
Approximately Propagation Complete and
Conflict Propagating Constraint Encodings

Rüdiger Ehlers and Francisco Palau Romero

University of Bremen

Abstract. The effective use of satisfiability (SAT) solvers requires prob-
lem encodings that make good use of the reasoning techniques employed
in such solvers, such as unit propagation and clause learning. Propaga-
tion completeness has been proposed as a useful property for constraint
encodings as it maximizes the utility of unit propagation. Experimental
results on using encodings with this property in the context of satisfiabil-
ity modulo theory (SMT) solving have however remained inconclusive, as
such encodings are typically very large, which increases the bookkeeping
work of solvers.
In this paper, we introduce approximate propagation completeness and
approximate conflict propagation as novel SAT encoding property no-
tions. While approximate propagation completeness is a generalization
of classical propagation completeness, (approximate) conflict propaga-
tion is a new concept for reasoning about how early conflicts can be
detected by a SAT solver. Both notions together span a hierarchy of en-
coding quality choices, with classical propagation completeness as a spe-
cial case. We show how to compute approximately propagation complete
and conflict propagating constraint encodings with a minimal number
of clauses using a reduction to MaxSAT. To evaluate the effect of such
encodings, we give results on applying them in a case study.

1 Introduction

Satisfiability (SAT) solvers have become an important tool for the solution of
NP-hard practical problems. In order to utilize them, the practical problem to
be solved needs to be encoded as a satisfiability problem instance, which is
then passed to an off-the-shelf SAT solver. The way in which this encoding is
performed has a huge influence on the solver computation times. Hence, the
effective use of SAT solvers requires encodings that keep the workload of the
solvers as small as possible. Capturing how an encoding needs to look like to
have this property is however not a simple task. While it is commonly agreed
on that problem-specific knowledge should be made use of, only few general
guidelines for efficient encodings are known [7].

A good encoding should keep the numbers of variables and the number of
clauses as small as possible, while allowing the solver to make most use of clause
learning and unit propagation, which are reasoning steps that are (part of) the
foundation of modern CDCL-style SAT solving [14]. While the effect of clause

learning depends on the variable selection scheme for branching employed by
the solver, and hence is hard to predict, how an encoding makes most use of
unit propagation is better studied. For instance, the class of cardinality con-
straints has many known encodings [1,3], and it is frequently suggested that
encodings that are propagation complete should be preferred [7,13]. An encoding
of a constraint is propagation complete (also known under the name generalized
arc-consistent [13]) if every literal implied by some partial valuation and the
encoded constraint is detected by the unit propagation mechanism of the SAT
solver. A constraint encoding with this property reduces the number of times in
which costly backtracking is performed until a satisfying assignment is found or
the SAT instance is found to be unsatisfiable.

Propagation completeness is of interest for all types of constraints that ap-
pear in practically relevant SAT problems, so having an automated way to make
the encoding of a constraint type that appears as a building block in real-world
problems propagation complete is likely to be useful. Brain et al. [9] presented
an approach to rewrite SAT encodings to make them propagation complete.
They apply their approach to multiple building blocks commonly found in prob-
lems from the field of formal verification and modify the SAT-based satisfiability
modulo theory (SMT) solver CVC4 to use the computed encodings for bitvector
arithmetic operations. Their experiments show that the change increased solver
performance somewhat, but made limited overall difference.

This result is surprising. If propagation complete encodings enable a SAT
solver to make most use of unit propagation and reduce the number of conflicts
during the solution process, then SAT solving times should decrease when using
such encodings. A contributing factor to this lack of substantial improvement
is that propagation complete encodings are often much larger than minimally-
sized encodings. As an example, a three-bit multiplier (with five output bits)
can be encoded with 45 clauses, but a propagation complete encoding needs
at least 304 clauses. As a consequence, the bookkeeping effort of the solver is
higher for propagation complete encodings, which reduces solving efficiency [17].
This observation gives rise to the question if there is a way to balance encoding
size and the propagation quality of an encoding to get some of the benefits of
propagation complete encodings but still keep the burden to the solver by the
additional clauses low.

In this paper, we present such an approach to balance the propagation qual-
ity of a constraint encoding into conjunctive normal form (CNF) and its size.
We define the novel notions of approximate propagation completeness and ap-
proximate conflict propagation. The former is a generalization of propagation
completeness, and we say that a CNF formula ψ is approximately propagation
complete for a quality level of c ∈ IN if for every partial valuation to the variables
in ψ that can be completed to a satisfying assignment and that implies at least c
other variable values, one of them need to be derivable from ψ by unit propaga-
tion. Approximate conflict propagation is concerned with how early conflicts are
detected. We say that a CNF constraint encoding ψ is approximately conflict
propagating with a quality level of c ∈ IN if every partial valuation that cannot

be completed to one that satisfies ψ and for which the values of at most c vari-
ables are not set in the partial valuation leads to unit propagation (or induces a
conflict) in ψ.

Approximate propagation completeness and approximate conflict propaga-
tion both target making the most use of the unit propagation capabilities of
solvers. While approximate propagation completeness deals with satisfiable par-
tial valuations, i.e., those that can be extended to satisfying assignments, approx-
imate conflict propagation deals with unsatisfiable partial valuations. Together
these concepts allow to reason about the propagation quality of CNF encodings
in a relatively fine-grained way.

To evaluate the two new concepts, we present an approach to compute ap-
proximately propagation complete and approximately conflict propagating en-
codings with a minimal number of clauses. The approach starts from a repre-
sentation of the constraint to be encoded as a binary decision diagram (BDD)
and enumerates all shortest clauses implied by the BDD. Every minimal CNF
encoding consists of a subset of these clauses. We then compute clause selection
requirements for the solution based on the desired propagation quality levels. The
resulting requirement set is then processed by a (partial) MaxSAT solver [20] to
find a smallest encoding. The approach supports finding minimal propagation
complete encodings and minimal arbitrary CNF encodings as special cases.

We apply the approach to a wide variety of constraints, including the ones
already used by Brain et al. [9]. We show that their approach can sometimes
produce encodings with a clause cardinality that is higher than necessary, and
that for a good number of constraints, the various propagation quality level
combinations for our new propagation quality notions give rise to many differ-
ent (minimal) encodings with vastly different sizes. Our approach is also very
competitive in terms of computation time when using the MaxSAT solver LMHS
[25] in combination with the integer linear programming (ILP) solver CPLEX as
backend. To gain some intuition on how efficient the SAT solving process with
the new encodings is, we compare them on some integer factoring benchmarks.

1.1 Related Work

Brain et al. [9] introduced abstract satisfaction as a theoretical foundation to
reason about propagation strength of encodings. They use a modified SAT
solver to generate propagation complete encodings and then minimize their sizes
by removing redundant clauses using a procedure proposed by Bordeaux and
Marques-Silva [8]. As we show in Section 5, this approach does not guarantee a
minimal number of clauses (but guarantees that no clause from the encoding can
be removed without making it propagation incomplete or incorrect), whereas the
new algorithm given in Section 4 does. Brain et al. also give a variant of their
approach in which auxiliary variables are added to the SAT instance, which can
substantially reduce the encoding size. This makes the encoding propagation
incomplete, however, except when assuming that the SAT solver never branches
on the auxiliary variables.

