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Abstract. We explore the relationships between two closely related op-
timization problems: MaxSAT and Optimization Modulo Bit-Vectors
(OBV). Given a bit-vector or a propositional formula F and a target
bit-vector T , Unweighted Partial MaxSAT maximizes the number of sat-
isfied bits in T , while OBV maximizes the value of T . We propose a
new OBV-based Unweighted Partial MaxSAT algorithm. Our resulting
solver–Mrs. Beaver–outscores the state-of-the-art solvers when run with
the settings of the Incomplete-60-Second-Timeout Track of MaxSAT
Evaluation 2017. Mrs. Beaver is the first MaxSAT algorithm designed
to be incremental in the following sense: it can be re-used across multi-
ple invocations with different hard assumptions and target bit-vectors.
We provide experimental evidence showing that enabling incrementality
in MaxSAT significantly improves the performance of a MaxSAT-based
Boolean Multilevel Optimization (BMO) algorithm when solving a new,
critical industrial BMO application: cleaning-up weak design rule viola-
tions during the Physical Design stage of Computer-Aided-Design.

1 Introduction

Modern SAT solvers [44, 30, 9] can be applied to solve various optimization prob-
lems in the domain of propositional and bit-vector logic. One such well-known
problem is Weighted MaxSAT [24, 23]1. A Weighted MaxSAT instance comprises
a set of hard satisfiable propositional clauses H (H may also contain bit-vector
constraints, reducible to propositional clauses) and a set of weighted soft con-
straints T = {tn−1, tn−2, . . . , t0}, where each constraint ti is associated with a
strictly positive integer weight wi. To solve such an instance, the solver is re-
quired to return an assignment which satisfies H and maximizes the function∑n−1

i=0 ti ∗ wi, comprising the overall weight of the satisfied soft constraints. For
the rest of the paper, for convenience and without restricting generality, we as-
sume that every soft constraint is a unit clause.2 Thus, T can be thought of
as a bit-vector, where t0 is its Least Significant Bit (LSB) and tn−1 is its Most
Significant Bit (MSB). We call T the target bit-vector, or, simply, the target and
every ti ∈ T a target bit.

1 For the rest of the paper, MaxSAT refers to Partial MaxSAT, where arbitrary hard
constraints are allowed.

2 An arbitrary soft constraint ti, reducible to a set of propositional clauses F , can be
transformed to a unit clause s′, where s′ is a fresh variable, by adding the clause
¬s′ ∨ c to H, for each clause c ∈ F .



Various optimization problems can be expressed as a sub-class of Weighted
MaxSAT. Unweighted MaxSAT comprises a restriction of Weighted MaxSAT
to problems where all the weights are equal to 1. Essentially, in Unweighted
MaxSAT, one has to maximize the number of satisfied target bits or, in another
words, minimize the number of unsatisfied target bits.

Optimization Modulo Bit-Vectors (OBV), also known as Lexicographic SAT
(LEXSAT), is another optimization problem, recently studied in [10, 11, 35, 25,
41, 40]. In OBV, the value of T has to be maximized (where T is interpreted
as an unsigned integer). To reduce OBV to Weighted MaxSAT, one can simply
assign every target bit ti the weight 2i, thus ensuring that the weight of any bit
ti 6=0 is greater than the overall weight of the bits less significant than i. The first
OBV algorithm to be implemented, νZ [10, 11], solved OBV by applying this
very reduction. However, it was shown in [35] that dedicated SAT-based OBV
algorithms are substantially more efficient.

Can one then take the opposite route, that is, reduce MaxSAT to OBV? Our
answer is affirmative.

We propose a new OBV-based Unweighted MaxSAT algorithm, called
Mrs. Beaver. Mrs. Beaver is composed of two stages: the incomplete stage,
followed by the complete stage. The basic version of the algorithm, applied at
the incomplete stage, invokes an OBV algorithm with the original target to ap-
proximate an Unweighted MaxSAT solution. We propose several enhancements
to the basic algorithm in order to find a better approximation faster. The basic
version of the complete stage invokes an OBV algorithm whose target comprises
the sum of the bits of the original target starting with the approximate solution,
generated by the incomplete stage.

At its core, Mrs. Beaver is purely SAT-based. It re-uses a single incremental
SAT instance across all the SAT invocations. Performance-wise, Mrs. Beaver

is especially useful in the context of incomplete solving. It outperforms the
state-of-the-art Unweighted MaxSAT solvers when run with the settings of the
Incomplete-60-Second-Timeout Track of the MaxSAT Evaluation 2017.

Unlike the state-of-the-art Unweighted MaxSAT algorithms, Mrs. Beaver

was designed to be incremental in the following sense: it can always be reused
with different hard assumptions and targets. We demonstrate that incrementality
in MaxSAT is useful in the context of the Boolean Multilevel Optimization
problem (BMO) [26]. BMO can be thought of as the following generalization
of Unweighted MaxSAT: instead of a target bit-vector T , there are multiple
target bit-vectors Tm−1, Tm−2, . . . , T0. The goal is to maximize the number of
satisfied bits in each of the targets, where satisfying one bit of Ti is preferred
to satisfying all the bits in Ti−1, Ti−2, . . . , T0. Note that when m = 1, BMO is
essentially identical to Unweighted MaxSAT, while if every target has only one
bit, BMO is identical to OBV. BMO can be solved with iterative invocations
of an Unweighted MaxSAT solver [26]. We show that, on benchmarks generated
by a critical industrial problem we encountered at Intel and have described in
the following paragraph, an incremental Mrs. Beaver-based solution is 6 times
faster than a non-incremental Mrs. Beaver-based one, and 10 times faster than
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a non-incremental Unweighted MaxSAT-based algorithm which applies the best
state-of-the-art Unweighted MaxSAT solver. In addition, while our incremental
Mrs. Beaver-based algorithm is 1.2 times slower than the best dedicated BMO
solver, it uses 50 times less memory (2Gb vs. 100Gb on average).

