] problem, and hence one might
prematurely conjecture that Boolean SAT solvers cannot scale. Yet modern SAT



solvers routinely solve instances with millions of Boolean variables. In practice,
many practitioners reduce a variety of NP problems to the Boolean satisfiability
problem, and simply call a modern SAT solver as a black box to efficiently find
a solution to their problem instance [11, 12, 19]. For precisely this reason, SAT
solving has become an important tool for many industrial applications. Through
decades of research, the SAT community has built surprisingly effective back-
tracking solvers called conflict-driven clause-learning (CDCL) [23] SAT solvers
that are based on just a handful of key principles [18]: conflict-driven branching,
efficient propagation, conflict analysis, preprocessing/inprocessing, and restarts.

Like all backtracking search, the run of a CDCL SAT solver can be visual-
ized as a search tree where each distinct variable is a node with two outgoing
edges marked true and false (denoting value assignments to the variable) re-
spectively. The solver frequently restarts, that is, it discards the current search
tree and begins anew (but does not throw away the learnt clauses and the vari-
able activities). Although this may seem counterproductive, SAT solvers that
restart frequently are significantly faster empirically than solvers that opt not to
restart. The connection between restarts and performance is not entirely clear,
although researchers have proposed a variety of hypotheses such as exploiting
variance in the runtime distribution [22, 14] (similar to certain kinds of random-
ized algorithms). For various reasons however, we find these hypotheses do not
explain the power of restarts in the CDCL SAT solver setting. In this paper, we
take inspiration from Hamadi et al. who claim that the purpose of restarts is to
compact the assignment stack [16]. We then further show that a compact stack
tends to improve the quality of clauses learnt where we define quality in terms
of the well-known metric literal block distance (LBD). Despite the search tree
being discarded by a restart, learnt clauses are preserved so learning higher qual-
ity clauses continues to reap benefits across restarts. By learning higher quality
clauses, the solver tends to find a solution quicker. However, restarting too often
incurs a high overhead of constantly rebuilding the search tree. So it is imper-
ative to balance the restart frequency to improve the LBD but avoid excessive
overhead.

Based on the above-mentioned analysis, we designed a new restart policy
called machine learning-based restart (MLR) that triggers a restart when the
LBD of the next learnt clause is above a certain threshold. The motivation for
this policy is that rather than investing computation into learning a low quality
clause, the solver should invest that time in rebuilding the search tree instead
in the hopes of learning a better clause. This restart policy is based on two
key observations that we made by analyzing CDCL solvers over a large bench-
mark: First, we observed that recent LBDs are correlated with the next LBD.
We introduce a machine learning-based technique exploiting this observation to
predict the LBD of the next learnt clause. Second, we observed that the right
tail of the LBD distribution is similar to the right tail of the normal distribu-
tion. We exploit this observation to set a meaningful LBD threshold for MLR
based on percentiles. MLR is then shown to be competitive vis-a-vis the current
state-of-the-art restart policy implemented as part of the Glucose solver [4].



Contributions: We make the following contributions in this paper:

1. We provide experimental support for the hypothesis that restarts “com-
pact the assignment stack” as stated by the authors of ManySAT [16] (see
Section 4). We then add to this hypothesis, and go on to show that a com-
pact assignment stack correlates with learning lower LBD clauses (see Sec-
tion 4.2). Lastly, learning clauses with lower LBD is shown to correlate with
better solving time (see Section 4.3). Additionally we provide analytical ex-
planations as to why we discount some previously proposed hypotheses that
attempt to explain the power of restarts in practice (see Section 3).

2. We propose a method to set thresholds for the quality of a LBD of a clause.
We experimentally show that the right tail of the LBD distribution closely
matches a normal distribution, hence high percentiles can be accurately
predicted by simply computing the mean and standard deviation. See Sec-
tion 5.1 for details.

3. We show that LBDs viewed as a sequence are correlated. This is a crucial
observation that we back by experimental data. The fact that LBDs viewed
as a sequence are correlated enables us to take the LBDs of recent learnt
clauses and predict the LBD of the next clause. See Section 5.2 for details.

