
Using Combinatorial Benchmarks to Probe the
Reasoning Power of Pseudo-Boolean Solvers

Jan Elffers1, Jesús Giráldez-Cru1, Jakob Nordström1, and Marc Vinyals2

1 KTH Royal Institute of Technology, Stockholm, Sweden
{elffers,giraldez,jakobn}@kth.se

2 Tata Institute of Fundamental Research, Mumbai, India
marc.vinyals@tifr.res.in

Abstract. We study cdcl-cuttingplanes, Open-WBO, and Sat4j, three
successful solvers from the Pseudo-Boolean Competition 2016, and evalu-
ate them by performing experiments on crafted benchmarks designed to
be trivial for the cutting planes (CP) proof system underlying pseudo-
Boolean (PB) proof search but yet potentially tricky for PB solvers.
Our experiments demonstrate severe shortcomings in state-of-the-art PB
solving techniques. Although our benchmarks have linear-size tree-like CP
proofs, and are thus extremely easy in theory, the solvers often perform
quite badly even for very small instances. We believe this shows that
solvers need to employ stronger rules of cutting planes reasoning. Even
some instances that lack not only Boolean but also real-valued solutions
are very hard in practice, which indicates that PB solvers need to get
better not only at Boolean reasoning but also at linear programming.
Taken together, our results point to several crucial challenges to be
overcome in the quest for more efficient pseudo-Boolean solvers, and we
expect that a further study of our benchmarks could shed more light on
the potential and limitations of current state-of-the-art PB solving.

1 Introduction

In its most general form, a pseudo-Boolean function maps sets of Boolean values
to a real number. Such functions have been studied since the 1960s in the context
of operations research and 0-1 programming, yielding an extensive body of work
as surveyed, e.g., in [5]. In this paper we consider the special case of linear
pseudo-Boolean constraints

∑
i ai`i ≥ A encoded as integer linear combinations

of literals `i (i.e., Boolean variables or negations of such variables). In the decision
problem pseudo-Boolean solving (PBS) one asks whether a collection of such
constraints is feasible or not. In pseudo-Boolean optimization (PBO) the task is
to compute the best value of an objective function (written as a linear constraint)
subject to other linear constraints, a formalism that captures problems in many
different fields. Clearly, PBO can be reduced to PBS by iteratively computing
solutions and adding constraints forcing the value of the objective function to
improve. In the current work we focus on the decision problem PBS.

Pseudo-Boolean constraints are more expressive than conjunctive normal
form (CNF) formulas, but are close enough that techniques for CNF SAT solving

can be harnessed to attack pseudo-Boolean problems. The connection to integer
linear programming (ILP) and, in particular 0-1 programming, makes it natural
to also borrow insights from these areas.

Work on applying SAT-based methods in pseudo-Boolean solving seems to
have started in the mid-1990s inspired by Barth [1, 2] and developed in different
directions. One line of research has focused on inference methods based on cutting
planes (CP) [7, 9, 14], including works by Chai and Kuehlman [6], Sheini and
Sakallah [33], and Dixon et al. [10]. In this context it was reported that focusing
on the restricted form of cardinality constraints

∑
i `i ≥ A can be more effective

than dealing with general linear constraints [6, 33], and according to [11] a very
competitive approach can be to simply translate pseudo-Boolean constraints to
CNF and use a conflict-driven clause learning (CDCL) SAT solver [3, 25, 28].
A different path was pursued by Manquinho and Marques-Silva, who devised
ways of learning and backtracking non-chronologically using branch-and-bound
search [22, 23]. Needless to say, this brief historical overview is very far from
complete—see, e.g., the excellent survey [31] for more details.

Current state-of-the-art pseudo-Boolean solvers building on the first line of
work discussed above include Open-WBO [26, 29], which reduces the problem
to CNF [19] and applies CDCL search, and Sat4j [21, 32], which uses cutting
planes inference rules. These two solvers performed very well in the decision
track in the Pseudo-Boolean Competition 2016 together with the relatively new
solver cdcl-cuttingplanes [12],3 which, as the name suggests, also implements
conflict-driven search in cutting planes.

1.1 Our Investigations and Conclusions

The survey [31] mentioned above ends on the optimistic note that “[t]rade-offs
between inference power and inference speed are often made in current algorithms
and the right balance is still sought” but that “we can expect that, once the right
balance is found, pseudo-Boolean solvers will become a major tool in problem
solving.” From a theoretical point of view, there are strong reasons to concur
with this—pseudo-Boolean (PB) solvers are based on an exponentially stronger
method than CDCL solvers and so should have the potential to vastly outperform
them. Intriguingly, in practice the opposite more often seems to be the case.

We approach this disconnect between theory and practice by studying the
performance of the three PB solvers cdcl-cuttingplanes, Open-WBO , and Sat4j
on the kind of PBS decision problems where they came out on top in the Pseudo-
Boolean Competition 2016. We consider the benchmarks in [36]4 as well as other

3 An updated version of this solver with the new name RoundingSat is described in [13].
4 It should be noted that [36] is closely related to the current work in that both papers

are motivated by similar concerns, namely understanding the power and limitations
of pseudo-Boolean reasoning. A key difference, though, is that the instances studied
in [36] are designed to be potentially hard for the subsystems of cutting planes
implemented by PB solvers, whereas in this paper we choose parameter settings so
that almost all instances are theoretically very easy.

crafted benchmarks that were specifically designed to be very easy for the cutting
planes proof system underlying pseudo-Boolean SAT solving but to be potentially
tricky to handle for PB solvers (not in the sense of being “obfuscated” in any way,
but in the sense that the instances seem to require inherently pseudo-Boolean
reasoning to be efficiently solvable). Since our starting point is proof complexity,
our focus is on unsatisfiable benchmarks. We report results from fairly extensive
experiments intended to highlight strong and weak points of these solvers when
run on our benchmark set, and present some empirical conclusions as well as
hypotheses that we hope will stimulate follow-up research.