As part of the Physical Design stage of Computer-Aided-Design (CAD), one
has to solve the problem of placing and routing all the devices, while making
sure that the resulting layout satisfies so-called hard design rules that originate
in the manufacturing requirements. This problem can be solved by reducing it
to bit-vector logic and applying some dedicated algorithms [32, 33]. In practice,
however, there also exist soft design rules, whose satisfaction is not necessary
but desirable. A failure to satisfy a soft rule increases the manufacturing cost.
The soft design rules are divided into classes according to the actual cost of their
violation, such that satisfying a design rule of a certain class i is more important
that satisfying all the design rules of lower classes. The problem of satisfying the
soft design rules after completing the process of place & route under the hard
design rules is immediately reducible to BMO.

In the text that follows, Sect. 2 contains preliminaries. Sect. 3 discusses two
desirable properties of SAT-based optimization algorithms: responsiveness and
incrementality, while Sect. 4 reviews OBV algorithms in light of these two prop-
erties. Sect. 5 introduces our new Unweighted MaxSAT algorithm–Mrs. Beaver.
Sect. 6 discusses how to apply Mrs. Beaver to solve BMO. Section 7 analyzes
the experimental results, and Section 8 sums up our work and conclusions.

2 Preliminaries

2.1 SAT Solving

A SAT solver [44, 30, 9] receives a propositional formula F in Conjunctive Nor-
mal Form (CNF) and returns a satisfying assignment (also called a model) if
one exists. In incremental SAT solving under assumptions [19, 34, 37], the user
may invoke the SAT solver multiple times, each time with a different set of as-
sumptions, where each assumption is a literal, and, possibly, additional clauses.
The solver then checks the satisfiability of all the clauses provided so far while
enforcing the values of the current set of assumptions only.

Modern SAT solvers apply phase saving [20, 46, 42] as their polarity selection
heuristic. In phase saving, once a variable is picked by the variable decision
heuristic, the literal is chosen according to its latest value, where the values are
normally initialized with 0.

2.2 State-of-the-Art Unweighted MaxSAT Solvers

Unweighted MaxSAT is an active area of research as can be seen from the ever-
improving results in the MaxSAT Evaluations held since 2006 [2]. We briefly
summarize the state-of-the-art in Unweighted MaxSAT solving, based on the
MaxSAT Evaluation 2017 results [1].
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Since 2011, the MaxSAT Evaluations have had two types of categories: com-
plete and incomplete. Complete solvers look for a solution that guarantees the
absolute optimum, given a relatively generous time-out. Incomplete solvers on
the other hand seek to find a good solution (that is, a solution in which there
are as few as possible unsatisfied target bits), given a small time-out. Incomplete
solving can be useful in applications where time resources are limited and good
enough solutions are sufficient.

The winner in the complete category of MaxSAT Evaluation 2017 [1] is
Open-WBO-RES [38], closely followed by MaxHS [14]. Open-WBO-RES is a strat-
egy implemented within the framework of the SAT-based Open-WBO solver.
Open-WBO-RES applies unsatisfiable core [17, 36, 5] analysis-based algorithms [21,
27–29] with resolution-based partitioning [38]. MaxHS combines SAT and Mixed
Integer Programming (MIP) [16, 15, 14].

There were two incomplete categories in MaxSAT Evaluation 2017, based on
time-outs of 60 and 300 seconds. An Open-WBO strategy–Open-WBO-LSU (based on
the linear search SAT-UNSAT algorithm (LSU) [6])–won the 60-second category,
followed by MaxHS and the MaxRoster [47] solver. MaxRoster won the 300-second
category, followed by Open-WBO-LSU and MaxHS. MaxRoster is a SAT-based solver
that switches dynamically between different MaxSAT strategies [47].

2.3 Totalizer Encoding

Given a target bit-vector T = {tn−1, tn−2, . . . , t0} and a model µ, let

unsBits(T, µ) =
∑n−1

i=0 ¬µ(ti) be the number of unsatisfied target bits in µ.
We drop µ and use simply unsBits(T ), when allowed by the context.

Our algorithms need a way to a) efficiently create a bit-vector representing the
number of unsatisfied target bits, while at the same time b) imposing an upper
bound on the number of unsatisfied target bits, or, in other words, asserting the
cardinality constraint unsBits(T ) ≤ b for a given b.

To that end, we apply totalizer encoding [4]. The totalizer encodes the sum
of the bits in a bit-vector in unary representation, which is known to be much
more efficient than binary representation in terms of propagation power [4, 3].

Given a bit-vector S = {sn−1, sn−2, . . . , s0}, the totalizer is a binary tree
whose top-most node–tot(S)–is a bit-vector of width n, representing the sum of

S’s bits in unary representation; that is, we have tot(S)i = 1 iff
∑n−1

j=0 sj ≥ i.

The totalizer encoding requires O(n ∗ log(n)) variables and O(n2) clauses.
The totalizer encoding is substantially more efficient if a (low) upper bound–

b–on the number of unsatisfied bits in S is known [13]. In that case, the order
of the number of clauses goes down to O(n ∗ b). This is because the width of all
the nodes longer than b (including the top node tot(S)) can be cut down to b.

To impose the cardinality constraint
∑n−1

i=0 si ≤ b, one has to add one additional
bit tot(S)b to every bit-vector longer than b (in the original totalizer encoding),
and set tot(S)b to 0.

We denote by tot(S,≤ b) the bit-vector of width b+1, representing the total-
izer’s top node, which encodes the sum of all the bits in S in unary representation,
where the cardinality constraint

∑n−1
i=0 si ≤ b is asserted.
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3 Responsiveness and Incrementality

This section discusses two desirable properties of SAT-based optimization al-
gorithms: responsiveness and incrementality. We also briefly review existing
MaxSAT algorithms with respect to these properties.

