
Dynamic Polynomial Watchdog Encoding for
Solving Weighted MaxSAT

Tobias Paxian, Sven Reimer, Bernd Becker

Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 051
79110 Freiburg, Germany

{ paxiant | reimer | becker }@informatik.uni-freiburg.de

Abstract In this paper we present a novel pseudo-Boolean (PB) con-
straint encoding for solving the weighted MaxSAT problem with iterative
SAT-based methods based on the Polynomial Watchdog (PW) CNF en-
coding. The watchdog of the PW encoding indicates whether the bound
of the PB constraint holds. In our approach, we lift this static watchdog
concept to a dynamic one allowing an incremental convergence to the
optimal result. Consequently, we formulate and implement a SAT-based
algorithm for our new Dynamic Polynomial Watchdog (DPW) encoding
which can be applied for solving the MaxSAT problem. Furthermore,
we introduce three fundamental optimizations of the PW encoding also
suited for the original version leading to significantly less encoding size.
Our experimental results show that our encoding and algorithm is com-
petitive with state-of-the-art encodings as utilized in QMaxSAT (2nd
place in last MaxSAT Evaluation 2017). Our encoding dominates two of
the QMaxSAT encodings, and at the same time is able to solve unique
instances. We integrated our new encoding into QMaxSAT and adapt the
heuristic to choose between the only remaining encoding of QMaxSAT
and our approach. This combined version solves 19 (4%) more instances in
overall 30% less run time on the benchmark set of the MaxSAT Evaluation
2017. Compared to each encoding of QMaxSAT used in the evaluation,
our encoding leads to an algorithm that is on average at least 2X faster.

1 Introduction

MaxSAT and its variations are SAT-related optimization problems seeking for a
truth assignment to a Boolean formula in Conjunctive Normal Form (CNF) such
that the satisfiability of the formula is maximized. Maximizing the satisfiability
in a pure MaxSAT problem is to maximize the number of simultaneously satisfied
clauses in the CNF. In the weighted MaxSAT variation for each clause a positive
integer weight is appended and hence, the maximization of the formula is yielded
if the accumulated weights of the satisfied clauses are maximized.

This work is partially supported by the DFG project “Algebraic Fault Attacks”
(funding id PO 1220/7-1, BE 1176 20/1, KR 1907/6-1).

There exists a wide range of different solving techniques [1] such as branch and
bound algorithms [2], iterative SAT solving [3], unsat core based techniques [4]
and ILP solver [5], to name a few. A very successful approach is iterative SAT-
based solving. The core idea is to adjust the bounds for the maximized result by
iterative (and incremental) SAT solver calls. One possibility to do so is a direct
encoding of Pseudo-Boolean (PB) constraints of the maximization objective into
the SAT instance, such that the truth assignment of the whole formula directly
represents the result of the maximization. By forcing the current optimization
result to be larger than the last one found, this approach runs iteratively towards
the optimum. The recent MaxSAT Evaluation [6] indicates that this technique
can be successfully employed for unweighted and weighted MaxSAT, as the
iterative SAT-based solver QMaxSAT [7] demonstrates. QMaxSAT adopts four
different variations of the totalizer network [8,9,10,11] and one adder network [12]
as PB encoding. A simple heuristic selects between these encodings.

In this paper we introduce a new encoding and algorithm based on the
Polynomial Watchdog (PW) encoding [13]. The PW is an efficient encoding
for PB constraints, though it is not designed to be employed in an iterative
MaxSAT approach. Hence, we modified the original encoding by replacing the
static watchdog of [13] by a dynamic one allowing to adjust the optimization
goal. Based on this encoding, we provide a complete algorithm for deciding
the weighted MaxSAT problem. Additionally, we introduce three fundamental
optimizations/heuristics leading to significantly smaller PW encodings.

To demonstrate the effectiveness we adjoin our new encoding to the QMaxSAT
solver. Experimental results on the benchmark set of the Evaluation 2017 [6] show
that our encoding leads to an algorithm that is 1.) competitive in solved instances
and 2.) on average 2X faster than existing ones. In particular, our approach is
clearly superior to [8,11], especially for weighted MaxSAT instances with large
clause weights. Moreover, our approach solves complementary instances with the
employed adder network [12] and thus, we adjust the heuristics for deciding the
used network leading to 4% more solved instances on the benchmark set of [6].

The remaining paper is structured as follows: We present related work on
totalizer networks and the weighted MaxSAT application in Section 2. In Section 3
we introduce the weighted MaxSAT problem as well as the totalizer and PW
encoding. In Section 4 we present our proposed dynamic PW encoding and
algorithm for iterative MaxSAT solving and propose further optimizations in
Section 5. Finally, we demonstrate the applicability of our new encoding and the
optimizations in Section 6 and conclude the paper in Section 7.

2 Related Work

Since the original version of the totalizer network is published in 2003 [8], many
different variations have been investigated since then. Some of them are also
employed in context of (weighted) MaxSAT. In particular, the iterative MaxSAT
solver QMaxSAT [7] uses many different variations of the totalizer network.

2

Namely, the original totalizer sorting network [8], weighted or generalized totalizer
networks [9], mixed radix weighted totalizer [10], and modulo totalizer [11].

The original totalizer is well suited for unweighted instances. However, for
weighted instances a naïve implementation does not scale in the encoding size.

The generalized totalizer [9] allows a more direct encoding of weighed inputs.
This encoding is integrated into the recursive rules constructing the totalizer. The
mixed radix weighted totalizer [10] is an extension of the generalized totalizer
combined with the concept of mixed radix base [14].

The modulo totalizer [11] was initially developed for unweighted MaxSAT
instances. It reduces the number of used clauses for the encoding by counting
fulfilled clauses with modulo operations. As our experimental results show, the
modulo totalizer still has scaling issues for a large sum of weights.