Inala et al. [17] used syntax-guided program synthesis to automatically com-
pute propagation complete encodings that improve the efficiency of SMT-based
verification. In contrast to the work by Brain et al., their approach synthesizes
code to generate encodings rather than computing the encodings directly. The
code can then be used for multiple concretizations of the constraint type (e.g.,
for varying bit vector widths when encoding an addition operation).

Bordeaux and Marques-Silva [8] already solved the problem of generating
propagation complete encodings earlier than the aforementioned works. They
show that when starting from a CNF encoding that should be made propaga-
tion complete, by restricting the search for clauses to be added to so-called em-
powering clauses, the computation time can be substantially reduced. However,
their approach requires the use of a quantified Boolean formula (QBF) solver,
whereas the later approach by Brain et al. [9] only requires a modified SAT
solver. Bordeaux and Marques-Silva also showed that there are constraint classes
that require exponentially-sized propagation complete encodings, which further
motivates the study of approximate versions of this notion in the present work.

Gwynne and Kullmann [16,15] define two hierarchies for specifying how easy
a SAT solver can detect implied literals and conflicts, which we also do in this
paper. Their notions are however based on how often a solver has to branch in
the optimal case to detect implied literals or conflicts. In contrast, our notions
base on how many variable values are implied (for approximate propagation
completeness) and how many variables do not have values assigned in a partial
valuation (for approximate conflict propagation). Hence, our encoded constraints
do not rely on the solver to branch on the right variables. This also allows us
to automate the process of finding encodings with a minimal number of clauses
for a wide variety of constraints, while the experimental evaluation of their work
[15] focussed on few cases for which encodings in the levels of their hierarchies
were available.

Minimal propagation complete CNF encodings typically have more clauses
than minimal arbitrary CNF encodings. Many of the additional clauses can also
be found automatically by SAT solvers that perform preprocessing or inprocess-
ing [18] through techniques such as variants of hyper resolution [5]. Due to the
high computational cost incurred by them, they are typically only used to a
limited extent. Some clauses that are important for approximate propagation
completeness and conflict propagation can therefore not be found or are found
very late by these techniques. Furthermore, our approach computes minimal
encodings from scratch, which be structured in completely different ways that
expert-made encodings.

Manthey et al. [22] proposed a technique which can be used for inprocessing
or preprocessing and that is based on introducing auxiliary variables that can
make the CNF encoding smaller (where they count the number of clauses plus
number of variables). They show that SAT solving performance improves on
many benchmarks with their approach. While the introduction of additional
variables could in principle break the propagation completeness, their approach
does not suffer from this problem as they only undo clause distribution in a way

that one of the variable phases occurs in two-literal clauses only. Their positive
experimental results therefore do not give insight into the practical importance
of using propagation complete encodings.

Babka et al. [4] study the theoretical properties of the problem of making
a CNF encoding propagation complete. They identify the complexity classes of
the different variants of this problem.

Kučera et al. [19] give lower bounds on the minimal number of clauses needed
to encode so-called “at most one” or “exactly one” constraints. In contrast to
the work in this paper, their result generalizes to an arbitrary size, also holds
for the case that auxiliary variables are used, but is restricted to this particular
constraint type.

2 Preliminaries

Given a set of variables V and Boolean formula ψ over V, the satisfiability (SAT)
problem is to find a satisfying assignment to the formula if one exists, or to
deduce that no such assignment exists, in which case the formula is called un-
satisfiable. Boolean formulas to be checked for satisfiability are also called SAT
instances and are assumed to be given in conjunctive normal form (CNF) in the
following. Such instances are conjunctions of clauses, which are in turn disjunc-
tions of literals, i.e., from L(V) = V ∪ {¬v | v ∈ V}.

A search-based SAT solver maintains and manipulates a partial valuation
to V. A partial valuation p : V ⇀ {false, true} is a partial function from the
variables to false and true. We say that p is consistent with some other partial
valuation p′ if p(v) = p′(v) holds for all variables v in the domain of p′. A
completion of p is a full assignment to V that is consistent with p. We say
that p satisfies some literal l over a variable v if p(v) is defined and p can be
completed to a full valuation that satisfies l. Likewise, p falsifies some literal l
if p(v) is defined and no completion of p satisfies l. We say that p′ implies a
literal l ∈ L(V) if every completion of p′ that satisfies ψ also satisfies l. With a
slight abuse of terminology, for some fixed set of clauses, we say that a partial
valuation is satisfiable if it can be extended to a satisfying assignment, and it is
unsatisfiable otherwise. We say that a clause c subsumes another clause c′ if the
literals of c are a subset of the literals of c′. If a CNF formula has two clauses
c and c′ such that c subsumes c′, then c′ can be removed without changing the
encoded constraint.

During the search process, partial valuations p : V ⇀ {false, true} are ex-
tended by the solver (1) by performing decisions, where the domain of p is
extended by one variable, and (2) by unit propagation, where for some clause
l1 ∨ . . . ∨ ln in the formula, there exists an i ∈ {1, . . . , n} such that the variable
of li is not in the domain of p, but p falsifies all literals lj with i 6= j.

Given some (sub-)set of variables V ′, a constraint over V ′ is a subset of
valuations to V ′ that models the satisfaction of the constraint. A CNF encoding
ψ of such a constraint is a set of clauses over V ′ that are together satisfied
by exactly the valuations in the subset to be encoded. A CNF encoding of a

constraint over a variable set V ′ is propagation complete if for every partial
valuation p to V ′ and every literal l ∈ L(V ′), if p implies l, then there exists a
clause l1 ∨ . . . ∨ ln in the encoding for which all literals in the clause except for
at most one are falsified by p.

Example 1. As an example, we consider the following CNF encoding:

(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (x4 ∨ x2 ∨ x3)

This constraint encoding is not propagation complete, as the partial valuation
p = {x4 7→ false} does not give rise to unit propagation, but in every satisfying
valuation, x1 needs to have a false value if x4 has a false value. Shortening
the last clause to (x2 ∨ x4) does not change the set of satisfying valuations and
makes it propagation complete. The new clause enables the SAT solver to extend
the partial valuation p to p′ = {x4 7→ false, x2 7→ true} by unit propagation,
from where unit propagation can then deduce that x1 must have a false value.
Adding the clause (¬v1 ∨x4) instead of changing the clause (v4 ∨x2 ∨x3) would
also make the encoding propagation complete.

Partial Maximum Satisfiability (MaxSAT) solvers take a CNF formula in which
some clauses are soft. The solver searches for a variable assignment that satisfies
all the remaining hard clauses and maximizes the number of soft clauses that
are satisfied by the assignment.

Binary decision diagrams (BDDs) [10] are compact representations of Boolean
formulas over some set of Boolean variables. They are internally represented as
directed acyclic graphs and every path through the BDD to a designated true
node represents one or multiple satisfying assignments of the formula. We will
not need their details in the following, and refer to [11] for a well-accessible
introduction. BDDs support the usual Boolean operators such as disjuction,
complementation, and universal or existential abstraction of a variable. For in-
stance, given a BDD F and a variable v, computing ∃v.F yields a BDD that
maps all valuations to the variables to true for which the value for v can be set
to either false or true such that the resulting valuation is a model of F .