3.1 Responsiveness

By responsiveness, we mean the ability of the solver to keep generating and
outputting better and better solutions during the solving process. Such a prop-
erty can be useful in various applications when the time resources are limited.
Responsiveness is essential for incomplete MaxSAT solving.

3.2 Incrementality

By incrementality, we mean the ability of the solver to stay alive and handle
many queries, as incremental SAT solving under assumptions does.

Incrementality in Current MaxSAT Algorithms Unfortunately, we are
unaware of any state-of-the-art MaxSAT solver that does not become invalid
after a single invocation. The only attempt at incremental MaxSAT solving was
made in [43], where Open-WBO was modified so that one could re-use the solver
and add hard and soft clauses between invocations. Unfortunately, the proposed
algorithm has not been integrated into the main Open-WBO release. In any event,
however, the ability merely to add clauses is not sufficient for implementing a
BMO algorithm, based on incremental MaxSAT.

Incrementality under Soft Assumptions For our application, we need a
more generic incremental API, where each invocation has its own target bit-
vector. In other words, we want to be able to change the set of soft clauses com-
pletely between invocations. Our Unweighted MaxSAT solver–Mrs. Beaver–
meets that requirement.

Incrementality under Hard and Soft Assumptions We believe that, in
addition to the ability to change the target, MaxSAT users would benefit if
the solvers could handle hard assumptions, which hold only for one particular
invocation of the solver (like incremental SAT solving). Given such an API, one
could de-activate irrelevant clauses and alternate between MaxSAT and pure
SAT calls (where pure SAT calls would have an empty target). Our application
does not require hard assumptions, but hard assumptions could make it possible
to use MaxSAT across other applications. For example, one could then integrate
Unweighted MaxSAT into the IC3 [12] (aka PDR [18]) algorithm for incremental
SAT-based model checking for maximizing the number of state elements that are
assigned don’t care values in satisfiable queries (based on dual-rail encoding).
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Hard assumptions do not appear in the pseudo-code of the algorithms pro-
posed in this paper. However, adding hard assumptions β to our algorithms is
trivial, since, at their core, our algorithms are SAT-based. One simply has to add
the assumptions in β to the list of hard assumptions for every SAT invocation.

4 Optimization Modulo Bit-Vectors (OBV) Algorithms

This section reviews existing OBV algorithms in light of their performance,
responsiveness, and incrementality. We needed to analyze these properties in
order to choose the underlying OBV algorithm for Mrs. Beaver.

As we mentioned in Sect.1, the first OBV solver was νZ [10, 11]. νZ applied
a straightforward reduction to Weighted MaxSAT. However, this approach does
not scale [35]. Two dedicated OBV algorithms were proposed in [35]: OBV-WA
and OBV-BS.

OBV-WA can be thought of as a linear search for the maximal model, start-
ing with the highest possible value of the target and working towards 0. The
algorithm stops at the first satisfying assignment. OBV-WA is an incremental al-
gorithm implemented inside a SAT solver. OBV-WA can be quite efficient, but,
unfortunately, it is not responsive as it finds only one (best) model. Thus it
cannot serve as the underlying building block for Mrs. Beaver.

OBV-BS is depicted in Alg. 1. Essentially, the algorithm implements a binary
search over the possible values of a target T . The algorithm receives a CNF
formula F and the target T .1 It maintains the current model µ, initialized with
an arbitrary model to F at line 3, and a partial assignment α, which is empty
at the beginning. The main loop of the algorithm (starting at line 6) goes over
all the bits of target T starting from the MSB tn−1 down to t0. Each iteration
extends α with either ti or ¬ti, where ti is preferred over ¬ti iff there exists a
model where ti is assigned 1 while bits higher than i have already been assigned in
previous iterations. Phase saving optimization, shown in lines 2 and 10, sets the
phase saving array for the target bits with 1’s before every SAT invocation, thus
encouraging the solver to prefer a higher value for T . Phase saving optimization
improves the performance of the algorithm. OBV-BS is incremental, since it is
based on incremental SAT solving. It is also quite responsive, since it keeps
finding better models throughout its execution.

Independently, OBV-BS, without phase saving optimization, was also sug-
gested in [25] in the context of solving the LEXSAT problem, which is, essen-
tially, identical to OBV.

BINARY [40, 41] is another OBV algorithm. BINARY can be thought of as a
partial integration of OBV-WA into OBV-BS. BINARY applies OBV-BS, where, for
every SAT solver iteration inside the main loop, it adds the upper half of the
bits, that is,

{
ti, ti+1, . . . , tdi/2e

}
, as assumptions, rather than only the current bit

{ti}. If the invocation is satisfiable, the solver can update i to bit number di/2e.
Otherwise, it halves the number of satisfied assumptions and stays at iteration

1 If the original formula F is a bit-vector formula; it is preprocessed and translated to
CNF first.
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Algorithm 1 OBV-BS

1: function Solve(CNF Formula F , Target T = {tn−1, tn−2, . . . , t0})
2: Set the phase saving values of {tn−1, tn−2, . . . , t0} to 1
3: µ := SAT()
4: if SAT solver returned UNSAT then return UNSAT
5: α := {}
6: for i← n− 1 downto 0 step 1 do
7: if ti ∈ µ then . ti ∈ µ ≡ ti = 1 in µ
8: α := α ∪ {ti}
9: else

10: Set the phase saving values of {tn−1, tn−2, . . . , t0} to 1
11: τ := SatUnderAssumptions(α ∪ {ti})
12: if SAT solver returned SAT then µ := τ else α := α ∪ {¬ti}
13: return µ

i. In addition, BINARY skips the first SAT invocation. BINARY was reported to be
faster than OBV-BS in [40, 41]. However, BINARY is less responsive than OBV-BS,
since it apparently increases the number of unsatisfiable queries.