Our encoding is based on the Polynomial Watchdog (PW) encoding [13]
which also uses totalizer sorting networks. Essentially the PW encoding employs
multiple totalizer networks to perform an addition with carry on the sorted
outputs. The sorting network based encoding of minisat+ described in [15] has
similarities, the differences to the PW encoding are described in detail in [13]. In
particular, minisat+ introduces additional logic to observe the exact bounds of
the current constraint. Whereas the PW encoding utilizes additional inputs to
control and observe the current bounds. Hence, we employ the PW encoding as
the additional inputs are easier to manipulate for our dynamic approach.

Apart from the totalizer, other encodings for PB constraints are successfully
employed for mapping the MaxSAT constraints. E.g., QMaxSAT uses an adder
network [12]. This type of network is better suited for a large sum of input values
than totalizer networks as adder have linear complexity in encoding size – in
contrast to at least O(n logn) for sorting networks.

Other encoding schemes are investigated in [15], where adder, sorting net-
work [16] and BDD [17] implementations are compared. A BDD preserves gen-
eralized arc consistency (GAC) for PB constraints, if it can be constructed [15]
– in contrast to sorting networks and adders in general. However, the enhanced
encoding scheme of the Local Polynomial Watchdog (LPW) in [13] preserves
GAC at the cost of encoding complexity. Another GAC preserving encoding is
presented in [18] which employs a different kind of sorting networks.

All mentioned totalizer modifications only adjust the recursive rules of the
totalizer. In contrast, our proposed encoding utilizes the standard totalizer and
modifies the cascading version of [13].

3 Preliminaries

In this section we introduce the foundations of MaxSAT and in particular iter-
ative PB encoding based approaches. Furthermore, we introduce the totalizer
network [8] and the Polynomial Watchdog (PW) encoding [13] which are the
fundamental encodings utilized in our approach.

3

3.1 MaxSAT

First, we introduce some basic terminologies which will be used within this paper.
The input of MaxSAT problems is a Boolean formula in Conjunctive Normal
Form (CNF). A CNF is a conjunction of clauses, where a clause is a disjunction
of literals. A clause which contains one literal is called unit (clause). In the
following, we adopt the commonly used notation that clauses are sets of literals
and a CNF is a set of clauses. A SAT solver decides the satisfiability problem,
i.e. whether a Boolean formula ϕ in CNF is satisfiable. In this case, the solver
returns a satisfying assignment for all variables, which is also called model of ϕ.

MaxSAT is a SAT-related optimization problem seeking for an assignment
maximizing the number of simultaneously satisfied clauses of a CNF formula ϕ.
The partial MaxSAT problem consists also of so-called hard clauses, which must
be satisfied. All other clauses are called soft clauses. Thus, a MaxSAT formula
can be formulated as follows: ϕ = S ∪H, where S denotes the set of soft clauses
and H the set of hard clauses. The weighted (partial) MaxSAT problem is a
generalization, where each soft clause is denoted with an integer weight wj . The
optimization goal is to maximize the accumulated weight of satisfied soft clauses.

A common approach for solving the MaxSAT problem is the iterative SAT-
based algorithm [3] which incrementally employs a SAT solver. To do so, a
pseudo-Boolean (PB) constraint C is directly encoded into CNF, where C is
defined as Σjaj ·xj .M over Boolean variables xj and positive integers aj andM .
. is one of the relational operators . ∈ {=, >,≥, <,≤}. By using only constraints
of the form Σjaj · xj ≥M , the MaxSAT problem can be reduced to the question
of finding a maximum value M∗ still satisfying C. To do so, the soft clauses are
directly connected to the PB constraint network, where xj is true if and only if
the soft clause sj is true and the weight wj is connected to aj of C.

There are various methods and schemes for the encoding of PB constraints as
discussed in Section 2. State-of-the-art iterative MaxSAT solvers like QMaxSAT [7]
use various and customized CNF encodings. For instance, the QMaxSAT version
used in the MaxSAT evaluation effectively employs three different encodings: to-
talizer network [8], modulo totalizer network [11] and Warners adder network [12].

Regardless of the employed encoding, the iterative approach works as follows:
A PB constraint network is encoded as described above and added as hard
clauses to the original CNF. For each soft clause sj ∈ S a so-called relaxation
literal rj is introduced: s′j = sj ∨ rj (i.e. setting rj forces sj to be true) and
connected to the PB encoding. Let S′ be the set of all modified clauses s′j , then
a SAT solver decides the ϕ′ = S′ ∪H. The returned model allows to determine
the current sum of satisfied weights M . The CNF is iteratively modified by
adding a constraint demanding a larger optimization result than M . The SAT
solver is called incrementally with this new constraint. The whole procedure is
repeated until the SAT solver returns “unsatisfiable”, i.e. the last added constraint
represents a result which is just larger than the optimal result. Hence, the result
of the last satisfiable SAT solver call corresponds to the optimization result M∗
of the MaxSAT instance.

4

3.2 Totalizer Network

The totalizer network as introduced in [8] is a unary sorting network Φ : {0, 1}n →
{0, 1}n, arranging a binary input vector such that the output vector is sorted
in descending order. E.g., the input vector 〈1, 0, 1, 1, 0〉 will be processed as
follows: Φ(〈1, 0, 1, 1, 0〉) = 〈1, 1, 1, 0, 0〉. The output vector V represents a natural
number v in unary representation: if the ith entry of the output vector V is one,
the unary representation matches v ≥ i.