4. Building on all the above-mentioned experimentally-verified observations, we
introduce a new restart policy called machine learning-based restart (MLR)
that is competitive vis-a-vis the current state-of-the-art restart policy on
a comprehensive benchmark from the SAT Competition 2014 to 2017 in-
stances. See Section 6 for details.

2 Background

We assume the reader is familiar with the Boolean satisfiability problem and
SAT solver research literature [6].
LBD Clause Quality Metric: It has been shown, through the lens of proof
complexity, that clause-learning SAT solvers (under perfect non-deterministic
branching and restarts, and asserting clause learning schemes) are exponentially
more powerful than CDCL SAT solvers without clause learning [26]. However,
the memory requirement to store all the learnt clauses is too high for many
instances since the number of conflicts grows very rapidly. To overcome this issue,
all modern SAT solvers routinely delete some clauses to manage the memory
usage. The most popular metric to measure the quality of a clause is called literal
block distance (LBD) [3], defined as the number of distinct decision levels of the
variables in the clause. Intuitively, a clause with low LBD prunes more search
space than a clause with higher LBD. Hence clauses with high LBD typically
are the ones prioritized for deletion. Although LBD was originally proposed for
the purpose of clause deletion, it has since proven useful in other contexts where
there is need to measure the quality of learnt clauses such as sharing clauses
in parallel SAT solvers and restarts. Another measure of quality of a learnt
clause is its length. To the best of our knowledge, we are not aware of any other
universally accepted clause quality metrics at the time of writing of this paper.



In this paper we will often look at LBDs as a sequence. At any time during
the search where i conflicts have occurred, we use the term “previous” LBD to
refer to the LBD of the clause learnt at the ith conflict and “next” LBD to refer
to the LBD of the clause learnt at the (i+ 1)th conflict.
Overview of Restarts in CDCL SAT Solvers: Informally, a restart heuristic
in the context of CDCL SAT solver can be defined as a method that discards
parts of the solver state at certain points in time during its run. CDCL solvers
restart by discarding their “current” partial assignment and starting the search
over, but all other aspects of solver state (namely, the learnt clauses, variable
activities, and variable phases) are preserved. Although restarts may appear
unintuitive, the fact that learnt clauses are preserved means that solver continues
to make progress. Restarts are implemented in practically all modern CDCL
solvers because it is well known that frequent restarts greatly improve solver
performance in practice.

3 Prior Hypotheses on “The Power of Restarts”

In this section, we discuss prior hypotheses on the power of restarts in the DPLL
and local search setting and their connection to restarts in the CDCL setting.
Heavy-tailed Distribution and Las Vegas Algorithm Hypotheses: From
the perspective of Las Vegas algorithms, some researchers have proposed that
restarts in CDCL SAT solvers take advantage of the variance in solving time [22,
14]. For a given input, the running time of a Las Vegas algorithm is characterized
by a probability distribution, that is, depending on random chance the algorithm
can terminate quickly or slowly relatively speaking. A solver can get unlucky and
have an uncharacteristically long running time, in which case, a restart gives the
solver a second chance of getting a short runtime [22]. More specifically, a heavy-
tailed distribution was observed for various satisfiable instances on randomized
DPLL solvers [14]. However, this explanation does not lift to restarts in modern
CDCL solvers. First, most modern CDCL solvers are not Las Vegas algorithms,
that is, they are deterministic algorithms, and hence restarts cannot take ad-
vantage of variance in the solving time like in Las Vegas algorithms. Second,
the optimal restart policy for Las Vegas algorithms has a restart interval greater
than the expected solving time of the input [22], so hard instances should restart
very infrequently. However in practice, even difficult instances with high solving
time benefit from very frequent restarts in CDCL solvers. Third, the definition
of restarts in the context of Las Vegas algorithms differs significantly from the
restarts implemented in CDCL solvers. In Las Vegas algorithms, the restarts are
equivalent to starting a new process, that is, the algorithm starts an indepen-
dent run from scratch. Restarts in CDCL are only partial, the assignment stack
is erased but everything else preserved (i.e., learnt clauses, saved phases, activity,
etc.). Since the phases are saved, the CDCL SAT solver reassigns variables to
the same value across restart boundaries [27]. As the authors of ManySAT [16]
note: “Contrary to the common belief, restarts are not used to eliminate the
heavy tailed phenomena since after restarting SAT solvers dive in the part of