All things considered, we picked OBV-BS as the baseline algorithm for
Mrs. Beaver, since it combines good performance, responsiveness, and incre-
mentality. Note that OBV-BS can easily be updated to handle user-given hard
assumptions β by adding β’s literals to the assumption list for every SAT invo-
cation.

5 Mrs. Beaver: An Unweighted MaxSAT Algorithm

This section introduces our new Unweighted MaxSAT algorithm Mrs. Beaver.
The high-level algorithm is shown in Alg. 2. It receives a satisfiable CNF formula
F , the target bit-vector T , the incrementality mode incrMode and the search
mode searchMode. Alg. 2 outputs a model µ which minimizes unsBits(T, µ).
incrMode lets the user decide whether the algorithm should be incremental, and
how it should operate in incremental mode. searchMode determines the behavior
of the algorithm at the complete stage, as will be explained later in Sect. 5.1.

Assume for now that incrMode = none, that is, that the algorithm is not
incremental, and that searchMode = SU. First, for the incomplete stage of the
algorithm, Mrs. Beaver invokes a preprocessor, Mrs. Beaver-Inc (described in
Sect. 5.2), designed to quickly find a model µ with as low unsBits(T, µ) as possi-
ble. Then, during the complete stage, the algorithm invokes OBV-BS to minimize
a new target T ′ := tot(¬T,≤ unsBits(T, µ)− 1), comprising the sum of unsatis-
fied target bits starting with the value unsBits(T, µ)− 1. If the latter invocation
is satisfiable with the model µ′, Mrs. Beaver returns µ′. Otherwise, there is no
better model than µ, hence µ is returned.

It is imperative for performance to count the number of unsatisfied target
bits towards 0, rather than the number of satisfied target bits towards n. This
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is because creating a totalizer with an upper-bound on the sum is substantially
more efficient than creating one with a lower-bound on the sum.

Our algorithm reuses the same SAT solver instance across all the calls, hence
all learning is re-used. As we mentioned, when incrMode = none, the algorithm is
not incremental. This is because the totalizer encoding asserts a cardinality con-
straint which is, apparently, not inferred by F . Sect. 5.4 describes Mrs. Beaver’s
behavior in incremental modes.

5.1 Mrs. Beaver and Linear Search

Mrs. Beaver is closely related to the linear search SAT-UNSAT (LSU) and
UNSAT-SAT (LUS) algorithms [6].

LSU starts by finding a solution µ using a SAT solver. It then enters the
SAT-UNSAT loop, which adds a cardinality constraint ensuring that the next
solution will have strictly fewer unsatisfied target bits than unsBits(T, µ) after
which it invokes a SAT solver. The algorithm updates µ with any newly found
solution and terminates when the SAT solver returns UNSAT. It is guaranteed
that the latest solution is an optimal one.

LUS keeps a lower bound l (initialized to 0) for the number of unsatisfied
target bits for which no solution exists. LUS operates in an UNSAT-SAT loop
which runs a SAT solver assuming that unsBits(T ) = l. If the solver returns
UNSAT, LUS updates l to l + 1 and proceeds to the next iteration of the loop.
If the solver finds a solution µ, LUS terminates, in which case µ is guaranteed
to be an optimal solution.

Note that the complete stage of Mrs. Beaver can behave as either the
SAT-UNSAT loop (when searchMode = SU) or the UNSAT-SAT loop (when
searchMode = US). In the latter case, the solver reverses the bits of T , so as
to start falsifying T from the LSB towards the MSB. Thus it is the usage of
the incomplete preprocessor–Mrs. Beaver-Inc–that differentiates between the
linear search algorithms and Mrs. Beaver. Specifically, the difference between
LSU and Mrs. Beaver in SU mode is that LSU uses a single SAT invocation
for the incomplete stage, while Mrs. Beaver applies Mrs. Beaver-Inc. The dif-
ference between Mrs. Beaver in US mode and the LUS algorithm is that the
former finds an upper bound on the number of unsatisfied target bits using
Mrs. Beaver-Inc, while the latter may use a single SAT invocation to find an
upper bound (if incremental weakening [28] is applied).

5.2 Mrs. Beaver-Inc: The Incomplete Preprocessor

Mrs. Beaver-Inc is designed to quickly find improving models. Our basic idea
is to run OBV-BS over the target T to gradually reduce the number of unsatisfied
target bits for the current order of T ’s literals. We realized that, to find tighter
lower bounds faster, the following two optimizations would be useful:

1. Change OBV-BS so as to satisfy more target bits, even if the resulting algo-
rithm no longer solves the OBV problem. We present such an algorithm–
UMS-OBV-BS–next.
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Algorithm 2 Mrs. Beaver

1: function Solve(CNF Formula F , Target T = {tn−1, tn−2, . . . , t0}, incrMode ∈
{none, full,maxPreserving}, searchMode ∈ {SU,US})

Require: F is satisfiable
2: µ := Mrs. Beaver-Inc(F ,T )
3: if unsBits(T, µ) = 0 then return µ
4: if incrMode = none then
5: T ′ := tot(¬T,≤ unsBits(T, µ)− 1)
6: else if incrMode = maxPreserving then
7: T ′ := tot(¬T,≤ unsBits(T, µ))
8: else . incrMode = full
9: T ′ := tot(¬T,≤ unsBits(T, µ)− 1) with a fresh selector; see text

10: if searchMode = US then T := reverse(T)

11: µ′ := OBV-BS(F,¬T ′) . Maximizing ¬T ′ ≡ minimizing T ′

12: if OBV-BS solver returned SAT then return µ′ else return µ

2. Run several iterations of UMS-OBV-BS and/or OBV-BS, where the target bits
are the same, but their order changes (by reversing or shuffling). Changing
the order of the target bits increases the chances of encountering a MaxSAT-
friendly order. Below we assume that any algorithm that changes the order
of the bits in the target T recreates the original T just before it finishes.