The totalizer sorting network allows an efficient propagation of output values
on CNF. The network divides the input vector recursively into two parts until the
resulting vector consists only of one element which is sorted by definition. Two
unary sorted vectors are merged together by the formula Ψ . Let U = 〈u1, . . . , uk〉
and V = 〈v1, . . . , vl〉 be sorted vectors corresponding to unary representations
of natural numbers u and v, respectively. Ψ assures that the resulting vector
W = 〈w1, . . . , wk+l〉 is the unary representation of w with w = u+ v.

The totalizer encoding consists of two mirrored parts D1(a, b) = (ua ∨ vb ∨
wa+b) and D2(a, b) = (ua+1 ∨ vb+1 ∨ wa+b+1), where 0 ≤ a ≤ k and 0 ≤ b ≤ l.
By definition u0 = v0 = w0 = 1 and uk+1 = vl+1 = wk+l+1 = 0 holds. As stated
in [8] the resulting formula Ψ(W = U ⊕ V) represents the relation w = u+ v:

Ψ(W = U ⊕ V) =
k∧

a=0

l∧
b=0

D1(a, b) ∧D2(a, b) (1)

Note, by using only the encoding D1 we guarantee w ≥ a+ b, hence, we are
able to set an upper bound for w. Likewise D2 guarantees w ≤ a+ b, i.e. a lower
bound for w is represented. Note that in each case the other direction does not
hold. The input vector is split up recursively in two equally sized parts U and V
connected by Ψ until U or V has a size of one, which is sorted by definition. The
complete encoding of all Ψ parts is called Φ.

3.3 Polynomial Watchdog Encoding Scheme

In this section we briefly introduce the Polynomial Watchdog (PW) encoding
scheme for PB constraints C. For more details the interested reader is referred
to [13]. The PW encoding uses the functions Ψ and Φ of the totalizer in order to
represent one PB constraint as depicted in Fig. 1. A Global Polynomial Watchdog
(GPW) is introduced allowing to efficiently detect a violation of M in C, with
C: Σjaj · xj < M . To do so, a so-called watchdog ω is introduced. Essentially,
whenever C is falsified the literal ω will be assigned to true. I.e. a lower bound is
defined and only the D1 clauses of Ψ are needed. The GPW is defined as

GPW (C) = PW (C) ∧ ω (2)

which guarantees the previous mentioned property.
The PW is a binary addition with carry of the weights. The coefficients of

the constraints are split into their binary representation, the bits with the same
weight 2i are added to one totalizer Φ called top bucket TBi with weight 2i. The

5

most significant bit position of all coefficients equals the number of top buckets p.
These top buckets are connected appropriately representing the carry of the unary
addition, where two buckets with weight 2i and 2i+1 are merged applying Ψ . To
do so, only every second output of the bucket of weight 2i and every output of the
2i+1 bucket has to be connected into a so-called bottom bucket BBi+1 with weight
2i+1. Generally, the first top buckets TB0 and TB1 are merged resulting in BB1
and for all other buckets TBi+1 and BBi are merged into BBi+1. The bottom
bucket with the largest index p is also called last bucket. The naming of top,
bottom and last bucket is motivated by the graphical representation as seen in
Fig. 1. Each output ωm of the last bucket represents a weight which is a multiple
m = dM

2p e of 2p. Since only every second output of the low ordered buckets are
used, the actual satisfied weight M is represented by m · 2p minus a tare sum t of
size 0 ≤ t < 2p. This tare is added to the TBi’s using its binary representation as
tare variables Ti with weight 2i for 0 ≤ i < p. I.e. t = ΣTi=12i = 2p−(M mod 2p).
Hence M can be reformulated as:

M = m · 2p −ΣTi=12i (3)

In summary, GPW adds ωm to guarantee a solution smaller than m · 2p. The
exact target weight of the PB constraint C is achieved by calculating the tare
values Ti a priori1 according to Eq. 3. Consequently, the constraint ωm guarantees
that any solution with weight ≥M instantly results in a conflict.

Example 1. Given the constraint C : 2x1 + 3x2 + 5x3 + 7x4 < 11, the aj values
are separated due to their binary representation. As blog2 7c = 2 holds, the
largest bucket size is 22 and hence p = 2. The position of the watchdog can
be achieved by: m = dM

2p e = d 11
22 e = 3. The tare values can be calculated

with: t = ΣTi=12i = 2p − (M mod 2p) = 22 − (11 mod 22) = 1, i.e. the binary
representation of the tare values is 110 leading to: T0 = 1, T1 = 0. We can check our
result by applying them into Eq. 3:M = m·2p−ΣTi=12i = 3·22−(1·20+0·21) = 11.
This leads to the following PW encoding in Figure 1. Note, the blue dashed lines
in this figure are not present in the actual encoding, since T1 = 0.

In [13] it is stated that merging two totalizers of size n requires O(n2) clauses
and for the whole totalizer O(n2 log(n)) clauses are required. The complete PW
encoding complexity is given by O(n2 log(n) log(amax)) clauses, where amax is
the largest integer weight of all clauses of the MaxSAT problem.

However, as already stated in [8] the number of encoded clauses of the whole
totalizer can be bounded by O(n2) and not O(n2 log(n)). Since we have no doubt
about the remaining argumentation of [13], we conclude that the number of
clauses of the (G)PW encoding is actually in O(n2 log(amax)).

Note, in [13] the concept of a Local Polynomial Watchdog (LPW) is introduced
which preserves GAC. The complexity is given by O(n3 logn log(amax)). Likewise,
we propose that also this complexity has to be corrected to O(n3 log(amax)). Still,
1 Note that tare values of zero do not have any influence. Hence, only the tare bits
Ti = 1 are added to TBi, and are also directly set to 1.