Before briefly discussing our findings, we want to stress that we do not claim
to provide the final word in this matter, but rather our purpose is to initiate
a new line of research. By necessity, our set of benchmarks is limited, and the
instances are quite particular in that they have been designed to have certain
combinatorial properties. Nevertheless, we believe that this work shows that an
in-depth study of pseudo-Boolean solver performance on such benchmarks can
provide interesting insights. In contrast to industrial benchmarks, here we can
have a detailed understanding of the properties of the instances, including, in
particular, the fact that they can be solved efficiently in principle. In addition,
the possibility to scale their size allows us to draw conclusions about asymptotic
behaviour rather than just observing isolated data points.

The need for stronger Boolean reasoning The most obvious conclusion from our
work is that the cutting planes-based reasoning in pseudo-Boolean solvers needs
to be strengthened significantly. As mentioned above, our benchmarks have been
designed to have short CP proofs, and most often these proofs are even tree-like
(meaning that they can be found without learning from conflicts). However,
in many cases the solvers struggle hopelessly even for very small instances. To
explain by an analogy to CDCL solving, this is as if state-of-the-art CDCL solvers
would fail completely for small formulas with linear-size DPLL proofs!

We consider the most plausible explanation for the poor performance to be that
the PB solvers do not exploit the full power of the division rule in cutting planes,
using only a limited form of division as in cdcl-cuttingplanes or substituting
it altogether by the simpler saturation rule as in Sat4j . This hypothesis is
strengthened by the observation that cdcl-cuttingplanes is consistently performing
better than Sat4j in cases when use of the division rule seems to be crucial from
a theoretical point of view.

Looking at the results from a different angle, it is well known that PB solvers
such as Sat4j performs well on pigeonhole principle (PHP) formulas, and the
results from the Pseudo-Boolean Competition 2016 show that this is also the
case for so-called subset cardinality formulas [27, 34, 35]. However, the seemingly
equally simple even colouring formulas [24] appear very hard in practice. On
closer inspection, one difference here is that PHP formulas do not have even
rational solutions—there is no way to fit n + 1 pigeons into n holes even if
the pigeons can be sliced—and the same holds for subset cardinality formulas,
whereas even colouring formulas are satisfied by assigning every variable value 1

2 .

This raises the question whether hardness correlates with the existence of
rational solutions, which we will refer to in what follows as the rational hypothesis .
Clearly, rational solutions alone do not imply hardness—any 2-CNF formula
without unit clauses is satisfied by assigning all variables value 1

2 , yet this does
not make such a formula hard—but any formula without rational solutions has
short proofs that PB solvers can find in theory [36], so we can ask if they can
also find such proofs in practice.

Although there are families of formulas where the lack of rational solutions
seems to help, the answer from our experiments to whether solvers can always
efficiently decide rationally infeasible 0-1 integer linear programs is negative—
we find examples of instances without rational solutions that are very hard in
practice. But when we then go further and study for which instances we can
help the solvers to run fast by, e.g., dropping a heavy hint in the form of a good
fixed variable order (while keeping other settings at default values), an intriguing
pattern emerges—for most of our benchmarks it holds that the solvers can be
made efficient if the instances have small strong backdoors5 to pseudo-Boolean
formulas without rational solutions. There is of course a selection bias in the
benchmarks we study, but we nevertheless find this refined version of the rational
hypothesis quite intriguing and hope it can stimulate further study.

The need for stronger LP reasoning The refined rational hypothesis just discussed
cannot explain all our findings, however, especially since solvers cannot always
count on getting helpful hints. For some of our benchmark families—in particular,
encodings of the dominating set problem on hexagonal grids—the formulas are
extremely challenging even when the corresponding linear program has no rational
solutions.6 For these instances it can be shown that the method of reasoning
used in Sat4j and cdcl-cuttingplanes can in principle derive extra constraints
by simple addition [36], i.e., without any Boolean reasoning, and with these
constraints added the formulas become trivial also in practice. The solvers do
not find these constraints on their own, though, and we have not been able to
coax them into doing so even by trying out different helpful variable orderings.
Instead, the solvers get stuck exploring parts of the search space where even the
LP is infeasible. This shows that PB solvers need to strengthen not only their
Boolean reasoning but also their linear programming capabilities.

The need to become more competitive with CDCL and MIP solvers For formulas
that are provably exponentially hard for resolution but easy for cutting planes we
see, not surprisingly, that cdcl-cuttingplanes and Sat4j outperform Open-WBO .
However, for instances that are inherently pseudo-Boolean in nature, but where
resolution can nevertheless efficiently simulate PB reasoning if given a natural

5 A strong backdoor for an instance F to a family F of (easy) instances—in this
case, instances without rational solutions—is a set of variables in F such that any
assignment ρ to these variables yield a restricted instance F �ρ that is in F .

6 It might be worth pointing out that for an instance to lack rational solutions is the
same as saying that the linear programming relaxation is infeasible, and so such
instances can be shown unsatisfiable in polynomial time simply by solving the LP.

CNF encoding, we see that most often cdcl-cuttingplanes and Sat4j are orders of
magnitude slower than Open-WBO . It is also often the case, though, that the
roles become reversed if the formula is randomly shuffled before being fed to the
solvers. And it is also often true that if we force cdcl-cuttingplanes to use a good
fixed decision order, then its performance matches that of Open-WBO , but if
left to its own devices cdcl-cuttingplanes will deviate from this decision order.
This raises the question of whether the way Open-WBO encodes pseudo-Boolean
constraints into CNF helps it to find and stick to a good variable order when the
formula is presented in such a way as to suggest such a good order.

Since pseudo-Boolean solving is closely related to integer linear programming,
it is also natural to compare PB solvers to mixed integer linear (MIP) solvers.
We have run experiments with the MIP solver Gurobi [15] on our combinatorial
benchmarks and can observe that it is consistently better than all the PB solvers
studied. It should be emphasized that this is perhaps not so suprising—many of
our formulas have been constructed to be hard for CDCL but trivial for tree-like
cutting planes, and this means that they are by definition amenable to branch-
and-bound techniques. Furthermore, Gurobi solves an LP relaxation at every
node in its search tree, and so will immediately detect the rationally infeasible
instances that turn out to be hard for PB solvers. Thus, for the benchmarks
considered in this paper Gurobi is playing on home turf. Still, we can see no
good reason why PB solvers should be so bad for formulas that are dead-easy for
tree-like CP. And it certainly would seem well worth it to take a long, hard look
at MIP solving techniques and see what can be ported to PB solvers.