From OBV-BS to UMS-OBV-BS We propose modifying OBV-BS to increase the
chances of satisfying more target bits as follows: after a new model µ is en-
countered, the algorithm pushes all the target bits assigned 1 towards the most
significant bit, so as to fix the value of such bits to 1 for the rest of the algorithm.
Alg. 3 shows a function that transforms OBV-BS to UMS-OBV-BS. It is designed
to be invoked immediately after Alg. 1 finds a new model for bit i at line 11.
Note that UMS-OBV-BS no longer solves the OBV problem.

UMS-OBV-BS maintains an index k, initialized with the current index i minus
1. It visits every bit whose value has not been set and swaps any newly satisfied
bits with tk, where, when a satisfied bit is discovered, k is decreased by 1.

Algorithm 3 UMS-OBV-BS

1: function Modifying OBV-BS to UMS-OBV-BS

Require: Invoke this function immediately after line 11 of Alg. 1
2: k := i− 1
3: for j ← i− 1 downto 0 step 1 do
4: if µ(tj) = 1 then
5: Swap the bits tk and tj
6: k := k − 1

7: return µ

The Preprocessor The generic scheme of our preprocessor Mrs. Beaver-Inc

is shown in Alg. 4. It allows some freedom, the concrete heuristics being regulated
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by several user-given parameters discussed below. Mrs. Beaver-Inc receives a
CNF formula F and the target T . It operates in a loop which runs for a user-
given number of iterations. Each iteration invokes either UMS-OBV-BS or OBV-BS.
The returned model µ is stored after the initial iteration and updated whenever
a better model is found. After each iteration, T is either reversed or shuffled.
The algorithm is regulated by the following 3 user-given parameters:

1. ALG: the inner algorithm, applied at line 3. It can either be a) UMS-OBV-BS

or b) OBV-BS or c) Mixed-OBV, which is an alternation between UMS-OBV-BS

and OBV-BS. If ALG is either plain OBV-BS or plain UMS-OBV-BS, the target is
reversed at line 5 after each odd iteration and randomly shuffled after each
even iteration. If ALG is Mixed-OBV, then UMS-OBV-BS is applied at iterations
i : i%4 ∈ {0, 1}, while OBV-BS is applied at iterations i : i%4 ∈ {2, 3}. The
target is reversed after iterations i : i%4 ∈ {1, 2, 3} (note that reversing T
after iteration i : i%4 = 3 recreates the original order) and shuffled after
iteration i : i%4 = 3.

2. itNum: the number of iterations.
3. obvConfThr: a threshold on the number of conflicts for each invocation of

SAT-under-assumptions to find the satisfiability status of a single bit in-
side UMS-OBV-BS and OBV-BS (line 11 in Alg. 1). Since Mrs. Beaver-Inc is
incomplete, we found it useful to stop the solver when a threshold on the
number of conflicts is reached in order not to get stuck with difficult bits.
An unsolved target bit is assigned 0 by the algorithm.

Algorithm 4 Mrs. Beaver-Inc

1: function Mrs. Beaver-Inc(CNF Formula F , Target T = {tn−1, tn−2, . . . , t0})
2: for i← 1 to itNum step 1 do . itNum is a user-given threshold
3: µ′ := UMS-OBV-BS(F, T ) or OBV-BS(F, T )
4: if µ doesn’t exist or unsBits(T,µ′) < unsBits(T,µ) then µ := µ′

5: T := reverse(T) or shuffle(T)

5.3 Responsiveness

Mrs. Beaver-Inc is quite responsive. Not only can each invocation of
OBV-BS/UMS-OBV-BS update the best model, the best model can also be up-
dated by the inner iterations of OBV-BS/UMS-OBV-BS. Hence, the main algo-
rithm Mrs. Beaver is responsive at the incomplete stage. At the complete stage
Mrs. Beaver is responsive only in the SU mode.

5.4 Incrementality

Recall that Mrs. Beaver can operate in non-incremental mode, fully incremental
mode, or maximization-preserving incremental mode (described below), depend-
ing on the user-given value incrMode ∈ {none, full,maxPreserving}.
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Full Incrementality An algorithm is fully incremental if all the learned clauses
are inferred by the input formula F . To make Mrs. Beaver fully incremental,
we need to eliminate any clauses created by the totalizer. To that end, we simply
add a fresh selector variable s to every clause generated by the totalizer and add
¬s as a hard assumption to OBV-BS, applied at line 11 of Alg. 2. One can also
add the unit clause s after Mrs. Beaver is completed to remove all the clauses,
generated by the totalizer.

Maximization-preserving Incrementality An invocation of incremental
Unweighted MaxSAT is maximization-preserving if it asserts that the number
of unsatisfied bits in the current target T cannot be higher than the num-
ber unsBits(T, µ), found by the algorithm. As we shall see, a maximization-
preserving incremental Unweighted MaxSAT solution is useful in the context of
BMO solving.

Alg. 2, in the mode incrMode = none, is almost maximization-preserving,
except than the totalizer, created at line 5, asserts that the number of unsatisfied
bits is strictly lower than unsBits(T, µ). This might cause the formula to become
unsatisfiable if the actual minimum happens to be unsBits(T, µ). To fix this
problem for the maximization-preserving mode incrMode = maxPreserving, we
simply provide the totalizer the number unsBits(T, µ) as the upper bound. Note
that this might result in a certain performance degradation.

6 Applying Mrs. Beaver to Solve BMO

Recall that in BMO, instead of a target bit-vector T , there are multiple target
bit-vectors Tm−1, Tm−2, . . . , T0. The goal is to maximize the number of satisfied
bits in each of the targets, where satisfying one bit of Ti is preferred to satisfying
all the bits in Ti−1, Ti−2, . . . , T0.