6

T0 = 1 x2 x3 x4
T1 = 0 x1 x2 x4 x4x3

ω3

20 21 22

21 22

2x1 =
3x2 =
5x3 =
7x4 =

20x2

20x3

20x4

+

+

21x1

21x2

21x4

22x3

22x4

+
+

ΦTB0 ΦTB1 ΦTB2

ΨBB1 ΨBB2

BB2 = last bucket

BB = bottom bucket

TB = top bucket

Figure 1: Polynomial Watchdog Encoding Scheme

we do not apply the LPW since the encoding size is not feasible for our application.
(G)PW in contrast does not maintain GAC.

4 Dynamic PW Encoding and GPW Algorithm

In this section we introduce our new dynamic PW encoding scheme. We state
details of the encoding adjustments and the employment in an iterative MaxSAT
solver. The principle of our approach is to lift the static watchdog as described
in [13] to a dynamic version, which allows to set a lower bound M of the PB
constraint dynamically for optimizing this bound.

The remainder of this section is as follows: we introduce the adjustments of
the original PW encoding in Section 4.1 and present a complete algorithm to
solve the MaxSAT problem based on this encoding in Section 4.2.

4.1 Dynamic PW Encoding

In order to employ the PW encoding for representing MaxSAT constraints, we
need to allow different watchdog positions and consequently lift the concept of
statically a-priori set tare values and watchdog positions to a dynamic one. Thus,
we call our modification the Dynamic Polynomial Watchdog (DPW) encoding.

As mentioned in Section 3.1 the MaxSAT problem can be reduced to find the
optimal M∗ in a constraint C with Σjaj · xj ≥ M , where all xj ’s and aj ’s are
appropriately connected to all rj ’s and wj ’s of the MaxSAT problem leading to
Σjwj · rj ≥M in our approach. Note, rj implies “sj is satisfiable” but not vice
versa. However, the rj ’s still represent a lower bound, we will revisit this issue
later. In order to increment M , we need to adjust the watchdog and tare values
appropriately. Section 4.2 state further details on this adjustment.

Analogously to [13] we define the Dynamic Global Polynomial Watchdog
(DGPW) as follows:

DGPWi(C) = DPW (C) ∧ ωi (4)

7

Here, i corresponds to the ith output of the last bucket. Note, the GPW
watchdog as introduced in Eq. 2 represents an upper bound for the unary rep-
resentation, whereas the DGPW watchdog in Eq. 4 is a lower bound. From a
different perspective: the DGPW requires a minimum number of ones at the
output vector, whereas the GPW demands a minimum number of zeros. Thus,
our DPW encoding only employs the D2 part of the totalizer.

If DGPWm is satisfied, we can conclude the DPW encoding fulfills a total
sum of weights of at least m · 2p. According to Eq. 3 the actual bound M for the
constraint is achieved by subtracting the tare values which are set to 1. Note, the
DPW encoding adds all tare values Ti to the top buckets TBi. Further, the tare
variables are not set to a precomputed value. We rather allow the SAT solver to
alter the logic value of these variables. Hence, one crucial part of the algorithm
is to efficiently determine exact values for the tares.

Example 2. Reconsider Example 1: The DPW additionally adds the tares T0
and T1, i.e. the blue dashed lines are part of the DPW encoding. By using D2
we change the operator of the underlying constraint C from < to ≥. If we use
the same watchdog position 3 applying DGPW3 and fix the tare values as in
Example 1, the represented constraint is C : 2x1 + 3x2 + 5x3 + 7x4 ≥ 11.

Based on this encoding we formulate an algorithm leading to the optimization
result of the original MaxSAT formulation.

4.2 Dynamic GPW Algorithm

Our algorithm is separated in two phases. First, we apply a Coarse Convergence
(CC) and finalize with a Fine Convergence (FC) as follows:

CC: The watchdog position is increased until the formula is unsatisfiable.
FC: Refines the result of CC by adjusting the tare variables appropriately.

Coarse Convergence (CC) Algorithm 1 gives an overview of the CC phase.
It takes the complete CNF of the MaxSAT problem and DPW encoding as input
and returns the maximum position m∗ of the last bucket for which the constraint
is still satisfied.

First we perform an initial SAT solver call in line 2 without additional
(watchdog) constraints returning an initial watchdog position. We increment the
watchdog connected to the last bucket until the formula is not satisfiable anymore
(cf. lines 3-13): Therefore, we calculate the next watchdog position based on the
current model (cf. GetLastSatPos in line 4) seeking for the last position of the
last bucket for which the model is set to true. Since we know that this position
represents a lower bound of our solution, we increment it and add the resulting
watchdog as an assumption for the next SAT solver call (cf. GetWatchdog in
lines 5 and 6). If the result is satisfiable we add the last assumption as unit to
the CNF allowing the solver to simplify the CNF representation. This is repeated
until the solver returns “unsatisfiable”, i.e. we found the maximum position m∗.

8

Algorithm 1 Coarse Convergence
1: procedure CoarseConvergence(CNF)
2: 〈result, model〉 ← Solve(CNF);
3: while true do
4: position ← GetLastSatPos(model);
5: assumption ← GetWatchdog(position+1));
6: 〈result, model〉 ← Solve(CNF + assumption);
7: if result = SAT then
8: CNF ← AddUnitClause(assumption);
9: else
10: CNF ← AddUnitClause(GetWatchdog(position));
11: return position; . Return last SAT position
12: end if
13: end while
14: end procedure

By doing so, we have determined the first part of Eq. 3 leading to M∗ =
m∗ · 2p−ΣTi=12i. Note, up to this point, no constraints are assumed for the tare
variables Ti. Hence, the current model of the tare values does not correspond to the
optimal solution. We have to adjust these values as stated in the next subsection.
However, the result of the CC phase states the possible solution interval for our
searched optimal bound M∗ as follows: (m∗ − 1) · 2p < M∗ ≤ m∗ · 2p.