the search space that they just left.” Fourth, the heavy-tailed phenomena was
found to be true only for satisfiable instances, and yet empirically restarts are
known to be even more relevant for unsatisfiable instances.

Escaping Local Minima Hypothesis: Another explanation for restarts comes
from the context of optimization. Many optimization algorithms (in particular,
local search algorithms), get stuck in the local minima. Since local search only
makes small moves at a time, it is unlikely to move out of a deep local mini-
mum. The explanation is that restarts allow the optimization algorithm to escape
the local minimum by randomly moving to another spot in the solution space.
Certain local-search based SAT solvers (that aim to minimize the number of un-
satisfied clauses) do use restarts for this very purpose [17, 28]. However, restarts
in CDCL do not behave in the same manner. Instead of setting the assignment
of variables to random values like in local search, rather CDCL solvers revisit
the same (or nearby) search space of assignments even after restarts since the
variable activities and phases are preserved across restart boundaries [27].

As we show in Section 4, our hypothesis for the power of restarts is indeed
consistent with the “escaping local minima” hypothesis. However, restarts enable
CDCL solvers to escape local minima in a way that works differently from local
search algorithms. Specifically, CDCL solvers with restarts enabled escape local
minima by jumping to a nearby space to learn “better clauses”, while local search
algorithms escape local minima by randomly jumping to a different part of the
search space.

4 “Restarts Enable Learning Better Clauses” Hypothesis

In this section, we propose that restarts enable a CDCL solver to learn better
clauses. To justify our hypothesis, we start by examining the claim by Hamadi et
al. [16] stating that “In SAT, restarts policies are used to compact the assignment
stack and improve the order of assumptions.” Recall that in CDCL SAT solvers,
the only thing that changes during a restart is the assignment stack, and hence
the benefits of restarts should be observable on the assignment stack. In this
paper, we show that this claim matches reality, that is, restarting frequently
correlates with a smaller assignment stack. We then go one step further, and
show that a compact assignment stack leads to better clause learning. That is,
the solver ends up learning clauses with lower LBD, thereby supporting our
hypothesis, and this in turn improves the solver performance.

Restarts do incur a cost though [27], for otherwise restart after every conflict
would be the optimal policy for all inputs. After a solver restarts, it needs to make
many decisions and propagations to rebuild the assignment stack from scratch.
We call this the rebuild time. More precisely, whenever a solver performs a restart,
we note the current time and the assignment stack size x right before the restart.
Then the rebuild time is the time taken until either the solver encounters a new
conflict or the new assignment stack size exceeds x through a series of decisions
and propagations. Since we want to isolate the benefit of restart, we need to



discount the cost of rebuilding. We define effective time to be the solving time
minus the rebuild times of every restart.

4.1 Confirming the “Compacting the Assignment Stack” Claim

We ran the Glucose 4.1 SAT solver [5] 4 with various frequencies of restarting to
show that indeed restarts do compact the assignment stack. For all experiments
in this paper, Glucose was run with the argument “-no-adapt” to prevent it
from changing heuristics. For each instance in the SAT Competition 2017 main
track, we ran Glucose 4.1 with a timeout of 3hrs of effective time on StarExec,
a platform purposefully designed for evaluating SAT solvers [29]. The StarExec
platform uses the Intel Xeon CPU E5-2609 at 2.40GHz with 10240 KB cache
and 24 GB of main memory, running on Red Hat Enterprise Linux Server release
7.2 , and Linux kernel 3.10.0-514.16.1.el7.x86 64.