Our findings might seem depressing in that they are mostly bad news for
state-of-the-art pseudo-Boolean solving. However, we would rather view our work
as pointing forward to some crucial challenges that need to be overcome. We
hope that our combinatorial formulas can be valuable as challenge benchmarks in
the quest to develop more efficient PB solvers, which could then fulfil the vision
of [31] and assume their rightful place as “major tools in problem solving.”

1.2 Organization of This Paper

We describe our experimental set-up in Section 2 and discuss our benchmarks
in Section 3. Section 4 contains an analysis of our results, and some concluding
remarks are presented in Section 5.

2 Experimental Set-up

We have conducted an experimental evaluation using the pseudo-Boolean solvers
cdcl-cuttingplanes [12] Open-WBO [26, 29], and Sat4j [21, 32]. These were the
top three solvers in the Pseudo-Boolean Competition 2016 [30] in the cate-
gory DEC-SMALLINT-LIN (“no optimization, small integers, linear constraints,
SAT+UNSAT answers”), and we ran the solvers on such benchmarks as described
in more detail in Section 3. Since our benchmarks are inspired by proof complexity,
where one studies the complexity of certifying unsatisfiability, we focused almost

exclusively on UNSAT instances. For our experiments on shuffled instances we
randomly shuffled the variable indices, literal polarities, and the order of the
constraints as well as variables within the constraints.

We used the versions of cdcl-cuttingplanes and Open-WBO submitted to the
PB Competition 2016 and a slightly later version of Sat4j from November 4, 2016.
By default Sat4j runs two subsolvers in parallel (Resolution and CuttingPlanes)
and returns the answer of the first of them solving the problem. This gives Sat4j
an advantage, since it gets double the amount of CPU time compared to the
other solvers, but it only makes our point stronger when it performs poorly.
Since we are particularly interested in analysing cutting planes-based solvers we
included the standalone solver Sat4jCP in our experiments, but we only show
results when they differ from Sat4j (i.e., when the formula was decided by the
Resolution subsolver). For the cdcl-cuttingplanes experiments with fixed decision
orders we used a version from April 19, 2017, since the competition version had
no support for fixed orders. For our mixed integer programming experiments we
used the solver Gurobi [15] version 7.5.2 restricted to a single thread.

We ran our experiments on a cluster with a set-up of 6 AMD Opteron 6238
(2.6 GHz) cores and 16 GB of memory. The timeout for the experiments was
3000 seconds unless otherwise stated.

3 Description of Benchmarks

All our benchmarks were designed to be very easy for the cutting planes (CP)
proof system, so that the experiments would measure proof search quality for
instances where CP-based solvers should in principle be able to perform well.

The well-known pigeonhole principle (PHP) formula claims that n + 1 pigeons
can be placed into n holes with only one pigeon per hole, encoded as pigeon axioms∑

j∈[n] xi,j ≥ 1 and hole axioms
∑

i∈[n+1] xi,j ≤ 1 for i ∈ [n+ 1], j ∈ [n]. We also
consider more complicated versions by introducing emergency exits as follows.
We generate k disjoint PHP instances over variables x`

i,j , where for each ` ∈ [k]
we allow some pigeon(s) i∗ to “take the emergency exit” by changing the pigeon
axiom to y` +

∑
j∈[n] x

`
i∗,j ≥ 1, where y`, ` ∈ [k], are new variables. However, a

special constraint
∑k

`=1 y
` ≤ k − 1 enforces that at most k − 1 emergency exits

are taken in total. We study two variants where either (a) one particular pigeon
per PHP instance can take the emergency exit or (b) all pigeons in an instance
can do so. All these versions of PHP are rationally unsatisfiable.

A subset cardinality (SC) formula [27, 34, 35] is generated from a 0/1 n× n
matrix A = (ai,j) with 4 ones in every row and column, except that one row and
column contains 5 ones. Writing Ri = {j | ai,j = 1} and Cj = {i | ai,j = 1} to
denote the positions of 1s in row i and column j, respectively, the formula obtained
from A consists of the constraints

∑
j∈Ri

xi,j ≥ |Ri|/2 and
∑

i∈Cj
xi,j ≤ |Ci|/2 for

i, j ∈ [n]. We use randomly generated matrices and “fixed bandwidth” matrices
with a fixed pattern of ones shifted down the diagonal. We also consider a
more restrictive version with equality constraints

∑
j∈Ri

xi,j = d|Ri|/2e and∑
i∈Cj

xi,j = b|Ci|/2c. Again, all of these instances are rationally unsatisfiable.

The even colouring (EC) formula [24] over a connected graph G = (V,E) with
all v ∈ V of even degree deg(v) consists of constraints

∑
e∈E(v) xe = deg(v)/2,

where E(v) denotes the set of edges incident to v. This formula claims the
existence of a black-white edge colouring such that every vertex has the same
number of black and white edges, and is unsatisfiable if and only if |E| is odd.
We study these formulas for two families of graphs: (a) long, narrow toroidal
grids, where every vertex has edges horizontally and vertically to its 4 neighbours,
and with one edge split into a degree-2 vertex to get an odd number of edges;
(b) random regular graphs of even degree 2d, splitting an edge if d is even.