3 Approximate Propagation Completeness and Conflict
Propagation

Propagation complete encodings enable search-based SAT solvers to deduce im-
plied literals by unit propagation. By definition, every partial valuation that
implies a literal over a variable that does not have a defined value in the partial
valuation must give rise to unit propagation by the solver. We want to weaken
this requirement in a way that enables SAT practitioners to better balance prop-
agation quality and the encoding size of a constraint. This is done in two ways:

– We separate the consideration of satisfiable and unsatisfiable partial valua-
tions, and

– we relax the requirement that every partial valuation that could give rise to
unit propagation should do so, but rather that only partial valuations that
enable the solver to make much progress need to so do.

These ideas are implemented in the following two propagation quality notions
for CNF encodings:

Definition 1 (Approximate Propagation Completeness). Given a CNF
encoding ψ over some set of variables V and some constant n ∈ IN, we say
that ψ is approximately propagation complete with a quality level of n if for all
satisfiable partial valuations p : V ⇀ {false, true} for which n different literals
are implied by p and ψ and for which the variables for these literals are not
in the domain of p, at least one of them can be derived from p and ψ by unit
propagation.

Definition 2 (Approximate Conflict Propagation). Given a CNF encod-
ing ψ over some set of variables V and some constant n ∈ IN, we say that ψ is
approximately conflict propagating with a quality level of n if for all unsatisfi-
able partial valuations p ∈ V ⇀ {false, true} for which p is defined on at least
|V| − n variables, there exists a clause in ψ all of whose literals except for at
most one are falsified by p.

In both definitions, we only care about situations in which at least one clause
should lead to unit propagation (or a conflict in case of approximate conflict
propagation). The definition however induces stronger propagation quality re-
quirements through repeated application. If, for instance, ψ is an approximately
propagation complete encoding with a quality level of 2 and p is a partial valu-
ation that implies four new literals, then at least one clause needs to lead to the
derivation of an extended partial valuation p′ by unit propagation. As p′ then
still implies three literals, by the fact that ψ has an approximate propagation
completeness quality level of 2, another clause must give rise to unit propagation.
By this line of reasoning, an n-approximate propagation complete encoding can
never leave more than n− 1 implied literals of a partial valuation undetected by
unit propagation.

The quality level for approximate conflict propagation states how early con-
flicts induced by a constraint need to be detected by the unit propagation ca-
pabilities of the solver. In contrast to approximate propagation completeness,
higher values are better as they mean that more variables can be unassigned in
a partial valuation that already violates the constraint and where unit propaga-
tion should lead to an extension of the partial valuation or the detection of the
conflict.

The requirement that p needs to be defined on at least |V| − n variables
for a partial valuation to be of interest in the approximate conflict propagation
definition could also be replaced by considering all partial valuations for which
at most |V| − n variables are undefined. This definition would also make sense
and requires that unsatisfiable partial valuations in which few variables have
values assigned need to give rise to unit propagation until at most n variables

are left unassigned. However, this definition would not ensure that conflicts are
actually detected by the solver in such a case, while our definition does, which
we find more natural. To see that our definition indeed ensures this, note that
if a partial valuation p meets the requirements given in the definition, then
either a conflict is detected or unit propagation should be able to extend p to
a partial valuation p′ that is defined on more variables and that still cannot
be extended to a satisfying assignment. Hence, the definition can be applied
again (repeatedly), and eventually a conflict is found by the solver. Thus, the
“at least” in Definition 2 is reasonable, even though in this way, higher quality
levels for approximate conflict propagation are better, whereas for approximate
propagation completeness, lower numbers are better.

While these definitions consider satisfiable and unsatisfiable partial valua-
tions separately, there is still a connection between them:

Proposition 1. If a CNF encoding ψ over some set of variables V is approxi-
mately propagation complete with a quality level of 1, then it is (approximately)
conflict propagating with a quality level of |V|.

Proof. Let p be an unsatisfiable partial valuation. We can transform p to an
unsatisfiable partial valuation p′ to which p is consistent and for which removing
any variable of the domain of p′ would make it satisfiable. This transformation
only requires removing variables from the domain of p until no more variables
can be removed without making it satisfiable. Let us now remove an arbitrary
variable v′ from the domain of p′ and let the resulting valuation be called p′′.
We have that p′′ implies the literal l = ¬v′ if p(v′) = true or l = v′ if p(v′) =
false. Since ψ is approximately propagation complete with a quality level of 1,
l needs to be deduced by unit propagation from p′′. The last clause used in the
propagation has, by the definition of unit propagation, all literals instead of l
falsified for the partial valuation p′′. Since l is in conflict with p′ by construction,
we have p′′(v) = p′(v) for all variables v in the domain of p′′, and we have that
p is an extension of p′, we obtain that p falsifies a clause of ψ. ut

A corollary of this proposition is that approximately propagation complete
encodings with a quality level of 1 are exactly the same as propagation complete
encodings. While the two definitions differ for unsatisfiable partial valuations,
they both imply that the unsatisfiability of a partial valuation needs to be de-
tectable by unit propagation. For the approximate notion, this follows from the
proposition above. For the older non-approximate propagation completeness def-
inition, this follows from the fact that such partial valuations imply all literals
in L(V), which in turn need to lead to at least one clause in the CNF encoding
to be falsified.

4 Computing Minimal Approximately Optimal Encodings

In this section, we present an approach to compute approximately propaga-
tion complete and conflict propagating encodings of minimal size. Both of these

concepts are parameterized by quality levels, so our procedure will read a prop-
agation quality level tuple (qp, qc), where qp denotes the quality level for ap-
proximate propagation completeness, and qc is the quality level for approximate
conflict propagation. Applying the approach with the quality level tuple (1, |V|)
thus yields the smallest propagation complete encoding, whereas applying the
approach with (|V|, 1) gives the overall smallest possible CNF encoding for a
constraint (as every encoding is automatically approximately conflict propagat-
ing with a quality level of 1 by the definition of this propagation quality notion).
To avoid the occurrence of the set of variables in propagation quality tuples in
the following, we use the ∞ symbol to denote all numbers ≥ |V|, as the propa-
gation quality level definitions do not lead to differences for values greater than
or equal to the number of variables in a constraint.

The main idea of our approach is that after enumerating all clauses that
could occur in a minimal CNF encoding with the specified quality level, we
can compute requirements on the selection of a subset of clauses that ensure
(1) the completeness of the encoding (i.e., that it accepts the correct set of full
variable valuations), (2) the desired quality level for approximate propagation
completeness, and (3) the desired quality level for approximate conflict propa-
gation. These requirements are then encoded into a (partial) MaxSAT instance
whose optimal solution represents a minimally-sized CNF encoding.

The following proposition gives rise to a procedure to efficiently enumerate
the set of clauses that can occur in a minimal CNF encoding.

Proposition 2. Let ψ be a CNF encoding of a constraint with propagation qual-
ity level tuple (qp, qc). If a literal can be removed from a clause in ψ without
changing the set of satisfying variable valuations, then removing the literal does
not degrade the propagation quality levels of ψ.