We further optimize the GetLastSatPos function of line 4: As mentioned
in Section 3.1, s′j is satisfied if rj is set to true. Nevertheless, rj might be false
and simultaneously sj is satisfied, too. This result cannot be seen by our GPW
encoding since only the rj values are connected. Thus, we check each and every
soft clause if sj is satisfied regardless of the value of rj . Finally, we add up the
weight of every actual satisfied soft clause resulting in an actual current optimal
weight M̂ for which holds: M̂ ≥ M . By m̂ = d M̂

2p e we obtain the watchdog
position m̂ of this optimum. Note, in this case we can immediately add another
unit clause to the CNF. As M̂ might be larger than M we also might skip output
positions of the last bucket and hence, we can add the unit corresponding to the
position m̂ before calling the SAT solver in line 6 of Algorithm 1. Note that we
actually do not need this additional “by-chance” concept, if we would consider
appropriate constraints representing the relation rj → sj , where sj indicates that
every literal of the soft clause sj is falsified. By adding these constraints, rj would
be true iff the soft clause sj is falsified. However, by adding these constraints, we
would lose the potential of this by-chance mechanism as all literals of sj would
be immediately set to false whenever rj is set to true.

Fine Convergence (FC) Once, we found the coarse solution interval, we seek
for the exact result by adjusting the tare variables as part of the Fine Convergence
(FC) phase. The general idea is the same as in the CC phase: we force the SAT
solver to find a better solution than the current one. Algorithm 2 summarizes our
approach. In addition to the modified CNF resulting from Alg. 1, the procedure

9

also gets the last model from a satisfying SAT solver call from the CC phase as
an input.

Algorithm 2 Fine Convergence
1: procedure FineConvergence(CNF, model)
2: for (n = p− 1; n ≥ 0; n = n− 1) do
3: if model[Tn] = false then
4: CNF ← AddUnitClause(Negate(Tn));
5: else
6: assumption ← Negate(Tn);
7: 〈result, model〉 ← Solve(CNF + assumption);
8: if result = SAT then
9: CNF ← AddUnitClause(Negate(Tn));
10: else
11: CNF ← AddUnitClause(Tn));
12: end if
13: end if
14: end for
15: end procedure

First, consider the following observation: In Eq. 3 we have defined the upper
bound (m · 2p) as reference point. Instead, we can also define the value of M
using the lower bound (m− 1) · 2p + 1 as reference:

M = (m− 1) · 2p + 1 +ΣTi=02i (5)

As Eq. 5 indicates the tare weights for which the corresponding tare is not
satisfied is added to the lower bound. Hence, the tare is only a remainder of the
sum of all satisfied weights relating to the lower bound. Consequently, in order
to maximize the value of M , we have to maximize ΣTi=02i.

Algorithm 2 iterates over all tare variables, from the most significant Tp−1
to the least significant T0. If the current tare Tn is already 0, we can add the
corresponding unit to our CNF (cf. lines 3 and 4). Otherwise, we have to check
whether we can set Tn to zero (and thus maximize the sum of weights) by
adding the assumption Tn = false to the solver (cf. lines 6 and 7). If the SAT
solver returns satisfiable, we proceed as in line 4 by adding the corresponding
unit. Otherwise, it is ensured that the PB constraint is always violated with
Tn = false, and hence we can fix this tare to true. Note, the last property only
holds, if we iterate from the most to the least significant tare position. By doing
so, essentially a binary search of the maximum possible tare weight is performed.

As in the coarse convergence, we can explicitly calculate the actual current
weight M̂ . By doing so, we may skip tare positions: If M̂ implies that the most
significant open tare position Tn must be set to zero, we can directly add the
corresponding unit (cf. line 4) and proceed with the next tare position.

10

Ψ(WTB0
= U0 ⊕ V01)

Ψ(U0 = 〈T0〉 ⊕ 〈x3〉) Ψ(V01 = 〈x2〉 ⊕ 〈x4〉)

Φ(XTB0
) = WTB0

Ψ(WTB1
= V01 ⊕ U1)

Φ(XTB1
) = WTB1

Ψ(U1 = 〈T1〉 ⊕ 〈x1〉)

〈T0〉 〈x3〉 〈x2〉 〈x4〉 〈T1〉 〈x1〉

Φ(Xsub) = V01

Figure 2: Caching of Adder: Φ applied to TB0 and TB1 of Example 1. The sorted
vector V01 can be used for the encoding of TB0 and TB1.

5 PW Encoding Optimizations

In this section we state three fundamental optimizations on the PW encoding.
In Section 5.1, we describe a technique which allows reusing already encoded
parts of the network. Note, this optimization concept is already mentioned in [13]
as future work. In Section 5.2, we propose an approach for determining the
cone-of-influence of encoded outputs of the network. By doing so, we are able
to incrementally build the needed parts of the encoding, leading to a significant
reduction of the encoding size. In Section 5.3, we present a concept to set any
weight as lower or upper bound. Applying this to the original PW encoding
allows to use any operator for the PB constraint directly without converting the
formula. Note, all concepts can be utilized in the classical PW encoding and
moreover do not affect each other. I.e., utilizing one of the following techniques
does not (negatively) influence the efficiency of one of the others, in general.

5.1 Caching of Adder

The PW encoding consists of many shared sub-formulae Ψ among different
buckets which actually need be encoded only once [13] as shown in Example 3.

Example 3. Considering Example 1, both TB0 and TB1 contain an identical
subset of input variables Xsub = {x2, x4}. This subset can be encoded once as
Φ(Xsub) and reused for TB0 and TB1 as shown in Figure 2. The dashed and
dotted boxes indicate involved buckets, and the dash-dotted box the shared part.