One way to solve BMO, proposed in [26], is by reducing the problem to
Weighted MaxSAT by concatenating the bits of all the target bit-vectors into
one target bit-vector, and assigning each bit t0i ∈ t0 the weight w0 = 1, and each

bit tli ∈ Tl>0 the weight wl = 1 +
∑l−1

k=0 w
k ∗ |Tk|. However, as we shall see, such

a solution does not scale.
Alg. 5 shows our BMO algorithm–Oh Mrs. Beaver–which adapts the iter-

ative MaxSAT-based BMO algorithm from [26] to apply an incremental Un-
weighted MaxSAT solver underneath. Oh Mrs. Beaver takes full advantage of
Mrs. Beaver’s functionality in maximization-preserving mode. Oh Mrs. Beaver

simply goes over all the targets from the most important one towards the least
important one, and applies Mrs. Beaver in maximization-preserving mode to
each target. In this way it guarantees that the optimal solution for each target
Ti is asserted after invocation i is completed.

Oh Mrs. Beaver invokes Mrs. Beaver as the underlying building block, but
it could, in principle, use any maximization-preserving incremental Unweighted
MaxSAT algorithm that allows the user to change the target. Unfortunately,
no such algorithm exists in the literature. It is possible, however, to use a fresh
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non-incremental Unweighted MaxSAT solver for every iteration i of Alg. 5 for
the current target Ti. For that to work, one has to assert the cardinality con-
straint

∑n−1
i=0 ¬Ti ≤ unsBits(Ti) after each iteration i. Unfortunately, cardinality

constraints are not part of the standard MaxSAT format. To evaluate the perfor-
mance of non-incremental instantiations of Oh Mrs. Beaver with the different
state-of-the-art Unweighted MaxSAT solvers, we encoded the cardinality con-
straints into clauses using the totalizer encoding.

Algorithm 5 Oh Mrs. Beaver

1: function Solve(CNF Formula F , Targets Tm−1, Tm−2, . . . , T0)
Require: F is satisfiable
2: for i← n− 1 to 0 step 1 do
3: µ := Mrs. Beaver (F , Ti, maxPreserving)

7 Experimental Results

This section studies the performance of our algorithms. Sect. 7.1 analyzes the
performance of Unweighted MaxSAT solvers run with settings that mimic the
MaxSAT Evaluation 2017. Sect. 7.2 examines the performance of MaxSAT and
BMO solvers on benchmarks we generated from our industrial application.

The benchmarks we generated, as well as the detailed results, are available
in [31]. Unless specified differently, the experiments were executed on machines
with 32Gb of memory running Intelr Xeonr processors with 3Ghz CPU fre-
quency. The time is always shown in seconds.

7.1 Unweighted MaxSAT: MaxSAT Evaluation 2017

In this section we compare the performance of Mrs. Beaver to that of the
winners of the MaxSAT Evaluation. In addition, we study the impact of
Mrs. Beaver’s search mode (SU vs. US) and Mrs. Beaver-Inc’s three param-
eters, introduced in Sect. 5.2, on the performance of Mrs. Beaver.

We denote by {ALG, itNum, obvConfThr, searchMode} a configuration
of Mrs. Beaver, where the search mode searchMode is either SU or
US and the incomplete preprocessor applies the algorithm ALG ∈
{OBV-BS, UMS-OBV-BS, Mixed-OBV} using itNum iterations and the conflict
threshold obvConfThr in OBV-BS and/or UMS-OBV-BS. We denote by the con-
figurations {−, 1, 0,SU} and {−, 1, 0,US} the implementations of LSU and LUS,
respectively, in the framework of Mrs. Beaver (i.e., a conflict threshold of 0 per
bit means that the incomplete stage of Mrs. Beaver invokes SAT instead of
Mrs. Beaver-Inc).

Recall that the MaxSAT Evaluation had two incomplete categories, with 60-
second and 300-second timeouts, respectively, and one complete category with
a 3600-second timeout.
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Incomplete Categories We compared the performance of different config-
urations of Mrs. Beaver to that of the leading incomplete solvers MaxHS,
Open-WBO-LSU, and MaxRoster. Based on preliminary experiments, we picked
the following configuration as the baseline for Mrs. Beaver when the timeout
is 60 second:

{
Mixed-OBV, 105, 104,SU

}
. To provide evidence that the baseline

configuration is indeed the best one and to study the impact of the parameters,
we also provide results for “neighbor” configurations, constructed by changing
one of the parameters of the baseline configuration, and that of our linear search
implementations ({−, 1, 0,SU} and {−, 1, 0,US}).

Mimicking the MaxSAT Evaluation, our primary ranking criteria was aver-
age score. score for instance i and solver S is the ratio between the number of
unsatisfied target bits in the best solution found by any of the solvers and the
number of unsatisfied target bits in the best solution found by solver S. score is
0 if no solution was found by S. It holds that score ∈ [0, 1].

Consider the upper part of Table 1 which displays the results for the 60-
second timeout. Each row compares the results of a single configuration of
Mrs. Beaver, shown in the first column, to those of the other solvers. Following
the presentation style used in the MaxSAT Evaluation, we provide score, the
number of solved instances (in columns titled #S) and the number of times each
algorithm found the best solution (in columns titled #B). The best score in each
row is highlighted. The table is sorted according to the score of the Mrs. Beaver

configuration.

The best result was achieved by the baseline configuration{
Mixed-OBV, 105, 104,SU

}
. It outperforms all the other solvers, including

our LSU implementation ({−, 1, 0,SU}) and the LSU implementation in the
MaxSAT evaluation winner Open-WBO-LSU. Mrs. Beaver’s performance is
slightly better in the SU (SAT-UNSAT) mode.

Concerning the parameters of Mrs. Beaver-Inc, changing the conflict
threshold or the number of iterations led to a mild deterioration of the score. Al-
ternating between OBV-BS and UMS-OBV-BS yielded the best results. Using only
UMS-OBV-BS (

{
UMS-OBV-BS,∞, 105

}
) was insufficient for outscoring the other

solvers.