The vertex cover (VC) formula with constraints xu + xv ≥ 1, (u, v) ∈ E,
and

∑
v∈V xv ≤ S encodes that a graph G = (V,E) has a size-S vertex cover

(i.e., a set such that every edge is incident to some vertex in it). As in [36], we
examine long, narrow rectangular toroidal grids with m rows and n columns for
m = O(1) even. The minimal vertex cover for such a graph has size mdn/2e. We
generate four versions by varying the value of S, where for the first three n is odd:
(a) S = m dn/2e − 1, the largest value such that the formula is still unsatisfiable
(version hard); (b) S = mn/2 (version easy), which is more obviously unsatisfiable
but still has a rational solution with value 1

2 for all variables; (c) S = mbn/2c− 1
(version norat), without rational solutions; (d) S = mbn/2c−1 for n even (version
norat-even), where S is the largest value that makes the formula unsatisfiable
both for Boolean and rational values. To obtain slightly harder instances without
superfluous edges we also consider such grids with all vertical edges removed,
yielding a collection of disjoint cycles, and use the same values of S as above.

The dominating set (DS) formula for a graph G consists of constraints∑
u∈{v}∪N(v) xu ≥ 1 for all v ∈ V and

∑
v∈V xv ≤ S, saying that G has a size-S

dominating set (i.e., such that every vertex in G either belongs to or is a neighbour
of a vertex in the set). We study these formulas for hexagonal grids as represented
in [36] with m rows and n columns, with one dimension fixed while the other
scales. Since hexagonal grids are 3-regular any dominating set must have size at
least d|V |/4e, and so we choose S = b|V |/4c. When 4 - |V | the resulting instance
is rationally unsatisfiable, but otherwise there is always a rational solution setting
all variables to 1

4 , whereas the Boolean satisfiability depends in nontrivial ways
on the exact geometry of the grid [36] (in particular, in contrast to the other
families some of our dominating set instances are satisfiable).

The linearized pebbling (LinPeb) formula of arity d over a directed acyclic
graph with a unique sink has variables v1, . . . , vd for each vertex v and consists of
the following contradictory constraints (where we let d′ = 2b(d−1)/2c+1): (a) for

every source vertex v the constraint 2
∑d

i=1 vi ≥ d′; (b) for every non-source

vertex w with predecessors u and v the constraint 2
∑d

i=1 wi ≥
∑d

i=1(ui + vi);

(c) for the unique sink vertex z the constraint 2
∑d

i=1 zi ≤ d′. We study instances
generated from so-called pyramid graphs.7

7 We remark that some linearized pebbling formulas were submitted to the Pseudo-
Boolean Competition 2016 under the name sumineq (sum inequalities).

Table 1: Overview of benchmarks and results

Formula Rational Small Division Performance
family solutions backdoor needed cdcl-CP Sat4j O-WBO

PHP No – – Easy Easy Hard
SC No – – Easy Easy Hard
EC even grid Yes Yes No Easy Easy Hard
EC odd grid Yes No Helpful Harda Hard Hard
EC random Yes No(?) Crucial(?) Fairly hard Hard Hard

VC hard Yes No Helpful Hardb Hard Easyc

VC easy Yes Many No Hardb Hard Easyc

VC norat(-even) No – – Hardb Hard Easyc

DS Yes Many No Hardd Hardd Easyc

LinPeb Yes Yes No Hardb Harde Easy

a Easy if formula appropriately reordered. b Fairly easy for forced order.
c Hard if shuffled. d Easy if LP-derivable constraints added. e Easy for Sat4jRes.

4 Experimental Evaluation

In this section we describe and analyse the results of our experiments.8 As already
mentioned, our benchmarks can be scaled in size by varying a parameter, allowing
to study the asymptotic behaviour of the solvers as the instance size increases.
Our figures illustrate this by plotting performance on the y-axis against the value
of the scaling parameter on the x-axis (which, in particular, seems to be a better
way of visualizing our data than using so-called cactus plots).

4.1 Pseudo-Boolean Solvers and Boolean Reasoning

Our first conclusion is that PB solvers need to strengthen their reasoning by
using stronger rules than saturation and implementing better proof search.

As an example, consider even colouring (EC) formulas, which can be refuted
(i.e., proven unsatisfiable) with tree-like cutting planes proofs in linear size using
just two applications of division. We could thus expect solvers based on cutting
planes (CP) to run blisteringly fast for EC formulas over any graph, but this is
not the case. We have generated formulas from m × n grids with m = O(1) a
small constant, which have short proofs in resolution when encoded in CNF, and
random regular graphs, which are exponentially hard for resolution.9

For grids with m even the formulas are trivial for both Sat4j and cdcl-
cuttingplanes, but for m odd they are hard. Interestingly, in the latter case
Sat4jRes performs better than Sat4jCP , suggesting that CP-based solvers do not

8 By necessity, our discussion is far from exhaustive, but readers can find all our
benchmarks and the data from our experiments at www.csc.kth.se/~jakobn/

publications/CombinatorialBenchmarksPBsolvers.
9 Such a lower bound cannot be found in the literature, but is possible to obtain for

graphs with good enough expansion using a variation of the techniques in [4].

http://www.csc.kth.se/~jakobn/publications/CombinatorialBenchmarksPBsolvers
http://www.csc.kth.se/~jakobn/publications/CombinatorialBenchmarksPBsolvers

 0.01

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800 900

W
a
l
l

c
l
o
c
k

t
i
m
e

(
s
)

#vertices

cdcl-cp deg=4
Open-WBO deg=4

Sat4j deg=4
Sat4jCP deg=4
cdcl-cp deg=6
cdcl-cp deg=8
Open-WBO deg=6

Sat4j deg=6
Sat4jCP deg=6

Fig. 1: Solver performance for even colouring formulas on random graphs (#con-
straints =#vertices |V |; #variables = deg · |V |/2 + O(1)).

find better proofs than CDCL-based solvers. It is also notable that flipping the
vertex (and hence variable) order from column-major to row-major, even though
it does not change the formula, helps cdcl-cuttingplanes find an efficient proof.
This indicates that there is ample room to improve on search heuristics.

To explain the difference between even-row and odd-row grids, we observe
that EC formulas always have a rational solution with all variables assigned
value 1

2 , but grids with an even number of rows and columns have backdoors of
size 1 (namely, either of the edges incident to the degree-2 vertex on the split
edge), and as long as the number of rows m is even there are backdoors of size
at most m = O(1). If m is odd, however, the backdoor size jumps to n−O(1).