At every conflict, the assignment stack size is logged before backtracking
occurs then the solver restarts after the conflict is analyzed (i.e., a uniform
restart policy that restarts after every 1 conflict). We then ran the solver again
on the same instance except the restart interval is doubled (i.e., a uniform restart
policy that restarts after every 2 conflicts). We continue running the solver again
and again, doubling the restart interval each time (i.e., a uniform restart policy
that restarts after every 2k conflicts) until the restart interval is so large that
the solver never restarts before termination. For each instance, we construct a
scatter plot, where the x-axis is the restart interval and the y-axis is the average
assignment stack size for that restart policy on that instance, see Figure 1a
for an example. We then compute the Spearman correlation between the two
axes, a positive correlation denotes that smaller restart intervals correlate with
smaller assignment stack size, that is evidence that frequent restarts compacts
the assignment stack. We plot the Spearman correlations of all 350 instances
in Figure 1b. 91.7% of the instances have a positive correlation coefficient. In
conclusion, our experiments support the claim by Hamadi et al. [16] “restarts
policies are used to compact the assignment stack.”

It is important to note that this result is contingent on the branching heuristic
implemented by the solver. If the branching heuristic is a static ordering, then
the solver picks the decision variables in the same order after every restart and
rebuilds the same assignment stack, hence the assignment stack does not get
compacted. In our previous work [21], we showed that VSIDS-like branching
heuristics “focus” on a small subset of logically related variables at any point
in time. We believe a “focused” branching heuristic will see the compacting
of assignment stack since a restart erases the assignment stack so a “focused”
branching heuristic can reconstruct the assignment stack with only the subset
of variables it is focused on.

4 Glucose is a popular and competitive CDCL SAT solver often used in experiments
because of its efficacy and simplicity (http://www.labri.fr/perso/lsimon/glucose/)
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Fig. 1: (a) Scatter plot for a given instance showing increasing assignment stack
size as the restarts become less frequent. (b) Histogram showing the distribution
of Spearman correlations between the restart interval and the average assignment
stack size for all 350 instances. The median correlation is 0.839.

4.2 Learning Better Clauses

We hypothesize that compacting the assignment stack generally leads to better
learnt clauses, and that this is one of the benefits of restarts in SAT solvers in
practice. Note that the clause learning schemes construct the learnt clause from
a subset of variables on the assignment stack. Hence, a smaller assignment stack
should lead to a learnt clause with smaller LBD than otherwise. To show this
experimentally, we repeat the previous experiment where we ran Glucose 4.1 with
the uniform restart policy restarting every 2k conflicts for various parameters of
k. At each conflict, we log the assignment stack size before backtracking and the
LBD of the newly learnt clause. For each instance, we draw a scatter plot, where
the x-axis is the average assignment stack size and the y-axis is the average LBD
of learnt clauses, see Figure 2a. We compute the Spearman correlation between
the two axes and plot these correlations in a histogram, see Figure 2b. 73.1% of
the instances have a positive correlation coefficient.

4.3 Solving Instances Faster

Although lower LBD is widely believed to be a sign of good quality clause,
we empirically show that indeed lower LBD generally correlates with better
effective time. This experiment is a repeat of the last two experiments, with
the exception that the x-axis is the average learnt clause LBD and the y-axis
is the effective time, see Figure 3a for an example. As usual, we compute the
Spearman correlation between the two axes, discarding instances that timeout,
and plot these correlations in a histogram, see Figure 2b. 77.8% of the instances
have a positive correlation coefficient. As expected, learning lower LBD clauses
tend to improve solver performance.
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Fig. 2: (a) Scatter plot for a given instance showing increasing assignment stack
size correlates with increasing LBD of learnt clauses. (b) Histogram showing
the distribution of Spearman correlations between the average assignment stack
size and the average LBD of learnt clauses for all 350 instances. The median
correlation is 0.607.
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Fig. 3: (a) Scatter plot for a given instance showing increasing average learnt
clause LBD correlates with increasing effective time. (b) Histogram showing the
distribution of Spearman correlations between the average learnt clause LBD
and effective time for all 90 instances without timeouts. The median correlation
is 0.366.