There is another subset Xsub2 = {x2, x3} of TB0 and TB2 in Example 1,
which could be proceeded likewise. Note, if we try to share both subsets Xsub

and Xsub2 at the same time, x4 of TB0 will be encoded twice. This additional
encoding will degrade the outcome of the method and should therefore be avoided.

The core idea of the Adder Caching (AC) is to reuse the encoding of this
shared parts whenever such a sub-formulae is identified. Unfortunately, merging
buckets/sub-formulae is quite sophisticated, since caching of one sub-formula

11

influences the upcoming operations, as Example 3 demonstrates. In general, the
problem of finding an optimal solution is at least NP-hard as it can be reduced to
a set cover problem. Hence, we implemented various heuristics in order to decide
which parts to share. Our heuristics rely on the different cost estimations of one
caching operation. As measurements, we tried several static parameters which
can be calculated a priori: number of encoded clauses, the bucket sizes, number
of possible follow up cache operations and number of cache operations, to name
a few. Although all heuristics were able to significantly reduce the encoding size,
none of them has a significant impact in terms of solved instances or run time.

Instead, we developed a heuristic which is not as effective in terms of encoding
size, but has a significant impact on run time as experimental results show. We
collocate the sorter inputs according to their corresponding soft clause weight,
such that for each weight w, there is a list of corresponding inputs with weight
w. Then, for one weight w exactly one totalizer Φ is encoded, i.e. if there are n
soft clauses with identical weight w, the totalizer for sorting these n soft clauses
is only built once. This sub-formula is shared over all buckets needed for the
binary representation of weight w. This is repeated for all weights, and finally
the top bucket are constructed by connecting the built sub-formulae using Ψ . In
contrast to all other heuristics, multiple cache steps are considered at once as all
involved adders are merged. We assume that this is one reason why the other
heuristics are not as effective and suggest future work on this topic.

5.2 Cone-of-Influence Encoding

As the methodology in the previous section reduces the cost of top buckets, we
develop a technique mainly reducing the encoding size of the bottom buckets.
Note, the encoding of bottom buckets usually dominates the whole PW encoding
as these buckets have more inputs than top buckets. We apply this technique
within the CC phase, where the watchdog position is incremented.

The cone-of-influence (COI) encoding converts only needed parts of the
(D)PW into CNF. Consider a standard GPW (C) = PW (C) ∧ ωi. We observed
that only the output ωi needs to be encoded for deciding GPW as the encoding
of Ψ guarantees at most i − 1 ones at the output. By encoding only ωi it is
ensured to create at most O(n) clauses for the last bucket with n inputs, instead
of O(n2). Depending on the position of ωi in the output vector W , even more
encoding size can be saved: positions close to the borders of W lead to smaller
encodings than in the middle as the upcoming Ex. 4 will motivate.

We introduce a binary tree, which represents the recursive construction of
the totalizer encoding including the information whether a variable is already
encoded. Hence, each node represents a snapshot of the current Ψ encoding for
all partially sorted outputs. Before encoding a specific (output) variable, the tree
nodes directly indicate which variables and clauses have to be added and which
are already encoded. We traverse the tree from the root to the leaves collecting
all clauses within the cone-of-influence of the demanded variable considering also
introduced helper variables. Note, the tree also represents and considers the carry
inputs of the bottom buckets where only every second output is encoded.

12

Ψ(W = U ⊕ V)
W = 〈∗, ∗, ∗, w4, ∗〉

u1 v1 w1
u1 v2 w2 u2 v1 w2
u1 w3 u2 v2 w3 u3 v1 w3

u2 w4 u3 v2 w4 v1 w4
u3 w5 v2 w5

Ψ(U = U ′ ⊕ 〈x3〉)
U = 〈∗, u2, u3〉

u′
1 x3 u1
u′

1 u2 u
′
2 x3 u2
u′

2 u3 x3 u3

Ψ(V = 〈x4〉 ⊕ 〈x5〉)
V = 〈v1, v2〉

x4 x5 v1
x4 v2 x5 v2

Ψ(U ′ = 〈x1〉 ⊕ 〈x2〉)
U = 〈u′

1, u
′
2〉

x1 x2 u′
1

x1 u′
2 x2 u′

2

Figure 3: Binary tree representing the cone-of-influence of w4.

Example 4. Figure 3 illustrates our generated tree. Each node is represented by
a table indicating the clauses created by the corresponding Ψ . The ith row in the
table shows the needed clauses for the ith output entry according to Ψ . Consider
that only w4 (as seen at the very left) has to be encoded as it might be the
current watchdog. By applying our cone-of-influence technique, we only need to
consider the 12 highlighted clauses, whereas 11 clauses (in gray) could be saved
for the encoding. A ∗ in the vector indicates that the corresponding variable (row
of table) is not encoded. Moreover, assume that we may only consider w5: in this
case we just need to encode the very last row of each table.

5.3 Exact Bound Encoding

We explicitly enforce specific values as a lower or upper bound, where we need to
encode D2 for the lower and D1 for the upper bound. Note, for an exact upper
bound < M , we need constraints of the form rj ⇒ sj and set ωi to false as in
Section 3.3. In both cases, we have to adjust the tare values by utilizing Eq. 3.

We utilize the Exact Bound (EB) encoding for setting the next sum of weights
in our CC phase. Instead of incrementing the next watchdog position, we explicitly
add sufficient assumptions to enforce the weight M̂ + 1 for the next solver call.
By doing so, instances are easier to solve for the SAT solver (since we add more
and specific assumptions leading to the solution), but the number of solver calls
is increased in the worst case. However, as experimental results show, we actually
often converge faster to the optimum, also due to weights satisfied by soft clauses
by chance (cf. computation of M̂ in Section 4.2).