EC formulas on random graphs are very hard for Open-WBO and Sat4j .
They are not easy for cdcl-cuttingplanes either, but this solver performs markedly
better, and does not seem to be sensitive to the degree of the graph (see Figure 1).
The only short proofs known for these formulas crucially use division [36], and
we believe that the superior performance of cdcl-cuttingplanes is explained by the
frequent (though still limited) use of division in this solver. It is worth noting,
though, that for the few instances solved by Sat4j the number of conflicts is not
too far from cdcl-cuttingplanes. The most likely explanation is that Sat4j does
divide the constraint in the rare case when all coefficients are equal, which is all
that is needed in [36]. To be sure whether the above explanations are correct we
would need to do proof logging, but for PB solvers there is unfortunately nothing
like the DRAT format [17, 18, 37] used for CDCL solvers.

Another formula family where cdcl-cuttingplanes performs better than Sat4j
are linearized pebbling formulas, which are easy for Sat4jRes but extremely hard
for Sat4jCP (see Figure 2). Interestingly, for these instances Sat4j generates
constraints with coefficients larger than 109 in a matter of seconds, whereas

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160

W
a
l
l

c
l
o
c
k

t
i
m
e

(
s
)

pyramid height

cdcl-cp orig
cdcl-cp shuf
Open-WBO orig
Open-WBO shuf

Sat4j orig
Sat4j shuf

Sat4jCP orig
Sat4jCP shuf

Fig. 2: Performance for arity-5 linearized pebbling formulas on pyramids, with
(shuf) and without (orig) shuffling (#constraints≈#variables≈ height2/2).

cdcl-cuttingplanes keeps all coefficients small. Division is not critically needed for
efficient refutations here, but it might be that it is what helps cdcl-cuttingplanes
keep coefficient sizes down and achieve better performance. Sat4j has problems
with large coefficients also for vertex cover (VC) and dominating set (DS) in-
stances, where cdcl-cuttingplanes performs better, but not for PHP and subset
cardinality (SC) formulas, where both solvers are fast.

Let us next review what our data say about the extended rational hypothesis ,
i.e., that instances with small backdoors to rational unsatisfiability should be
easy. PHP and SC formulas do not have rational solutions, and the fact that
instances are trivial for both cdcl-cuttingplanes and Sat4j supports the rational
hypothesis. PHP formulas with emergency exits were designed to be potentially
harder instances that still do not have rational solutions, but they fail to fool
cdcl-cuttingplanes and hence can be interpreted as circumstantial evidence in
favour of the rational hypothesis for this solver (but less so for Sat4j).

As mentioned above, cdcl-cuttingplanes and Sat4j run fast on EC formulas
for backdoor size 1 but not larger (random graphs very likely yield instances
without small backdoors, though we did not attempt a rigorous proof). This
supports the hypothesis, but the fact that cdcl-cuttingplanes also runs fast when
slightly modifying instances for odd-row grids makes the connection less clear.

The VC instances norat and norat-even without rational solutions are easier
than the easy version, which is in turn easier than the hard version. This is
consistent with the hypothesis since the backdoor size is 0 for norat(-even)

and 1 for easy (rational solutions disappear after branching on any vertex),
whereas the smallest backdoor for version hard has size m− 1 (m− 1 vertices
in the same column form a backdoor, but any m− 2 vertices can be assigned to
leave a rational solution). This holds for both grids and collections of cycles.

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120

W
a
l
l

c
l
o
c
k

t
i
m
e

(
s
)

#columns

cdcl-cp orig
cdcl-cp shuf
cdcl-cp fix
cdcl-cp LEQ
Open-WBO orig
Open-WBO shuf
Open-WBO LEQ

Sat4j orig
Sat4j shuf
Sat4j LEQ

Fig. 3: Performance for dominating set on hex grids with 7 rows with shuffling
(shuf) and without (orig) and also with added LEQ constraints as well as for fixed-
order (fix) cdcl-cuttingplanes (#constraints = #variables = 7 ·columns+ O(1)).

Linearized pebbling formulas have a size-d backdoor (the d variables associated
with the sink). Sat4jCP does not run fast on these formulas, but with some
tweaking cdcl-cuttingplanes can be convinced to perform well. It seems like a
stimulating challenge to develop natural heuristics for the CP-based solvers that
would make them competitive with Open-WBO and Sat4jRes for these instances.

Dominating set formulas on hexagonal grids have rational solutions when the
total number of vertices is divisible by 4, in which case there is strong empirical
evidence for backdoors of size 3 (obtained by considering any vertex and two of its
neighbours). Somewhat annoyingly, we have not been able to always make cdcl-
cuttingplanes run fast for such instances, however, so as of now our experimental
results for these formulas do not support the rational hypothesis.

4.2 Pseudo-Boolean Solvers and Linear Programming

To support the claim that PB solvers also need better linear programming
capabilities, we again consider dominating set instances on hexagonal grids. These
are very challenging for both Sat4j and cdcl-cuttingplanes . They are manageable
for Open-WBO when the fixed dimension is small but quickly become very hard
as this dimension grows. Also, Open-WBO is extremely sensitive to random
shuffling, a phenomenon that we discuss further in Section 4.3.

Quite intriguingly, all instances become trivial if modified as follows. Recall
that we have a greater-or-equal (GEQ) constraint

∑
u∈{v}∪N(v) xu ≥ 1 for each

vertex v encoding that it is dominated. Since hexagonal grids are 3-regular, and
since the required dominating set size is at most |V |/4, it follows that at most one
of the vertices in {v} ∪N(v) is in the dominating set. These less-or-equal (LEQ)

constraints can easily be derived using only the addition rule in cdcl-cuttingplanes
and Sat4j [36], and with such constraints added the instances become trivial
as shown in Figure 3. So far we have not been able to get the solvers to realize
that these LEQ constraints should be derived, though, although elementary linear
programming would be sufficient to achieve this.