Proof. If a partial valuation p leads to unit propagation for ψ, then it still does
so after removing a literal from a clause except if the removed literal would be
propagated. This can only happen for unsatisfiable partial valuations. For both
propagation quality notions, such a case cannot reduce the quality level. ut

It follows that without loss of generality, we can assume smallest encodings to
only use clauses that are as short as possible (in the sense that removing a literal
from the clause would lead to a clause that some allowed variable valuation of
the constraint to be encoded violates). Note that Bordeaux and Marques-Silva
[8] already proved that when enumerating clauses for a constraint ordered by
length, a longer clause can never make a shorter one redundant. Their result is
not applicable here, as we later only select a subset of the enumerated candidate
clauses to be contained in the computed encoding, while the application of their
result requires that a clause remains a part of the CNF encoding once it has
been found.

Enumerating all shortest clauses can be done in multiple ways. In our im-
plementation for which we report experimental results in the next section, we
start with a binary decision diagram description of the constraint and encode
the search for a clause into a SAT instance by letting the SAT solver guess a

partial valuation and which nodes in the BDD are reachable for the partial val-
uation. The true node of the BDD must not be reachable so that the valuation
represents a possible clause in an encoding. We use a cardinality constraint with
a ladder encoding [24] to count how many variables are set in the partial val-
uation, and iteratively search for partial valuations with the smallest possible
domain size. Whenever one is found, a clause is added to the SAT instance that
excludes all extensions of the partial valuation, and the search continues in an
incremental manner.

After a candidate set of clauses C = {c1, . . . , cm} for the constraint to be en-
coded is computed, we employ a MaxSAT solver to find a minimal encoding with
the desired propagation quality level tuple (qp, qc). The MaxSAT instance φM
has the variables x1, . . . , xm, i.e., one variable per clause in C, and we compute
clauses for φM that ensure that the selected subset of C is (1) complete enough
to encode the correct constraint, (2) approximately propagation complete with
a quality level of qp, and (3) approximately conflict propagating with a quality
level of qc. In the remainder of this section, we describe how to compute these
clauses for φM .

4.1 Ensuring Encoding Correctness

All clauses in C can be part of a correct encoding of the constraint. The final
set of selected clauses needs to be large enough not to allow spurious satisfying
assignments, however. To achieve this, we recursively enumerate all (partial)
assignments p while keeping track of the set of clauses C ′ not (yet) satisfied by
the partial assignment. Whenever a complete assignment is reached and C ′ ⊆ C
is the set of clauses not satisfied by p, the (hard) MaxSAT clause

∨
ci∈C′ xi

is added to φM . As optimizations for this process, a recursion step is aborted
whenever C ′ becomes empty, and p is never extended by values for variables that
do not occur in C ′.

It is possible that a MaxSAT clause found late in this process subsumes a
clause found earlier. We use a simple clause database structure that sorts clauses
by length and removes subsumed clauses to avoid generating unnecessarily large
MaxSAT instances. Storing all clauses with ordered literals increases the effi-
ciency of the approach.

4.2 Encoding Approximate Propagation Completeness

By the definition of approximate propagation completeness, we need to ensure
that for every partial valuation that implies at least qp literals for variables
that do not have values in the partial valuation, the final encoded CNF formula
includes one clause that gives rise to unit propagation for the partial valuation.

We start by building a BDD that represents all partial valuations for which at
least qp new literals are implied. Algorithm 1 shows how this is done. In order to
encode partial valuations, we use the auxiliary variable set D = {dv | v ∈ V} to
encode which variables have defined values in a partial valuation. The algorithm
iterates over all variables v ∈ V (line 3) and finds the set of partial valuations

Algorithm 1 Procedure to compute the satisfiable partial valuations that imply
at least qp many literals

1: F ← satisfying assignments of the constraint to be encoded over V
2: X[0]← F
3: for v ∈ V do
4: I = ¬dv ∧ (∃v.F) ∧ (¬∀v.F)
5: for v′ ∈ V \ {v} do
6: I = I ∧ ((∀v′.I) ∨ dv′)

7: Y ← X
8: X[0]← Y [0] ∧ ¬I
9: for i ∈ {1, . . . , |Y |} do

10: X[i]← (Y [i] ∧ ¬I) ∨ (Y [i− 1] ∧ I)

11: X[|Y |]← Y [|Y | − 1] ∧ I

12: return
∨|V|

i=qp
X[i]

that imply v or ¬v (line 4). We only consider partial valuations that can be
extended to satisfying assignments, so only one of them can be implied. If some
other variable v′ does not have a defined value in a partial valuation, then the
valuation can only induce a literal over v if the value of v′ does not matter for
implying v (lines 5 to 6). The resulting partial valuation set is stored into the
variable I in the algorithm.

After I is computed, the algorithm updates a partitioning of the partial
valuations by how many literals over the variables already considered in the
outer loop are induced by the respective partial valuation (lines 7 to 11). Finally,
the algorithm returns the partial valuations that induce at least qp literals.

For every partial valuation in the resulting BDD, we compute the subset
C ′ ⊆ C of clauses in C that give rise to unit propagation over the valuation, as
for the final CNF encoding of the constraint to be approximately propagation
complete with a quality level of qp, one of them needs to be contained. We then
add

∨
ci∈C′ xi as a hard clause to the MaxSAT instance φM and update the BDD

with the remaining partial valuations to be considered by taking its conjunction
with ¬

∧
ci∈C′

∨
l∈ci

∧
l′∈ci,l 6=l′ m(l), where m(¬v) = dv ∧ v and m(v) = dv ∧ ¬v

for every variable v ∈ V. In this way, all partial valuations that are guaranteed to
lead to unit propagation whenever at least one of the clauses in C ′ is contained
in the CNF encoding are removed from the BDD. We do the same with all clause
subsets C ′ found in the procedure given in the previous subsection, as this further
reduces the number of partial valuations to be considered. As before, we use a
special clause database for φM to remove subsumed clauses.

4.3 Encoding Approximate Conflict Propagation

Next, we take care of partial valuations that cannot be completed to satisfying
assignments and for which at most qc variables in V do not have an assigned
value. Algorithm 2 describes how to compute this set of partial valuations. After

Algorithm 2 Procedure to compute the unsatisfiable partial valuations for
which at least qc variables do not have a assigned values.

1: X[0]← ¬(satisfying assignments of the constraint to be encoded over V)
2: for v ∈ V do
3: Y ← X
4: for i ∈ {1, . . . , |X|} do
5: T ← (∀v.Y [i]) ∧ ¬dv
6: if i > 1 then
7: T ← T ∨ (Y [i− 1] ∧ dv)

8: X[i]← T

9: X[|Y |+ 1]← Y [|Y |] ∧ dv

10: return
∨|V |

i=|V|−qc
X[i]

it has been computed, the process is exactly the same as in the previous sub-
section: for every partial valuation that the BDD maps to true, the subset of
clauses C ′ that lead to a conflict or unit propagation for this partial valuation
is computed, and the (hard) MaxSAT clause

∨
ci∈C′ xi is added to the MaxSAT

instance. The BDD for the remaining partial valuations is also updated in the
same way and the clauses in the MaxSAT clause database generated by the
procedures in the preceding two subsections are used to reduce the number of
partial valuations to be considered before enumerating them.