The bottom part of Table 1 shows the results for the 300-second timeout. We
found in preliminary experiments that the best-performing Mrs. Beaver config-
uration for the 300-second timeout is

{
Mixed-OBV, 104, 105,SU

}
; it is slightly

different from that used for the 60-second timeout. As in the MaxSAT Evalua-
tion, MaxRoster emerges as the best solver in this category. Mrs. Beaver comes
out as the second best.

Complete Category Based on preliminary experiments, we picked the fol-
lowing configuration as the baseline for Mrs. Beaver for complete solving:{
UMS-OBV-BS, 1, 103,US

}
. It applies one iteration of the preprocessor using

UMS-OBV-BS and a relatively low conflict threshold of 103 as well as the US
mode at the complete stage.
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Mrs. Beaver Conf.
Mrs. Beaver Open-WBO-LSU MaxHS MaxRoster

Score #S #B Score #S #B Score #S #B Score #S #B
60-Second Timeout{

Mixed-OBV, 105, 104,SU
}

0.81792 182 56 0.73498 178 54 0.73017 192 37 0.67423 145 89{
Mixed-OBV, 104, 104,SU

}
0.81787 182 55 0.73498 178 54 0.73017 192 37 0.67423 145 89{

Mixed-OBV, 105, 104,US
}

0.81756 182 56 0.73498 178 54 0.73017 192 37 0.67423 145 89{
Mixed-OBV, 106, 104,SU

}
0.81748 182 56 0.73498 178 54 0.73017 192 37 0.67423 145 89{

Mixed-OBV, 105, 105,SU
}

0.81378 182 64 0.73902 178 50 0.73122 192 37 0.67094 145 87{
Mixed-OBV, 105, 103,SU

}
0.79008 181 49 0.74207 178 59 0.73654 192 38 0.67593 145 89{

OBV-BS, 105, 104,SU
}

0.7855 182 55 0.74274 178 57 0.73764 192 38 0.67765 145 92
{−, 1, 0,SU} 0.74531 182 65 0.75043 178 53 0.74577 192 45 0.68675 145 91{

UMS-OBV-BS, 105, 104,SU
}

0.73236 181 39 0.74611 178 59 0.74121 192 44 0.67835 145 90
{−, 1, 0,US} 0.57173 182 8 0.77117 178 77 0.76302 192 47 0.69246 145 96

300-Second Timeout{
Mixed-OBV, 104, 105,SU

}
0.77807 183 39 0.71429 182 43 0.75285 194 55 0.87118 182 126{

Mixed-OBV, 104, 105,US
}

0.77806 183 39 0.71429 182 43 0.75285 194 55 0.87118 182 126{
Mixed-OBV, 105, 105,SU

}
0.77774 183 40 0.71424 182 43 0.75279 194 55 0.87112 182 126{

Mixed-OBV, 103, 105,SU
}

0.77563 183 39 0.71429 182 43 0.75285 194 55 0.87118 182 126{
Mixed-OBV, 104, 104,SU

}
0.77259 183 32 0.71354 182 44 0.75276 194 56 0.87191 182 128{

Mixed-OBV, 104, 106,SU
}

0.75761 183 40 0.71442 182 43 0.75277 194 55 0.8715 182 127{
OBV-BS, 105, 104,SU

}
0.72725 183 32 0.71503 182 44 0.75782 194 57 0.8768 182 129

{−, 1, 0,SU} 0.71329 184 36 0.7232 182 46 0.76508 194 62 0.88502 182 133{
UMS-OBV-BS, 105, 104,SU

}
0.70314 183 32 0.71608 182 43 0.75515 194 60 0.87329 182 128

{−, 1, 0,US} 0.50183 184 3 0.72414 182 48 0.76543 194 62 0.88605 182 135

Table 1: MaxSAT Evaluation: Incomplete Categories

Consider Table 2. It displays the number of solved instances and the overall
run-time of Open-WBO-RES, MaxHS, Open-WBO-LSU, our linear search implemen-
tations and several Mrs. Beaver configurations (MaxRoster cannot be applied
for complete solving). The algorithms are sorted according to their performance.

Unsurprisingly, unlike in the incomplete categories, Mrs. Beaver did not per-
form as well as the leading solvers, Open-WBO-RES and MaxHS. Apparently, the
reason is that Mrs. Beaver’s top-performing complete algorithm relies merely
on US linear search. Applying SU instead of US at the complete stage or
changing the underlying algorithm at the incomplete stage results in a per-
formance deterioration. Notably, the preprocessor allows Mrs. Beaver to solve
18 more instance as compared to the LUS implementation in our framework
(
{
UMS-OBV-BS, 1, 103,US

}
vs. {−, 1, 0,US}).

Results Results (Continued)
Solver #S Overall Time Solver #S Overall Time

MaxHS 655 927384.89
{
UMS-OBV-BS, 1, 103,SU

}
547 1251925.21

Open-WBO-RES 654 880493.49
{
OBV-BS, 1, 103,US

}
546 1281167{

UMS-OBV-BS, 1, 103,US
}

572 1176926.57
{
OBV-BS, 1, 103,SU

}
543 1292191.23

Open-WBO-LSU 554 1209114.62 {−, 1, 0,SU} 541 1258922.31
{−, 1, 0,US} 554 1214299.29

Table 2: MaxSAT Evaluation: Complete Category

7.2 Industrial Instances

For the experiments in this section, we generated 9 Weighted MaxSAT bench-
marks that encode the industrial task of cleaning up soft design rules in Intel de-
signs. We used the straightforward translation from BMO to Weighted MaxSAT,
described in Sect. 6, for generating the benchmarks. The number of variables in
the benchmarks ranges from 4,367,381 to 8,220,593, while the number of clauses
ranges from 12,960,427 to 26,676,683. The number of target bit-vectors (before
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applying the reduction from BMO to Weighted MaxSAT) is 44 in every bench-
mark.