4.4 Clause Length

If the previous experiments replaced LBD with clause length, then the median
Spearman correlation between the average assignment stack size and average
learnt clause length is 0.822 and the median Spearman correlation between the
average learnt clause length and effective time is 0.08.

4.5 Low LBD in Core Proof

We hypothesize that lower LBD clauses are preferable for unsatisfiable instances
because they are more likely to be a core learnt clause, that is, a learnt clause
that is actually used in the derivation of the final empty clause. We performed
the following experiment to support our hypothesis. We ran Glucose with no
clause deletion on all 350 instances of the SAT Competition 2017 main track
with 5000 seconds timeout. We turned off clause deletion because the deletion
policy in Glucose inherently biases towards low LBD clauses by deleting learnt
clauses with higher LBDs. We used DRAT-trim [30] to extract the core proof
from the output of Glucose, i.e, the subset of clauses used in the derivation of the
empty clause. We then computed the ratio between the mean LBD of the core
learnt clauses and the mean LBD of all the learnt clauses. Lastly we plotted the
ratios in a histogram, see Figure 4. For the 57 instances for which core DRAT
proofs were generated successfully, all but one instance has a ratio below 1. In
other words, lower LBD clauses are more likely to be used in deriving the empty
clause than clauses with higher LBD.
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Fig. 4: Histogram for the ratio between the mean LBD of the learnt clauses in
the core proof and the mean LBD of all the learnt clauses for the 57 unsatisfiable
instances DRAT-trim produced a core proof.

4.6 New Restart Policy

Based on the above observations, we designed a new machine learning-based
restart policy that is competitive with the state-of-the-art policies. As shown



earlier, empirically restarts reduce LBD, hence we design a restart policy that
tries to avoid high LBDs by restarting. Intuitively, our restart policy does the
following: restart if the next learnt clause has an LBD in the 99.9th percentile.
Implementing this policy requires new techniques to answer the two following
questions: is an LBD in the 99.9th percentile and what is the LBD of the next
learnt clause. We designed techniques to estimate answers to these two questions.
The answer for the first question is the normal distribution is a good approx-
imation for the right tail of the LBD distribution. The answer for the second
question is to use machine learning to predict the LBD of the next clause.

5 A Machine Learning-based Restart Policy

In this section, we describe our machine learning-based restart policy. We first
start by answering the two questions posed in the last subsection regarding LBD
percentile and predicting LBD of the next clause.

5.1 LBD Percentile

Given the LBD of a clause, it is unclear a priori how to label it as “good”
or “bad”. Some heuristics set a constant threshold and any LBDs above this
threshold are considered bad. For example, Plingeling [7] considers learnt clauses
with LBD greater 7 to be bad, and these clauses are not shared with the other
workers. COMiniSatPS considers learnt clauses with LBD greater than 8 to be
bad, and hence these clauses are readily deleted [25]. The state-of-the-art Glucose
restart policy [4] on the other hand uses the mean LBD multiplied by a fixed
constant as a threshold. The problem with using a fixed constant or the mean
times a constant for thresholds is that we do not have a priori estimate of how
many clauses exceed this threshold, and these thresholds seem arbitrary. Using
arbitrary thresholds makes it harder to reason about solver heuristics, and in
this context, the efficacy of restart policies.

We instead propose that for any given input it is more appropriate to use
dynamic threshold that is computed based on the history of the CDCL solver’s
run on that input. At any point in time during the run of the solver, the dynamic
threshold is computed as the 99.9th percentile of LBDs of the learnt clauses seen
during the run so far. Before we estimate whether an LBD is in the 99.9th

percentile, the first step is to analyze the distribution of LBDs seen in practice.
In this experiment, the Glucose solver was run on all 350 instances in SAT
Competition 2017 main track for 30 minutes and the LBDs of all the learnt
clauses were recorded. Figure 5 shows the histogram of LBDs for 4 representative
instances. As can be seen from the distributions of these representative instances,
either their LBD distribution is close to normal or a right-skewed one.