4.3 Pseudo-Boolean Solvers Versus CDCL and MIP

When comparing cutting planes-based solvers to CDCL solvers we get mixed
results. On PHP and subset cardinality formulas both CP-based solvers Sat4j
and cdcl-cuttingplanes perform very well, while Open-WBO does very poorly,
which nicely matches that these formulas are easy for CP but exponentially hard
for resolution. For our other benchmarks we find Open-WBO to be surprisingly
competitive, but performance is often brittle. In contrast, although all our
benchmarks are very easy for CP, on many instances cdcl-cuttingplanes and Sat4j
are quite far from performing well (though cdcl-cuttingplanes can often be made
to match Open-WBO performance by manual intervention such as fixing good
variable decision orders).

An example family of benchmarks for which Open-WBO shines are vertex
cover (VC) formulas. Here the performance of cdcl-cuttingplanes and Sat4j is
quite poor in general, though the former solver is clearly better than the latter. A
closer look at the results reveals that the number of conflicts seems to be similar,
but since Sat4j solves so few instances within the timeout limit it is hard to know
for sure whether the differences in running time are due to proof search quality
or lower-level implementation details.

Open-WBO performs quite well for almost all our VC instances (except for the
hard version on collections of cycles), which indicates that the encoding to CNF
admits an efficient resolution proof. Since the covering constraints xu +xv ≥ 1 for
the edges (u, v) ∈ E are already disjunctive clauses, the performance is likely to
depend on how the vertex cover size constraint

∑
v∈V xv ≤ S is encoded into CNF.

A key aspect here is that the vertices are listed consecutively when we generate
the grid graphs (more precisely, in column-major order). This means that as
Open-WBO decides on consecutive variable indices, it will explore neighbouring
vertices constrained by common covering constraints, and it seems plausible that
propagation on the auxiliary variables in the encoding of the size constraint
helps the solver count efficiently. This hypothesis10 is supported by the fact
that when instances are shuffled the performance degenerates dramatically for
Open-WBO , but much less so for cdcl-cuttingplanes. A further observation is
that though cdcl-cuttingplanes is rather bad for these instances, it can be made
much more efficient by fixing the decison order (namely, branching on vertices
in column-major order). This indicates that with a better decision heuristic
cdcl-cuttingplanes could potentially be competitive with Open-WBO here. See
Figure 4 for plots of all the findings above.

10 It would be interesting to verify this by a more in-depth study of Open-WBO . However,
the PB version of this solver was not open-source at the time of our experiments,
and also our main focus in this work is on solvers implementing CP-based reasoning.

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200

W
a
l
l

c
l
o
c
k

t
i
m
e

(
s
)

#columns

cdcl-cp orig
cdcl-cp shuf
cdcl-cp fix
Open-WBO orig
Open-WBO shuf

Sat4j orig
Sat4j shuf

Fig. 4: Performance for vertex cover formulas on grids with 8 rows, version
norat, with shuffling (shuf) and without (orig), and also for fixed-order (fix)
cdcl-cuttingplanes (#variables = |V | = 8 · columns, #constraints = 2 · |V |).

As an example of benchmarks that Sat4j and cdcl-cuttingplanes can solve
easily we have pigeonhole principle (PHP) formulas with n + 1 pigeons and
n pigeonholes. These have CP proofs in size O

(
n2
)

that can be found with O(n)
conflicts. While both solvers only need O(n) conflicts, and seem to find the same
(essentially optimal) proof, we found that running times scale very differently.
A linear regression analysis using the logarithm of the number of constraints
indicates running time O

(
n3.2

)
for cdcl-cuttingplanes but O

(
n5.0

)
for Sat4j (see

Figure 5). Interestingly, this turned out to be due to an implementation inefficiency
in Sat4j , which could be identified and fixed thanks to our experiments, after
which running times became more similar. It is not surprising that PHP formulas
are very hard for Open-WBO , since there is an exponential lower bound for
resolution [16] which can also be adapted (using techniques in [4]) to work for
other common ways of encoding the at-most-1 pigeonhole constraints into CNF.

PHP formulas with emergency exits are always easy for cdcl-cuttingplanes
but remain hard for Open-WBO independently of the number of emergency
exits k. This latter finding is also as expected, since even if the solver chooses
k − 1 emergency exits in the right way to satisfy k − 1 subinstances of PHP,
the residual formula is a standard PHP instance which is exponentially hard.
Interestingly, Sat4j performs well on the version where all pigeons can take the
emergency exit, but much worse on the version with only one pigeon per exit
(which is more constrained, and could thus have been expected to be easier).
We remark that when both Sat4j and cdcl-cuttingplanes solve these formulas
efficiently the number of conflicts seem to grow like O(kn), but when Sat4j does
not perform well the number of conflicts grows faster. Thus, in contrast to the
results for standard PHP, here the proof search quality seems worse in Sat4j .

 0.01

 0.1

 1

 10

 100

 1000

 100 200 300 400 500

 100

 200

 300

 400

 500

W
a
l
l

c
l
o
c
k

t
i
m
e

(
s
)

#
c
o
n
f
l
i
c
t
s

#pigeons

cdcl-cp running time
cdcl-cp #conflicts
Sat4j running time
Sat4j #conflicts

cdcl-cp fit: 3.230 x -16.994
Sat4j fit: 4.962 x -20.754

Fig. 5: Running time and #conflicts for cdcl-cuttingplanes and Sat4j on PHP
(#variables = pigeons(pigeons− 1), #constraints = 2 · pigeons− 1).

Looking at subset cardinality formulas, they seem to be solved much faster
than PHP when plotting running time against the scaling parameter, but this is
since the instances are much smaller. Again, we observe that Sat4j takes signifi-
cantly longer than cdcl-cuttingplanes as the instance size increases. Open-WBO is
completely lost, as expected in view of the exponential lower bound for resolution
in [27] (see Figure 6).

Let us finally make a brief comparison to MIP solving. Gurobi does remarkably
well on all our benchmarks, solving all but the three largest EC instances in under
10 seconds. On the one hand, this is not too surprising, since all of our instances
have tree-like proofs, and hence just branching and backtracking without learning
is enough to solve them. Furthermore, the challenging instances that are rationally
unsatisfiable will be solved Gurobi very quickly, since it also considers linear
relaxations of the problem and this is enough to decide unsatisfiability. However,
it is hard to avoid the conclusion that one promising approach for strengthening
PB solvers would be to incorporate techniques from MIP solving.