We also employ a restricted version of the exact upper bound encoding by
setting the first unsatisfied watchdog of the CC phase to ωm∗+1. Note, we do not
restrict the tare values or add rj ⇒ sj constraints. By doing so, we implicitly
forbid assignments of the relaxation literals leading to a weight > m∗ · 2p and
thus guiding the SAT solver. We only employ the restricted upper bound in
combination with the COI encoding of Section 5.2 in order to avoid the additional
encoding of O(n2) D1 clauses for the last bucket.

13

6 Experimental Results

We implemented the new encoding scheme and algorithm in C++ as extension
of the QMaxSAT solver [7] as used in the MaxSAT Evaluation 2017 [6].

All experiments were run on one Intel Xeon E5-2650v2 core at 2.60 GHz, with
64 GB of main memory and Ubuntu Linux 16.04 in 64-bit mode as operating
system. We aborted all experiments whose computation time exceeded 3, 600 CPU
seconds or which required more than 32 GB of memory as in the evaluation of
2017. We also used the benchmark set of [6] consisting of 767 weighted instances.

Tab. 1 shows the efficiency of our optimizations (Section 5) of the (D)GPW.
As results show, AC and COF have significant impact on either the number
of encoded variables or clauses leading to a encoding size of 50% compared to
Plain. Whereas, EB is not designed to decrease the encoding size, but still has
a significant impact on the run time. Compared to Plain, DGPW is about 2X
faster and has almost 3X less encoding size in number of clauses and variables
wrt. the commonly solved instances. Moreover, 28 more instances could be solved.

Tab. 2 compares the number of solver calls and run time for the two solving
phases as well as SAT solver result for the DPGW2. In total only 21 SAT solver
calls are needed on average, most of them are satisfiable calls in the CC phase. The
comparison between the average and median time shows that for easy instances
the most time is spent in the CC phase and for hard instances it is the FC phase.
The same holds for satisfiable and unsatisfiable solver calls.

In a second experiment, we compare DGPW with QMaxSAT. Tab. 3 shows
the results on the QMaxSAT encodings. The AutoQD heuristic chooses between
adder and DGPW as (modulo) totalizer are inferior to our encoding (cf. Fig. 4a).
Our heuristic chooses DGPW if either the sum of weights is small (< 400, 000)
or large (> 2, 000, 000, 000). In all other cases the adder is chosen. The original
QMaxSAT AutoQ heuristic also chooses (modulo) totalizers for a small sum of
weights (< 217) as they usually outperform adders in this case. In addition, our
empirical results show that DGPW dominates the adder for huge weights. Tab. 3
is composed as Tab. 1 comparing two neighboring columns wrt. the commonly
solved instances. As expected, the adder needs two orders of magnitudes less
clauses due to linear encoding complexity, and the totalizer needs two orders of
magnitudes more clauses due to the naive encoding of weights. Fig. 4 underlines
our results for the individual encodings in a scatter and cacti plot.

Notably, our results are comparable to the MaxSAT evaluation where AutoQ
also solved 503 instances with an average run time of 385.18 seconds [6]. DGPW
is competitive in the number of solved instances wrt. the other networks (470
vs. 228, 329, and 491). Remarkably, DGPW is at least 2X faster than every
other network for the commonly solved instances. The new VBS solves 31 more
instances in 60% of the run time, whereas our basic AutoQD solves 19 more
instances than the evaluation version of QMaxSAT in overall 70% of the run

2 The run time difference to Tab. 1 is caused by the time needed for the encoding and
the remaining part of our algorithmn (e.g. analyzing the SAT solver model).

14

Table 1: Comparison of DGPW without extensions (Plain) with adder caching
(AC), cone-of-influence (COI), exact bound (EB) and a combined (DGPW)
version using all optimizations. First, the average run time and the total number
of solved instances are given. Two neighboring columns compare an optimization
with Plain opposing the average run time, median run time and encoding size
wrt. the commonly (com.) solved instances. The encoding size is given by the
average number of clauses “#cl” (in millions) and variables “#var”.

Plain AC Plain COI Plain EB Plain DGPW

#instances 442 453 442 455 442 451 442 470
avg time 323.00 269.63 323.00 313.93 323.00 297.47 323.00 264.16
med time 20.56 12.52 20.56 23.26 20.56 19.71 20.56 12.05

co
m

.

#instances 430 430 439 439 439 439 429 429
avg time 302.89 207.07 302.51 288.84 303.08 251.59 306.73 164.60
med time 16.55 10.04 18.48 17.98 18.48 16.48 17.22 7.60
avg #cl 29.19 21.32 28.62 14.66 28.59 28.62 29.26 9.78
avg #var 96,803 53,639 95,324 80,295 95,298 95,512 97,000 38,336

Table 2: DGPW divided by Coarse Convergence (CC), Fine Convergence (FC),
satisfiable (SAT) and unsatisfiable (UNSAT) solver calls. For each phase the
average/median number of the solver calls and solving time in seconds are given.

CC FC SAT UNSAT
avg med avg med avg med avg med

solver calls 14.33 9.00 6.69 3.00 19.29 12.00 1.72 2.00
solving time 120.30 4.93 139.20 1.62 117.73 6.17 141.77 0.87

Table 3: Comparing DGPW with totalizer (Tot), modulo totalizer (ModT) and
adder (Add). The virtual best solver (VBS) of the QMaxSAT with integrated
DGPW (VBSQD) and without (VBSQ) is depicted. Finally, results are shown
for the original heuristic of QMaxSAT (AutoQ) and our adopted one (AutoQD).