The main goal of our experiments was to study the impact of enabling
incrementality in MaxSAT solving on the performance of the Unweighted
MaxSAT-based BMO algorithm in the context of our application. We com-
pared Oh Mrs. Beaver against the non-incremental Unweighted MaxSAT flow
with the following underlying solvers: Open-WBO-RES, Open-WBO-LSU, MaxHS, and
Mrs. Beaver. We used the best performing configuration in the complete cate-
gory for both Oh Mrs. Beaver and the non-incremental Mrs. Beaver. We used
a timeout of 1800 seconds for Oh Mrs. Beaver and a timeout of 600 seconds for
each invocation of a non-incremental solver.

The results are shown in Table 3. For each solver, the table shows the number
of completed invocations (out of 44 incremental invocations, one for each target
bit-vector) and the time. The last row shows the average number of completed
invocations and the average time for each solver. Oh Mrs. Beaver is clearly
the best solver. It solved all the benchmarks, being 6 times faster than the
Mrs. Beaver-based non-incremental flow and 10 times faster than the MaxHS-
based non-incremental flow. Neither Open-WBO-RES nor Open-WBO-LSU scaled to
our instances. All in all, it pays off to apply incremental Unweighted MaxSAT
solving to solve industrial instances of BMO.

In addition, for comparison, we ran the following Weighted MaxSAT solvers:
Open-WBO, MaxHS, MaxRoster, Clasp [22] and Sat4j [6]. It turned out that only
Sat4j was able to process our benchmarks successfully, since in our benchmarks
the weight can be as high as 10129, while the maximal weight in the MaxSAT
format is restricted to 263. Sat4j timed-out on all the instances.

Finally, we translated our benchmarks to the BMO format, used during the
Lion9 Challenge [7] (the only BMO competition ever held), and ran the following
three dedicated BMO solvers, comprising all the participants in the challenge:
Sat4j [6], Open-WBO-SU, and Open-WBO-MSU3 (the latter two solvers were imple-
mented in the Open-WBO framework). The results are shown in Table 4. Initially,
when we invoked the BMO solvers on our standard machines (with 32Gb of
memory), all three solvers failed to solve a single instance: Sat4j timed-out
and both versions of Open-WBO came back with memory-outs. As a follow-up
experiment, we ran Oh Mrs. Beaver, Open-WBO-SU, and Open-WBO-MSU3 on a
machine having 512Gb of memory. It turned out that both versions of Open-WBO
slightly outperformed Oh Mrs. Beaver (by 1.2 times on average), but they
used 50 times more memory (2Gb vs. 100Gb on average). Both Open-WBO-SU

and Open-WBO-MSU3 reduce BMO to iterative MaxSAT invocations, similarly to
Oh Mrs. Beaver (using different MaxSAT algorithms underneath: LSU in the
case of Open-WBO-SU and MSU3 [27] in the case of Open-WBO-MSU3). As for the
huge difference in memory usage, it is difficult to determine the reason for this,
as the source code of both Open-WBO-SU and Open-WBO-MSU3 is unavailable.
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# Incr. Calls
Oh Mrs. Beaver Open-WBO-RES Open-WBO-LSU MaxHS Mrs. Beaver
Solved Time Solved Time Solved Time Solved Time Solved Time

1 44 44 310 0 26400 0 26400 44 3060 44 1881
2 44 44 452 0 26400 0 26400 44 4343 44 2890
3 44 44 346 0 26400 0 26400 44 4141 44 2740
4 44 44 366 0 26400 0 26400 44 3404 44 2120
5 44 44 197 0 26400 0 26400 44 3635 44 2271
6 44 44 229 44 8883 44 8895 44 1998 44 1163
7 44 44 282 44 11483 44 11483 44 2336 44 1406
8 44 44 325 11 25828 8 25937 44 2737 44 1667
9 44 44 459 0 26400 0 26400 44 3159 44 1998
Avrg 44 44 330 11 22733 11 22746 44 3201 44 2015

Table 3: Evaluation on Industrial BMO Instances

#
Standard Settings (32Gb) 512Gb and 1.2Ghz CPU frequency

Sat4j Open-WBO-SU Open-WBO-MSU3 Oh Mrs. Beaver Open-WBO-SU Open-WBO-MSU3
Res Res Res Time Mem (Mb) Time Mem (Mb) Time Mem (Mb)

1 Timeout Memout Memout 413 1917 316 96881 333 96917
2 Timeout Memout Memout 630 2710 469 133578 451 133577
3 Timeout Memout Memout 469 2594 451 127032 298 127121
4 Timeout Memout Memout 356 2164 371 108399 367 108449
5 Timeout Memout Memout 438 2287 360 114650 463 114673
6 Timeout Memout Memout 275 1289 183 67374 235 67274
7 Timeout Memout Memout 298 1514 219 76320 249 74618
8 Timeout Memout Memout 349 1737 319 89581 296 89605
9 Timeout Memout Memout 437 2019 366 102081 359 102104
Avrg 407 2026 339 101766 339 101593

Table 4: Evaluation of BMO Solvers on Industrial BMO Instances

8 Conclusion

We explored how Unweighted MaxSAT solving can benefit from the recently
introduced Optimization Modulo Bit-Vectors (OBV) algorithms. We proposed a
new OBV-based Unweighted MaxSAT algorithm–Mrs. Beaver. Mrs. Beaver

outscored the top solvers when run with the settings of the Incomplete-60-
Second-Timeout Track of MaxSAT Evaluation 2017. Unlike the existing state-
of-the-art algorithms, Mrs. Beaver was designed to be incremental in the sense
that it can be reapplied with a different set of hard assumptions and soft clauses.
We demonstrated that enabling incrementality in MaxSAT significantly improves
the performance a MaxSAT-based BMO algorithm applied for solving a new crit-
ical industrial BMO application: cleaning-up weak design rule violations during
the Physical Design stage of Computer-Aided-Design at Intel.
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