5 Concluding Remarks

In this paper we evaluate the three pseudo-Boolean solvers cdcl-cuttingplanes,
Open-WBO , and Sat4j on decision problems encoded as linear constraints with
small integer coefficients, a kind of problems where these solvers were among
the best in the Pseudo-Boolean Competition 2016. The solvers differ in that
Open-WBO re-encodes the problem into CNF and runs a CDCL solver, thus
performing proof search in resolution for the re-encoded instance, whereas cdcl-
cuttingplanes and Sat4j implement conflict-driven search natively with pseudo-
Boolean constraints, corresponding to cutting planes (CP) proof search.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000

W
a
l
l

c
l
o
c
k

t
i
m
e

(
s
)

matrix dimension

cdcl-cp orig
cdcl-cp shuf
sat4jCP orig
sat4jCP shuf
openwbo orig
openwbo shuf

Fig. 6: Performance for subset cardinality formulas on random graphs (#variables
= 4 · dimension + 1, #constraints = 2 · dimension).

We have performed extensive experiments on carefully constructed combina-
torial benchmarks to investigate how efficiently these solvers implement their
chosen methods of reasoning. Although all of our instances have been specifically
designed to be very easy for the cutting planes proof system, the performance of
cdcl-cuttingplanes and Sat4j varies greatly, and is often quite poor. Theoretical
as well as empirical evidence points to the conclusion that the reasoning in these
solvers needs to be strengthened, in particular, by exploiting the division rule.

For many of the benchmarks studied we can help Sat4j and cdcl-cuttingplanes
run fast by giving advice in the form of a good, fixed variable decision order, or
sometimes by reordering variables and constraints. An immediate question is
whether the solvers could achieve such good performance on their own by some
enhanced heuristic. It can be observed that this phenomenon occurs most often
for instances which either do not even have rational solutions—i.e., when the
real polytope defined by the linear constraints is in fact empty—or have small
backdoor sets such that any assignment to these backdoor variables eliminates
all rational solutions. We find this to be a very intriguing connection, and believe
it would be interesting to investigate further whether it can be the case more
generally that strong solver performance correlates with the existence of small
backdoors to rationally unsatisfiable instances.

As expected, Open-WBO stands no chance against cdcl-cuttingplanes and
Sat4j when run on instances that are hard for resolution when encoded into CNF.
However, when there are efficient proofs in both resolution and cutting planes
we see that the CP-based solvers can be orders of magnitude slower. Curiously,
if cdcl-cuttingplanes is helped by being given a good variable order on such
instances, then the performance is competitive with Open-WBO , but when left
to its own devices cdcl-cuttingplanes does not choose this order. This raises the

question whether the encoding to CNF that is used helps Open-WBO find a good
variable order and stick with it. It should be noted, though, that Open-WBO is
very sensitive to permutations of the input, so the encoding to CNF is only good
when the constraints in the initial pseudo-Boolean instance are presented in a
helpful order. The CP-based solvers appear much more robust in this regard.

Finally, we observe that for the instances considered in this paper all three
PB solvers that we study are clearly outperformed by the general-purpose mixed
integer programming solver Gurobi . At first sight this is slightly disappointing,
since PB solvers working on 0/1-valued problems should be able to exploit
techniques not available to MIP solvers, but a big part of the explanation is
probably that our benchmarks have been constructed to be easy for tree-like CP,
and so they are by design amenable to branch-and-bound techniques. But another
reason is likely to be that Gurobi solves linear programming relaxations of the
problem during the search, which makes it run fast on instances that lack
rational solutions but are apparently very challenging for PB solvers. We believe
that there would be great potential for improvement by incorporating such
linear programming reasoning in PB solvers. It would also be interesting to find
benchmarks that are easy for conflict-driven pseudo-Boolean search, at least in
theory, but not for MIP or CDCL, i.e., instances that are hard for resolution and
tree-like cutting planes but easy for general, DAG-like cutting planes.

Taken together, our results can be viewed as a concrete set of challenges to be
overcome in order to construct more efficient pseudo-Boolean solvers. It is also
our belief that a further study of crafted benchmarks like the ones in this paper
has the potential to shed valuable light on the inner workings of PB solvers.

Acknowledgements

We are most grateful to Daniel Le Berre for long and patient explanations of the
inner workings of pseudo-Boolean solvers, and to João Marques-Silva for helping
us get an overview of relevant references for pseudo-Boolean solving. We also
want to thank Ruben Martins for sharing an executable of Open-WBO with us
and answering questions about the solver. Finally, we are thankful for the many
detailed comments from the SAT 2018 anonymous reviewers, which helped to
improve this paper considerably.

Our computational experiments were performed on resources provided by the
Swedish National Infrastructure for Computing (SNIC). Many of our benchmarks
were generated using the tool CNFgen [8, 20], for which we gratefully acknowledge
Massimo Lauria.

The fourth author performed part of this work while at KTH Royal Institute
of Technology. All authors were funded by the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007–2013) / ERC
grant agreement no. 279611. The third author was also supported by Swedish
Research Council grants 621-2012-5645 and 2016-00782, and the fourth author
by the Prof. R Narasimhan Foundation.