4.4 MaxSAT solving

All constraints in φM so far are hard constraints, i.e., need to be fulfilled by all
satisfying variable valuations of the MaxSAT instance. To request the solver to
minimize the number of clauses in the CNF encoding, we add the soft clauses
¬x1, . . . , ¬xm. Maximizing the number of satisfied soft clauses then exactly cor-
responds to minimizing the number of clauses in the final constraint encoding.

5 Experiments

We implemented the approximate propagation complete and conflict propagating
CNF encoding procedure in C++ using the BDD library CuDD [26]. Unlike the
tool GenPCE for computing propagation complete encodings with the approach
by Brain et al. [9], our new optic tool1 does not start with a constraint encoding
in CNF, but supports arbitrary Boolean formulas as constraints, which makes
their specification easier. For the following experiments, we use lingeling bbc

9230380 [6] as SAT solver for enumerating the candidate clauses for the encoding,
and apply the MaxSAT solver LMHS [25] in the version from the end of March
2018, using minisat [12] as backend solver. LMHS performs calls to an integer
linear programming solver, for which we employ IBM CPLEX V12.8.0. We use
the following benchmark sets:

1 Available at https://github.com/progirep/optic

https://github.com/progirep/optic

1. Full adders with and without carry bit output
2. Multipliers of various input and output bit widths
3. Square and square root functions
4. Unsigned less-than-or-equal comparison functions
5. All-different constraints, including Cook’s encoding [23]
6. Bipartite matching problems, where for some set of nodes V1 = V2 =
{1, . . . , n} for n ∈ IN and (random) E ⊆ V1 × V2, we have one Boolean
variable ve for every e ∈ E and allow all edge subset choices encoded into
{ve}e∈E for which every node in V1 is predecessor node for exactly one cho-
sen edge and every node in V2 is the successor node of exactly one chosen
edge

7. All other benchmarks from the work of Brain et al. [9] not contained in the
benchmark families above

We apply our implementation with various propagation quality tuples and com-
pare the resulting encoding sizes and computation times with the propagation
complete encodings generated by the GenPCE tool and the time it took that tool
to compute them. As baseline, we also compare against a simple BDD-based
tool that enumerates some shortest possible clauses in a CNF encoding until the
encoding is complete, without guaranteeing any propagation quality. All bench-
marks were executed on a computer with AMD Opteron 2220 processors with
2.8 GHz clock rate, running an x64 version of Linux. The memory limit for ev-
ery execution was 8 GB, all executions where single-threaded, and we imposed
a time limit of 30 minutes.

Table 1 shows an excerpt of the results. We tested the propagation quality
of all generated encodings using an additional tester tool, and report the results
in the table as well. In many cases, optic generated encodings of higher prop-
agation quality levels than requested when this was possible without increasing
the number of clauses in the encoding. A few other observations can be made:

1. The GenPCE tool did not always compute propagation complete encodings
with a minimal number of clauses (e.g, all-different constraints for 3 objects,
some bipartite matching problems), but did so quite often.

2. There are a many cases (e.g., addition with a large number of bits, mul-
tiplication, all-different constraints) for which the encodings for different
propagation quality tuples have different sizes.

3. Encodings that are fully conflict propagating but for which approximate
propagation completeness was not requested are typically small.

4. The GenPCE tool is often slower than optic for computing propagation com-
plete encodings, but the scalability of optic and GenPCE are quite similar.
However, optic also times out in a few cases in which GenPCE does not. Com-
puting minimally-sized encodings (as optic does but not GenPCE) appears
to be much harder in these cases.

We can see that using BDDs for enumerating candidate clauses and generating
MaxSAT clauses is not a major bottleneck, as optic frequently outperforms
GenPCE on propagation-complete encodings. We also tested how long computing

good encodings for the four-object all-different constraints takes. For the (1,∞)
and (2,∞) propagation quality levels, it was determined after 18.1 and 28.4
hours that 200 and 156 clauses are needed, respectively, of which 11.2 and 621.3
minutes were spent solving the MaxSAT problems. In the (3,∞) case, the overall
computation took 141.7 hours (120 clauses).

5.1 Case study: Integer Factoring

To evaluate the effect of the encodings on propagation quality, we apply them
in an integer factoring case study. We generated 5 numbers that are products
of two primes each. For each number c and each 2 ≤ n1 ≤ dlog2(

√
c+ 1)e, we

then computed SAT instances for finding a factoring for which the first number
has n1 bits with the most significant bit set. We compose the SAT instance of
encodings for full adders with 1, 2, 3, or 4 input bits, and multipliers with 1,
2, or 3 input bits. We use the propagation quality tuples (3, 3), (∞,∞),(∞, 1),
and (1,∞), for which the latter three refer to best possible conflict propagation,
minimal encoding size, and classical propagation completeness. For the (3, 3)
case, we were unable to generate a minimal encoding for the four-bit full adder
and had to use a suboptimal (possibly too large) encoding that we obtained
by using the MaxSAT solver maxino-2015-k16 [2] that can output suboptimal
solutions found early. We aborted its computation after 400 minutes. We also
compare the solving performance against using the greedy encoding introduced
as comparison baseline in Table 1.

Figure 1 shows the cactus plot for the computation times of the SAT solvers
lingeling bbc 9230380 [6] and MapleSAT LRB [21] as representatives for mod-
ern solvers with and without advanced inprocessing, respectively. It can be seen
that for shorter time limits, minimally sized encodings without propagation qual-
ity guarantees are inferior in overall performance. Above 600 seconds of com-
putation time for every benchmark, MapleSAT however works quite well with
minimally-sized encodings, but the difference between the encodings is quite
small for high time limits anyway. Lingeling works best with encodings of
higher propagation quality. Encodings that only enforce conflict propagation
seem to be particularly well suited for easier benchmarks.

6 Conclusion

We presented two new propagation quality notions and described an approach
to compute minimally-sized CNF encodings from constraint descriptions. Our
approach reduces the problem to solving a single MaxSAT instance, and the
experiments show that many constraints found in practice give rise to differently
sized encodings for different propagation quality level combinations.

In contrast to the work by Brain et al. [9], we based our experimental case
study on problems encoded from scratch rather than modifying an existing SMT
solver, as the techniques used in SMT solvers are highly tuned to work in con-
cert, and hence replacing a single element has side-effects that cannot be tuned
out in an experimental evaluation.

B
e
n
c
h
m

a
r
k

G
r
e
e
d
y

(
∞

,
∞

)
(
1
,
∞

)
(
2
,
∞

)
(
3
,
∞

)
(
3
,
3
)

(
∞

,
1
)

G
e
n
P

C
E

A
ll
-D

if
fe

r
e
n
c
e

C
o
o
k

3
o
b
j.

3
6

2
.6

4
(
1
1
,
1
0
)

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

1
7

2
0
.7

4
(
1
1
,
1
1
)

3
3

0
.0

0
(
1
,
∞

)

A
ll
-D

if
fe

r
e
n
c
e

3
o
b
j.