Even though the right-skew distribution is not normal, the high percentiles
can still be approximated by the normal distribution since the right tail is close to
the normal curve. We conducted the following experiment to support this claim.
For each instance, we computed the mean and variance of the LBD distribution
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Fig. 5: Histogram of LBDs of 4 instances. A normal distribution with the same
mean and variance is overlaid on top for comparison.

to draw a normal distribution with the same mean and variance. We used the
normal distribution to predict the LBD x at the 99.9th percentile. We then
checked the recorded LBD distribution to see the actual percentile of x. Figure 6
is a histogram of all the actual percentiles. Even in the worst case, the predicted
99.9th percentile turned out to be the 97.1th percentile. Hence for this benchmark
the prediction of the 99.9th percentile using the normal distribution has an error
of less than 3 percentiles. Additionally, only 6 of the 350 instances predicted an
LBD that was in the 100th percentile and all 6 of these instances solved in less
than 130 conflicts hence the prediction was made with very little data.

These figures were created by analyzing the LBD distribution at the end of
a 30 minute run of Glucose, and we note the results are similar before the 30
minutes is up. Hence the 99.9th percentile of LBDs can be approximated as the
99.9th percentile of norm(µ, σ2). The mean µ and variance σ2 are estimated
by the sample mean and sample variance of all the LBDs seen thus far, which
is computed incrementally so the computational overhead is low. The 99.9th

percentile of the normal distribution maps to the z-score of 3.08, that is, an
LBD is estimated to be in the 99.9th percentile if it is greater than µ+ 3.08×σ.

5.2 LBD of Next Clause

Since at any point during the run of a solver, the LBD of the “next learnt”
clause is unknown, we propose the use of machine learning to predict that LBD
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instead. This requires finding good features that correlate with the next LBD.
We hypothesize that LBDs of recent past learnt clauses correlate with the LBD
of the next learnt clause.

In this experiment, Glucose was run on all 350 instances of the 2017 Com-
petition main track and the LBDs of all the learnt clauses were recorded. Let
n be the number of LBDs recorded for an instance. A table with two columns
of length n − 1 are created. For each row i in this two column table, the first
column contains the LBD of the ith conflict and the second column contains the
LBD of the (i + 1)th conflict. Intuitively, after the solver finishes resolving the
ith conflict, the ith learnt clause is the “previous” learnt clause represented by
the first column. Correspondingly, the “next” learnt clause is the (i+ 1)th learnt
clause represented by the second column. For each instance that took more than
100 conflicts to solve, we computed the Pearson correlation between the first and
second column and plot all these correlations in a histogram, see Figure 7.

Our results show that the “previous LBD” is correlated with the “next LBD”
which supports the idea that recent LBDs are good features to predict the next
LBD via machine learning. In addition, all the correlations are positive, meaning
that if the previous LBD is high (resp. low) then the next LBD is expected to
be high (resp. low). Perhaps this explains why the Glucose restart policy [4] is
effective. Additionally, we note that for the average instance, the LBD of the
learnt clause after a restart is smaller than the LBD of the learnt clause right
before that restart 74% of the time, showing the effect of restarts on LBD.