References

[1] Barth, P.: Linear 0-1 inequalities and extended clauses. Technical Report MPI-
I-94-216, Max-Planck-Institut für Informatik (Apr 1994), preliminary version in
LPAR ’93

[2] Barth, P.: A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean
optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für Informatik
(Jan 1995)

[3] Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI ’97). pp. 203–208 (Jul 1997)

[4] Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple.
Journal of the ACM 48(2), 149–169 (Mar 2001), preliminary version in STOC ’99

[5] Boros, E., Hammer, P.L.: Pseudo-Boolean optimization. Discrete Applied Mathe-
matics 123(1–3), 155–225 (Nov 2002)

[6] Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 24(3),
305–317 (Mar 2005), preliminary version in DAC ’03

[7] Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems.
Discrete Mathematics 4(1), 305–337 (1973)

[8] CNFgen: Combinatorial benchmarks for SAT solvers. https://github.com/

MassimoLauria/cnfgen

[9] Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs.
Discrete Applied Mathematics 18(1), 25–38 (Nov 1987)

[10] Dixon, H.E., Ginsberg, M.L., Hofer, D.K., Luks, E.M., Parkes, A.J.: Generalizing
Boolean satisfiability III: Implementation. Journal of Artificial Intelligence Research
23, 441–531 (2005)

[11] Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2(1-4), 1–26 (2006)

[12] Elffers, J.: cdcl-cuttingplanes: A conflict-driven pseudo-Boolean solver (2016),
submitted to the Pseudo-Boolean Competition 2016

[13] Elffers, J., Nordström, J.: Divide and conquer: Towards faster pseudo-Boolean
solving. In: Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI-ECAI ’18) (Jul 2018), to appear

[14] Gomory, R.E.: An algorithm for integer solutions of linear programs. In: Graves,
R., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302.
McGraw-Hill, New York (1963)

[15] Gurobi optimizer. http://www.gurobi.com/
[16] Haken, A.: The intractability of resolution. Theoretical Computer Science 39(2-3),

297–308 (Aug 1985)
[17] Heule, M., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal proofs. In:

Proceedings of the 13th International Conference on Formal Methods in Computer-
Aided Design (FMCAD ’13). pp. 181–188 (Oct 2013)

[18] Heule, M., Hunt Jr., W.A., Wetzler, N.: Verifying refutations with extended
resolution. In: Proceedings of the 24th International Conference on Automated
Deduction (CADE-24). Lecture Notes in Computer Science, vol. 7898, pp. 345–359.
Springer (Jun 2013)

[19] Joshi, S., Martins, R., Manquinho, V.M.: Generalized totalizer encoding for pseudo-
Boolean constraints. In: Proceedings of the 21st International Conference on
Principles and Practice of Constraint Programming (CP ’15). Lecture Notes in
Computer Science, vol. 9255, pp. 200–209. Springer (August-September 2015)

https://github.com/MassimoLauria/cnfgen
https://github.com/MassimoLauria/cnfgen
http://www.gurobi.com/

[20] Lauria, M., Elffers, J., Nordström, J., Vinyals, M.: CNFgen: A generator of crafted
benchmarks. In: Proceedings of the 20th International Conference on Theory
and Applications of Satisfiability Testing (SAT ’17). Lecture Notes in Computer
Science, vol. 10491, pp. 464–473. Springer (Aug 2017)

[21] Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7, 59–64 (2010)

[22] Manquinho, V.M., Marques-Silva, J.: On using cutting planes in pseudo-Boolean
optimization. Journal on Satisfiability, Boolean Modeling and Computation 2,
209–219 (2006), preliminary version in SAT ’05

[23] Manquinho, V.M., Marques-Silva, J.P.: Integration of lower bound estimates in
pseudo-Boolean optimization. In: 16th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI ’04). pp. 742–748 (Nov 2004)

[24] Markström, K.: Locality and hard SAT-instances. Journal on Satisfiability, Boolean
Modeling and Computation 2(1-4), 221–227 (2006)

[25] Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (May 1999),
preliminary version in ICCAD ’96

[26] Martins, R., Manquinho, V.M., Lynce, I.: Open-WBO: A modular MaxSAT solver.
In: Proceedings of the 17th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’14). Lecture Notes in Computer Science, vol. 8561,
pp. 438–445. Springer (Jul 2014)

[27] Mikša, M., Nordström, J.: Long proofs of (seemingly) simple formulas. In: Pro-
ceedings of the 17th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’14). Lecture Notes in Computer Science, vol. 8561, pp.
121–137. Springer (Jul 2014)

[28] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC ’01). pp. 530–535 (Jun 2001)

[29] Open-WBO: An open source version of the MaxSAT solver WBO. http://sat.
inesc-id.pt/open-wbo/

[30] Pseudo-Boolean competition 2016. http://www.cril.univ-artois.fr/PB16/ (Jul
2016)

[31] Roussel, O., Manquinho, V.M.: Pseudo-Boolean and cardinality constraints. In:
Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfia-
bility, Frontiers in Artificial Intelligence and Applications, vol. 185, chap. 22, pp.
695–733. IOS Press (Feb 2009)

[32] Sat4j: The Boolean satisfaction and optimization library in Java. http://www.
sat4j.org/

[33] Sheini, H.M., Sakallah, K.A.: Pueblo: A hybrid pseudo-Boolean SAT solver. Journal
on Satisfiability, Boolean Modeling and Computation 2(1-4), 165–189 (Mar 2006),
preliminary version in DATE ’05

[34] Spence, I.: sgen1: A generator of small but difficult satisfiability benchmarks.
Journal of Experimental Algorithmics 15, 1.2:1–1.2:15 (Mar 2010)

[35] Van Gelder, A., Spence, I.: Zero-one designs produce small hard SAT instances.
In: Proceedings of the 13th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’10). Lecture Notes in Computer Science, vol. 6175,
pp. 388–397. Springer (Jul 2010)

[36] Vinyals, M., Elffers, J., Giráldez-Cru, J., Gocht, S., Nordström, J.: In between
resolution and cutting planes: A study of proof systems for pseudo-Boolean SAT
solving (Jul 2018), to appear

http://sat.inesc-id.pt/open-wbo/
http://sat.inesc-id.pt/open-wbo/
http://www.cril.univ-artois.fr/PB16/
http://www.sat4j.org/
http://www.sat4j.org/

[37] Wetzler, N., Heule, M., Hunt Jr., W.A.: DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In: Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’14). Lecture
Notes in Computer Science, vol. 8561, pp. 422–429. Springer (Jul 2014)

	Using Combinatorial Benchmarks to Probe the Reasoning Power of Pseudo-Boolean Solvers