2
6

0
.0

0
(
7
,
6
)

1
5

1
.1

5
(
4
,
∞

)
2
4

0
.2

4
(
1
,
∞

)
2
0

0
.3

5
(
2
,
∞

)
1
5

0
.3

9
(
3
,
∞

)
1
5

0
.3

4
(
3
,
∞

)
1
2

0
.1

0
(
4
,
6
)

2
6

0
.0

0
(
1
,
∞

)

A
ll
-D

if
fe

r
e
n
c
e

C
o
o
k

4
o
b
j.

1
2
5

6
.3

3
(
×

,
2
3
)

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

m
e
m

o
u
t

A
ll
-D

if
fe

r
e
n
c
e

4
o
b
j.

8
6

0
.1

0
(
1
3
,
1
2
)

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

2
8

7
4
.8

0
(
8
,
1
2
)

2
0
3

0
.0

0
(
1
,
∞

)

c
v
c
-a

d
d
1
5
t
o
4
.c

n
f

6
5
5
3
4

1
6
3
3
.6

3
(
×

,
∞

)
t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

c
v
c
-a

d
d
3
-b

w
3
.c

n
f

8
2
4

1
.7

4
(
6
,
8
)

1
4
4

2
.3

1
(
4
,
∞

)
1
5
3
6

1
.6

4
(
1
,
∞

)
8
0
8

8
.3

0
(
2
,
∞

)
5
1
2

3
.6

4
(
3
,
∞

)
5
0
0

4
7
.5

1
(
3
,
4
)

1
2
2

1
0
.4

9
(
6
,
8
)

1
5
3
6

1
9
.8

1
(
1
,
∞

)

c
v
c
-a

d
d
3
-c

a
r
r
y
2
-g

a
d
g
e
t
.c

n
f

6
2

0
.0

7
(
2
,
∞

)
3
6

0
.2

3
(
6
,
∞

)
7
6

0
.1

0
(
1
,
∞

)
6
2

0
.1

6
(
2
,
∞

)
5
1

1
5
.1

8
(
3
,
∞

)
5
1

6
.9

0
(
3
,
∞

)
3
2

0
.4

1
(
6
,
4
)

7
6

0
.0

0
(
1
,
∞

)

c
v
c
-a

d
d
3
-o

p
t
-b

w
3
.c

n
f

8
2
4

0
.8

8
(
6
,
8
)

1
4
4

1
.4

6
(
4
,
∞

)
1
1
5
2

1
.2

2
(
1
,
∞

)
6
2
4

2
.9

7
(
2
,
∞

)
4
1
6

2
.1

1
(
3
,
∞

)
4
1
6

2
.6

6
(
3
,
∞

)
1
2
6

1
.0

2
(
6
,
8
)

1
1
5
2

1
6
.9

8
(
1
,
∞

)

c
v
c
-a

d
d
7
t
o
3
.c

n
f

2
5
4

0
.2

3
(
1
,
∞

)
t
im

e
o
u
t

2
5
4

2
.7

2
(
1
,
∞

)
2
5
4

1
6
.0

3
(
1
,
∞

)
2
5
4

3
2
.3

4
(
3
,
∞

)
2
5
4

1
7
.0

4
(
3
,
∞

)
1
5
8

2
0
.9

8
(
7
,
5
)

2
5
4

0
.5

5
(
1
,
∞

)

c
v
c
-m

u
lt
-c

o
n
s
t
-c

o
n
s
t
3
-2

n
-2

.c
n
f

1
2

0
.2

2
(
5
,
∞

)
8

0
.2

5
(
3
,
∞

)
1
1

0
.3

1
(
1
,
∞

)
9

0
.2

5
(
2
,
∞

)
8

0
.3

0
(
3
,
∞

)
8

0
.3

2
(
3
,
∞

)
8

0
.3

0
(
3
,
∞

)
1
1

0
.0

0
(
1
,
∞

)

c
v
c
-m

u
lt
-c

o
n
s
t
-c

o
n
s
t
5
-2

n
-3

.c
n
f

2
7

0
.0

8
(
7
,
6
)

1
6

0
.3

1
(
7
,
∞

)
2
4

0
.3

6
(
1
,
∞

)
2
2

0
.3

8
(
2
,
∞

)
1
9

0
.3

8
(
3
,
∞

)
1
9

0
.7

3
(
3
,
6
)

1
3

0
.4

0
(
8
,
7
)

2
4

0
.0

0
(
1
,
∞

)

c
v
c
-m

u
lt
-c

o
n
s
t
-c

o
n
s
t
7
-2

n
-3

.c
n
f

3
0

0
.2

5
(
7
,
6
)

1
5

1
.7

0
(
8
,
∞

)
3
2

1
.2

5
(
1
,
∞

)
2
4

2
.4

1
(
2
,
∞

)
2
0

3
.0

3
(
3
,
∞

)
2
0

3
.5

8
(
3
,
∞

)
1
4

3
.0

7
(
8
,
6
)

3
2

0
.0

0
(
1
,
∞

)

c
v
c
-p

lu
s
-3

.c
n
f

4
8

0
.0

8
(
6
,
4
)

3
6

0
.2

8
(
5
,
∞

)
9
6

0
.1

2
(
1
,
∞

)
7
2

0
.2

8
(
2
,
∞

)
5
6

0
.2

8
(
3
,
∞

)
5
6

0
.4

0
(
3
,
∞

)
3
2

0
.3

9
(
5
,
6
)

9
6

0
.0

9
(
1
,
∞

)

c
v
c
-p

lu
s
-4

.c
n
f

1
2
0

0
.2

1
(
8
,
7
)

6
0

1
.3

9
(
6
,
∞

)
3
3
6

1
.4

2
(
1
,
∞

)
2
4
3

1
.6

4
(
2
,
∞

)
1
5
8

3
.0

8
(
3
,
∞

)
1
5
8

5
.1

6
(
3
,
∞

)
5
4

6
.3

5
(
7
,
9
)

3
3
6

5
.5

3
(
1
,
∞

)

c
v
c
-s

lt
-g

a
d
g
e
t
.c

n
f

6
0
.0

8
(
1
,
∞

)
6

0
.1

3
(
1
,
∞

)
6

0
.0

9
(
1
,
∞

)
6

0
.0

8
(
1
,
∞

)
6

0
.0

9
(
1
,
∞

)
6

0
.1

3
(
1
,
∞

)
6

0
.1

1
(
1
,
∞

)
6

0
.0

0
(
1
,
∞

)

c
v
c
-u

lt
-6

.c
n
f

1
5
8

0
.2

8
(
1
,
∞

)
1
5
8

0
.3

9
(
1
,
∞

)
1
5
8

0
.4

7
(
1
,
∞

)
1
5
8

0
.2

6
(
1
,
∞

)
1
5
8

0
.3

6
(
1
,
∞

)
1
5
8

0
.4

9
(
1
,
∞

)
1
5
8

0
.4

2
(
1
,
∞

)
1
5
8

3
8
.4

2
(
1
,
∞

)

c
v
c
-u

lt
-g

a
d
g
e
t
.c

n
f

6
0
.0

6
(
1
,
∞

)
6

0
.0

7
(
1
,
∞

)
6

0
.0

7
(
1
,
∞

)
6

0
.0

7
(
1
,
∞

)
6

0
.0

7
(
1
,
∞

)
6

0
.0

7
(
1
,
∞

)
6

0
.0

6
(
1
,
∞

)
6

0
.0

0
(
1
,
∞

)