Tot DGPW ModT DGPW Add DGPW VBSQ VBSQD AutoQ AutoQD

#instances 228 470 329 470 491 470 504 535 503 522
avg time 326.29 264.16 372.49 264.16 430.39 264.16 381.04 301.44 408.30 334.44
med time 33.12 12.05 21.60 12.05 29.59 12.05 26.96 19.01 28.68 23.34

co
m

.

#instances 225 225 313 313 428 428 504 504 497 497
avg time 303.45 142.78 330.64 141.23 388.37 163.16 381.04 228.60 380.95 268.35
med time 32.12 5.01 18.48 3.69 17.39 7.53 26.96 13.55 27.62 19.80
avg #cl 28.57 0.60 11.61 2.88 0.17 16.45 1.92 12.37 0.33 6.70
avg #var 63,920 11,901 108,006 23,341 45,768 57,404 60,796 56,062 51,328 48,890

15

	0

	500

	1000

	1500

	2000

	2500

	3000

	3500

	0 	500 	1000 	1500 	2000 	2500 	3000 	3500

Ad
de
r,	
To
ta
liz
er
,	a

nd
	M
od
ulo

	T
ot
ali
ze
r

DGPW

DGPW	vs.	Totalizer
DGPW	vs.	Modulo	Totalizer

DGPW	vs.	Adder

(a) Run time comparison per instance

	0

	500

	1000

	1500

	2000

	2500

	3000

	3500

	0 	100 	200 	300 	400 	500

Ru
n	
Tim
e

Solved	Instances

Totalizer
Modulo	Totalizer

Adder
DGPW

(b) Solved instances for a given run time

Figure 4: Comparing different QMaxSAT encodings (adder, totalizer and modulo
totalizer) with our newly introduced DGPW encoding

time, both wrt. the commonly solved instances. Thus, there is still some potential
for our heuristic, however we conserve most of the combined capacity.

7 Conclusions

In this paper, we presented a new encoding scheme for mapping the weighted
MaxSAT problem to the Polynomial Watchdog (PW) encoding. To do so, we
extended the original encoding by the support of dynamic watchdogs and tare
variables. Furthermore, we introduced three optimizations for the PW encoding.

As experimental results show, our optimizations lead to 3X smaller encod-
ing sizes and 2X faster run times on average compared with the original PW
encoding in [13]. Furthermore, we showed the applicability of our new encoding
scheme while achieving a speed-up of more than 2X compared to the competitors.
Finally, we integrated our encoding into a state-of-the-art MaxSAT solver and
implemented a prototypical heuristic for deciding the encoding used.

The presented encoding could also be used to handle PB constraints in
other solvers like Open-WBO [19]. As future work, we want to investigate the
minimization of bucket sizes, which is usually the bottleneck of the PW encoding,
by multiplying or dividing the weights with a common factor, and thus changing
the binary representation. Moreover, we plan to investigate further heuristics for
the adder caching as there is even more potential for the LPW presented in [13].

16

References
1. Menai, M.E.B., Al-Yahya, T.N.: A taxonomy of exact methods for partial Max-SAT.

Journal of Computer Science and Technology 28(2) (2013) 232–246
2. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem.

Computing 44(4) (1990) 279–303
3. Zhang, H., Shen, H., Manya, F.: Exact algorithms for MAX-SAT. Electronic Notes

in Theoretical Computer Science 86(1) (2003) 190–203
4. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsat-

isfiable cores. In: Advanced Techniques in Logic Synthesis, Optimizations and
Applications. Springer (2011) 171–182

5. Ansótegui, C., Gabàs, J.: Solving (weighted) partial MaxSAT with ILP. In:
CPAIOR. (2013) 403–409

6. : Twelfth MaxSAT evaluation (2017) http://mse17.cs.helsinki.fi/index.html.
7. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A partial Max-

SAT solver system description. Journal on Satisfiability, Boolean Modeling and
Computation 8 (2012) 95–100

8. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. In: Principles and Practice of Constraint Programming–CP 2003, Springer
(2003) 108–122

9. Joshi, S., Martins, R., Manquinho, V.: Generalized totalizer encoding for pseudo-
boolean constraints. In: International Conference on Principles and Practice of
Constraint Programming, Springer (2015) 200–209

10. Uemura, N., Fujita, H., Koshimura, M., Zha, A.: A sat encoding of pseudo-boolean
constraints based on mixed radix (3 2017)

11. Ogawa, T., Liu, Y., Hasegawa, R., Koshimura, M., Fujita, H.: Modulo based CNF
encoding of cardinality constraints and its application to MaxSAT solvers. In: Tools
with Artificial Intelligence (ICTAI), 2013 IEEE 25th International Conference on,
IEEE (2013) 9–17

12. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Information Processing Letters 68(2) (1998) 63–69

13. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean con-
straints into CNF. In: International Conference on Theory and Applications of
Satisfiability Testing, Springer (2009) 181–194

14. Codish, M., Fekete, Y., Fuhs, C., Schneider-Kamp, P.: Optimal base encodings for
pseudo-boolean constraints. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, Springer (2011) 189–204

15. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. In:
Journal on Satisfiability, Boolean Modeling and Computation. Volume 2. (2006)
1–26

16. Batcher, K.E.: Sorting networks and their applications. In: AFIPS Spring Joint
Computing Conference, ACM (1968) 307–314

17. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. Com-
puters, IEEE Transactions on 100(8) (1986) 677–691

18. Manthey, N., Philipp, T., Steinke, P.: A more compact translation of pseudo-boolean
constraints into cnf such that generalized arc consistency is maintained. In: Joint
German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz),
Springer (2014) 123–134

19. Martins, R., Manquinho, V., Lynce, I.: Open-wbo: A modular maxsat solver,. In
Sinz, C., Egly, U., eds.: Theory and Applications of Satisfiability Testing – SAT
2014, Cham, Springer International Publishing (2014) 438–445

17