This paper proposes learning the function f(l−1, l−2, l−3, l−1 × l−2, l−1 ×
l−3, l−2 × l−3) = lnext where l−i is the LBD of the learnt clause from i conflicts
ago and l−i × l−j are products of previous LBDs to incorporate their feature
interaction, and lnext is the LBD of the next clause. This function is approx-
imated using linear regression where θi are coefficients to be trained by the
machine learning algorithm:



f̃(l−1, l−2, l−3, l−1 × l−2, l−1 × l−3, l−2 × l−3) = θ0 + θ1 × l−1 + θ2 × l−2 + θ3 ×
l−3 + θ4 × l−1 × l−2 + θ5 × l−1 × l−3 + θ6 × l−2 × l−3

Since LBDs are streamed in as conflicts occur, an online algorithm that can
incrementally adjust the θi coefficients cheaply is required. We use the state-of-
the-art Adam algorithm [20] from machine learning literature because it scales
well with the number of dimensions, is computationally efficient, and converges
quickly for many problems. The Adam algorithm is in the family of stochastic
gradient descent algorithms that adjusts the coefficients to minimize the squared
error, where the error is the difference between the linear function’s prediction
and the actual next LBD. The algorithm computes the gradient of the squared
error function and adjusts the coefficients in the opposite direction of the gradient
to minimize the squared error function. For the parameters of Adam, we use the
values recommended by the original authors [20].

The coefficients θi are all initialized to 0 at the start of the search. Whenever
a new clause is learnt, one iteration of Adam is applied with the LBDs of the
three previous learnt clauses and their pairwise products as features and the
LBD of the new clause as the target. The coefficients θi are adjusted in the
process. When BCP reaches a fixed point without a conflict, the function f̃ is
queried with the current set of coefficients θi to predict the LBD of the next
clause. If the prediction exceeds the sample mean plus 3.08 standard deviations
(i.e., approximately the 99.9th percentile), a restart is triggered.

The new restart policy, called machine learning-based restart (MLR) policy,
is shown in Algorithm 1. Since the mean, variance, and coefficients are computed
incrementally, MLR has a very low computational overhead.

6 Experimental Evaluation

To test how MLR performs, we conducted an experimental evaluation to see
how Glucose performs with various restart policies. Two state-of-the-art restart
policies are used for comparison with MLR: Glucose (named after the solver it-
self) [4] and Luby [22]. The benchmark consists of all instances in the application
and hard combinatorial tracks from the SAT Competition 2014 to 2017 totaling
1411 unique instances. The Glucose solver with various restart policies were run
over the benchmark on StarExec. For each instance, the solver was given 5000
seconds of CPU time and 8GB of RAM. The results of the experiment are shown
in Figure 8. The source code of MLR and further analysis of the experimental
results are available on our website [1].

The results show that MLR is in between the two state-of-the-art policies
of Glucose restart and Luby restart. For this large benchmark, MLR solves 19
instances more than Luby and 20 instances fewer than Glucose. Additionally,
the learned coefficients in MLR σ1, σ2, σ3 corresponding to the coefficients of
the features representing recent past LBDS are nonnegative 91% of the time at
the end of the run. This reinforces the notion that previous LBDs are positively
correlated with the next LBD.



Algorithm 1 Pseudocode for the new restart policy MLR.
1: function Initialize . Called once at the start of search.
2: α← 0.001, ε← 0.00000001, β1 ← 0.9, β2 ← 0.999 . Adam parameters.
3: conflicts← 0, conflictsSinceLastRestart← 0
4: t← 0 . Number of training examples.
5: prevLbd3 ← 0, prevLbd2 ← 0, prevLbd1 ← 0 . LBD of clause learnt 3/2/1 conflicts ago.
6: µ← 0,m2← 0 . For computing sample mean and variance of LBDs seen.
7: for v in 0..|FeatureV ector()| − 1 do . Initialize θ,m, v to be vectors of zeros.
8: θi ← 0,mi ← 0, vi ← 0 . Coefficients of linear function and Adam internals.