A
d
d
e
r
,
2

b
it
s
,
c
a
r
r
y

o
u
t
p
u
t

2
3

0
.0

4
(
3
,
∞

)
1
8

0
.0

6
(
5
,
∞

)
3
0

0
.0

5
(
1
,
∞

)
2
7

0
.0

7
(
2
,
∞

)
2
2

0
.0

6
(
3
,
∞

)
2
1

0
.0

6
(
3
,
4
)

1
7

0
.0

5
(
5
,
4
)

3
0

0
.0

0
(
1
,
∞

)

A
d
d
e
r
,
3

b
it
s
,
c
a
r
r
y

o
u
t
p
u
t

6
1

0
.0

0
(
6
,
4
)

4
2

0
.1

5
(
6
,
∞

)
1
0
2

0
.3

1
(
1
,
∞

)
9
3

0
.1

5
(
2
,
∞

)
6
5

0
.6

8
(
3
,
∞

)
6
5

1
9
.2

3
(
3
,
∞

)
3
4

0
.6

8
(
7
,
7
)

1
0
2

0
.2

0
(
1
,
∞

)

A
d
d
e
r
,
4

b
it
s
,
c
a
r
r
y

o
u
t
p
u
t

1
4
9

0
.0

9
(
9
,
8
)

6
6

2
.1

1
(
8
,
∞

)
3
4
2

2
.1

6
(
1
,
∞

)
3
0
3

2
.4

8
(
2
,
∞

)
1
8
8

3
.0

0
(
3
,
∞

)
t
im

e
o
u
t

5
6

4
2
.8

9
(
9
,
1
0
)

3
4
2

1
4
.5

7
(
1
,
∞

)

A
d
d
e
r
,
4

b
it
s

1
2
0

0
.0

6
(
8
,
7
)

6
0

1
.3

0
(
6
,
∞

)
3
3
6

1
.3

3
(
1
,
∞

)
2
4
3

1
.3

7
(
2
,
∞

)
1
5
8

3
.2

8
(
3
,
∞

)
1
5
8

2
7
3
.0

6
(
3
,
∞

)
5
4

6
.6

2
(
7
,
9
)

3
3
6

5
.7

7
(
1
,
∞

)

A
d
d
e
r
,
5

b
it
s
,
c
a
r
r
y

o
u
t
p
u
t

3
4
3

0
.3

8
(
1
1
,
1
1
)

9
0

7
6
.9

8
(
9
,
∞

)
1
0
8
6

6
4
.5

1
(
1
,
∞

)
9
4
8

7
6
.1

6
(
2
,
∞

)
5
6
0

1
0
6
.0

5
(
3
,
∞

)
t
im

e
o
u
t

8
0

3
7
6
.5

7
(
1
1
,
1
3
)

1
0
8
6

8
4
8
.6

7
(
1
,
∞

)

A
d
d
e
r
,
5

b
it
s

2
7
2

0
.3

6
(
1
0
,
1
0
)

8
4

2
4
.3

9
(
8
,
∞

)
1
0
8
0

1
7
.0

0
(
1
,
∞

)
7
6
2

2
0
.3

7
(
2
,
∞

)
4
4
6

3
2
.5

9
(
3
,
∞

)
t
im

e
o
u
t

7
8

1
3
6
.7

9
(
8
,
1
2
)

1
0
8
0

3
5
3
.6

6
(
1
,
∞

)

M
u
lt
ip

li
e
r
,
2

t
o

2
b
it
s

1
2

0
.0

0
(
2
,
∞

)
1
2

0
.0

6
(
2
,
∞

)
1
2

0
.0

6
(
1
,
∞

)
1
2

0
.0

6
(
2
,
∞

)
1
2

0
.0

6
(
2
,
∞

)
1
2

0
.0

5
(
2
,
∞

)
1
2

0
.0

6
(
2
,
∞

)
1
2

0
.0

0
(
1
,
∞

)

M
u
lt
ip

li
e
r
,
2

t
o

4
b
it
s

2
4

0
.0

6
(
2
,
∞

)
1
6

0
.0

8
(
4
,
∞

)
1
9

0
.0

9
(
1
,
∞

)
1
7

0
.0

9
(
2
,
∞

)
1
7

0
.0

9
(
3
,
∞

)
1
7

0
.0

8
(
3
,
∞

)
1
6

0
.0

8
(
4
,
∞

)
1
9

0
.0

0
(
1
,
∞

)

M
u
lt
ip

li
e
r
,
3

t
o

3
b
it
s

3
1

0
.0

5
(
5
,
4
)

2
9

0
.0

6
(
5
,
∞

)
7
1

0
.0

7
(
1
,
∞

)
4
1

0
.1

3
(
2
,
∞

)
3
9

0
.0

6
(
3
,
∞

)
3
9

0
.0

5
(
3
,
∞

)
2
9

0
.0

9
(
6
,
5
)

7
1

0
.0

0
(
1
,
∞

)

M
u
lt
ip

li
e
r
,
3

t
o

5
b
it
s

9
8

0
.0

7
(
8
,
7
)

t
im

e
o
u
t

3
0
4

3
.6

3
(
1
,
∞

)
1
6
5

3
.9

5
(
2
,
∞

)
1
2
4

1
0
.1

2
(
3
,
∞

)
1
2
3

6
.0

1
(
3
,
5
)

4
5

2
5
.3

3
(
8
,
7
)

3
0
5

2
.1

0
(
1
,
∞

)

M
u
lt
ip

li
e
r
,
4

t
o

5
b
it
s

2
1
2

0
.0

5
(
9
,
9
)

t
im

e
o
u
t

2
2
7
4

1
1
2
.4

8
(
1
,
∞

)
1
1
0
6

1
2
1
.1

2
(
2
,
∞

)
t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

2
2
7
6

4
0
.9

2
(
1
,
∞

)

M
u
lt
ip

li
e
r
,
5

t
o

7
b
it
s

1
3
2
7

0
.5

7
(
×

,
×

)
t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

S
q
u
a
r
e

r
o
o
t
,
4

b
it
s

1
0

0
.0

4
(
3
,
∞

)
8

0
.1

1
(
2
,
∞

)
1
1

0
.0

8
(
1
,
∞

)
8

0
.0

8
(
2
,
∞

)
8

0
.0

8
(
2
,
∞

)
8

0
.0

8
(
2
,
∞

)
8

0
.1

0
(
2
,
∞

)
1
1

0
.0

0
(
1
,
∞

)

S
q
u
a
r
e

r
o
o
t
,
5

b
it
s

1
4

0
.3

0
(
3
,
∞

)
1
4

0
.3

9
(
3
,
∞

)
1
8

0
.3

0
(
1
,
∞

)
1
5

0
.4

1
(
2
,
∞

)
1
4

0
.3

6
(
3
,
∞

)
1
4

0
.3

7
(
3
,
∞

)
1
4

0
.4

1
(
3
,
∞

)
1
8

0
.0

0
(
1
,
∞

)

S
q
u
a
r
e

r
o
o
t
,
6

b
it
s

2
8

0
.6

5
(
5
,
5
)