9: function FeatureVector
10: return [1, prevLbd1, prevLbd2, prevLbd3, prevLbd1 × prevLbd2, prevLbd1 ×

prevLbd3, prevLbd2 × prevLbd3]

11: function AfterConflict(LearntClause) . Update the coefficients θ using Adam.
12: conflicts← conflicts+ 1, conflictsSinceLastRestart← conflictsSinceLastRestart+ 1
13: nextLbd← LBD(LearntClause)
14: δ ← nextLbd− µ, µ← µ+ δ/conflicts,∆← nextLbd− µ,m2← m2 + δ ×∆
15: if conflicts > 3 then . Apply one iteration of Adam.
16: t← t+ 1
17: features← FeatureV ector()
18: predict← θ · features
19: error ← predict− nextLbd
20: g ← error × features
21: m← β1 ×m+ (1− β1)× g, v ← β2 × v + (1− β2)× g × g
22: m̂← m/(1− βt

1), v̂ ← v/(1− βt
2)

23: θ ← θ − α× m̂/(
√
v̂ + ε)

24: prevLbd3 ← prevLbd2, prevLbd2 ← prevLbd1, prevLbd1 ← nextLbd

25: function AfterBCP(IsConflict)
26: if ¬IsConflict ∧ conflicts > 3 ∧ conflictsSinceLastRestart > 0 then

27: σ ←
√
m2/(conflicts− 1)

28: if θ · FeatureV ector() > µ+ 3.08σ then . Estimate if next LBD in 99.9th percentile.
29: conflictsSinceLastRestart← 0, Restart()
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Fig. 8: Cactus plot of two state-of-the-art restart policies and MLR. A point
(x, y) is interpretted as x instances have solving time less than y seconds for the
given restart policy. Being further right means more instances are solved, further
down means instances are solved faster.



7 Related Work

Restart policies come in two flavors: static and dynamic. Static restart policies
predetermine when to restart before the search begins. The state-of-the-art for
static is the Luby [22] restart heuristic which is theoretically proven to be an op-
timal universal restart policy for Las Vegas algorithms. Dynamic restart policies
determine when to restart on-the-fly during the run of the solver, typically by
analyzing solver statistics. The state-of-the-art for dynamic is the restart pol-
icy proposed by Glucose [4] that keeps a short-term and a long-term average
of LBDs. The short-term is the average of the last 50 LBDs and the long-term
is the average of all the LBDs encountered since the start of the search. If the
short-term exceeds the long-term by a constant factor then a restart is triggered.
Hence the Glucose policy triggers a restart when the recent LBDs are high on
average whereas the restart policy proposed in this paper restarts when the pre-
dicted LBD of the next clause is high. Biere et al. [8] propose a variation of
the Glucose restart where an exponential moving average is used to compute
the short-term and long-term averages. Haim and Walsh [15] introduced a ma-
chine learning-based technique to select a restart policy from a portfolio after
2100 conflicts. The MABR policy [24] uses multi-armed bandits to minimize av-
erage LBD by dynamically switching between a portfolio of policies. Our use
of machine learning differs from these previous methods in that machine learn-
ing is part of the restart policy itself, rather than using machine learning as a
meta-heuristic to select between a fixed set of restart policies.
Proof-complexity theoretic Considerations: Theorists have conjectured
that restarts give the solver more power in a proof-complexity sense than a
solver without restarts. A CDCL solver with asserting clause learning scheme
can polynomially simulate general resolution [26] with nondeterministic branch-
ing and restarts. It was independently shown that a CDCL solver with sufficiently
random branching and restarts can simulate bounded-width resolution [2]. It re-
mains an open question whether these results hold if the solvers does not restart.
This question has remained stubbornly open for over two decades now. We refer
the reader to the excellent articles by Buss et al. on attempts at understanding
the power of restarts via proof-complexity theory [10, 9].

8 Conclusion

We showed that restarts positively impact the clause learning of CDCL solvers
by decreasing the LBD of learnt clauses (thus improving their quality) compared
to no restarts. However restarting too frequently is computationally expensive.
We propose a new restart policy called MLR that tries to find the right balance
in this trade-off. We use z-scores of the normal distribution to efficiently approx-
imate the high percentiles of the LBD distribution. Additionally, we use machine
learning to predict the LBD of the next clause, given the previous 3 LBDs and
their pairwise products. Experimentally, the new restart policy is competitive
with the current state-of-the-art.
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