2
2

0
.8

7
(
5
,
∞

)
4
1

0
.8

4
(
1
,
∞

)
2
9

0
.8

6
(
2
,
∞

)
2
4

0
.8

7
(
3
,
∞

)
2
4

0
.8

0
(
3
,
∞

)
2
2

0
.8

6
(
5
,
∞

)
4
1

0
.0

8
(
1
,
∞

)

S
q
u
a
r
e

r
o
o
t
,
7

b
it
s

4
1

2
.2

8
(
7
,
7
)

3
5

2
.6

4
(
7
,
∞

)
7
1

2
.8

3
(
1
,
∞

)
5
1

2
.7

8
(
2
,
∞

)
4
5

2
.7

9
(
3
,
∞

)
4
5

2
.9

2
(
3
,
∞

)
3
5

2
.7

7
(
7
,
7
)

7
1

0
.0

0
(
1
,
∞

)

S
q
u
a
r
e

r
o
o
t
,
8

b
it
s

7
4

5
.0

3
(
9
,
8
)

5
4

7
.2

3
(
8
,
∞

)
2
0
9

6
.6

3
(
1
,
∞

)
1
2
4

6
.7

3
(
2
,
∞

)
1
0
3

8
.1

3
(
3
,
∞

)
1
0
3

8
.6

1
(
3
,
∞

)
5
2

6
.0

3
(
9
,
7
)

2
0
9

3
.7

8
(
1
,
∞

)

S
q
u
a
r
e

fu
n
c
t
io

n
,
4

b
it
s

5
2

0
.0

7
(
8
,
6
)

2
8

1
.0

1
(
9
,
∞

)
5
6

0
.6

2
(
1
,
∞

)
4
4

0
.6

5
(
2
,
∞

)
3
5

0
.9

3
(
3
,
∞

)
3
5

0
.6

9
(
3
,
∞

)
2
6

0
.3

2
(
9
,
8
)

5
6

0
.0

7
(
1
,
∞

)

S
q
u
a
r
e

fu
n
c
t
io

n
,
5

b
it
s

1
0
9

0
.0

8
(
1
1
,
1
0
)

t
im

e
o
u
t

2
7
3

2
5
4
.8

3
(
1
,
∞

)
1
8
4

7
5
2
.7

7
(
2
,
∞

)
t
im

e
o
u
t

1
3
5

1
4
4
3
.4

3
(
3
,
∞

)
4
2

5
4
.1

0
(
1
2
,
1
0
)

2
7
3

3
.3

7
(
1
,
∞

)

S
q
u
a
r
e

fu
n
c
t
io

n
,
6

b
it
s

2
2
8

0
.2

5
(
×

,
1
3
)

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

1
7
0
1

1
9
5
.2

7
(
1
,
∞

)

S
q
u
a
r
e

fu
n
c
t
io

n
,
7

b
it
s

4
9
2

0
.4

1
(
×

,
×

)
t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

t
im

e
o
u
t

B
ip

a
t
it
e

m
a
t
c
h
in

g
,
3

o
b
j’
s
,
e
x
.
1
2

9
0
.0

5
(
1
,
∞

)
7

0
.0

8
(
3
,
∞

)
8

0
.0

8
(
1
,
∞

)
8

0
.0

8
(
1
,
∞

)
7

0
.0

7
(
3
,
∞

)
7

0
.0

7
(
3
,
∞

)
7

0
.0

8
(
3
,
∞

)
9

0
.0

0
(
1
,
∞

)

B
ip

a
t
it
e

m
a
t
c
h
in

g
,
4

o
b
j’
s
,
e
x
.
5
9

1
6

0
.0

7
(
6
,
4
)

1
1

0
.1

9
(
4
,
∞

)
1
4

0
.0

8
(
1
,
∞

)
1
4

0
.0

6
(
2
,
∞

)
1
1

0
.1

1
(
3
,
∞

)
1
1

0
.2

0
(
3
,
∞

)
1
0

0
.0

5
(
4
,
6
)

1
6

0
.0

0
(
1
,
∞

)

T
a
b
le

1
.

N
u
m

b
er

o
f

co
m

p
u
te

d
cl

a
u
se

s,
co

m
p
u
ta

ti
o
n

ti
m

es
(i

n
se

co
n
d
s)

a
n
d

m
ea

su
re

d
p
ro

p
a
g
a
ti

o
n

q
u
a
li
ty

fo
r

a
se

le
ct

io
n

o
f

b
en

ch
m

a
rk

s
a
n
d

a
se

le
ct

io
n

o
f

ta
rg

et
p
ro

p
a
g
a
ti

o
n

q
u
a
li
ty

tu
p
le

s.
A
×

en
tr

y
in

th
e

m
ea

su
re

d
p
ro

p
a
g
a
ti

o
n

q
u
a
li
ty

tu
p
le

s
m

ea
n
s

th
a
t

th
e

q
u
a
li
ty

le
v
el

co
u
ld

n
o
t

b
e

d
et

er
m

in
ed

d
u
e

to
a

ti
m

eo
u
t

(s
et

to
6
0

se
co

n
d
s)

o
f

th
e

re
sp

ec
ti

v
e

m
ea

su
ri

n
g

to
o
l.

W
e

co
m

p
a
re

a
g
a
in

st
a

g
re

ed
y

en
co

d
in

g
in

to
C

N
F

(b
y

en
u
m

er
a
ti

n
g

sh
o
rt

es
t

p
o
ss

ib
le

cl
a
u
se

s
u
si

n
g

B
D

D
s)

a
n
d

a
g
a
in

st
th

e
to

o
l
G
e
n
P
C
E

th
a
t

co
m

p
u
te

s
p
ro

p
a
g
a
ti

o
n

co
m

p
le

te
en

co
d
in

g
s.

C
o
m

p
u
ta

ti
o
n

ti
m

es
a
re

g
iv

en
in

se
co

n
d
s.

T
h
e

o
u
tp

u
t

o
f

th
e

th
e

g
re

ed
y

to
o
l

is
u
se

d
a
s

in
p
u
t

to
G
e
n
P
C
E

(a
s

th
a
t

to
o
l

re
q
u
ir

es
th

e
in

p
u
t

to
a
lr

ea
d
y

b
e

in
C

N
F

fo
rm

,
w

it
h

p
o
ss

ib
ly

so
m

e
va

ri
a
b
le

s
th

a
t

n
ee

d
to

b
e

ex
is

te
n
ti

a
ll
y

q
u
a
n
ti

fi
ed

aw
ay

).
T

h
e

(1
,∞

)
q
u
a
li
ty

tu
p
le

re
fe

rs
to

p
ro

p
a
g
a
ti

o
n

co
m

p
le

te
n
es

s,
w

h
ic

h
G
e
n
P
C
E

a
ls

o
g
u
a
ra

n
te

es
.

T
h
e

(∞
,1

)
q
u
a
li
ty

tu
p
le

re
fe

rs
to

p
la

in
m

in
im

a
ll
y
-s

iz
ed

en
co

d
in

g
s.

E
n
co

d
in

g
s

o
f

q
u
a
li
ty

le
v
el

(∞
,∞

)
a
re

(f
u
ll
y
)

co
n
fl
ic

t
p
ro

p
a
g
a
ti

n
g
,

b
u
t

n
o
t

n
ec

es
sa

ri
ly

p
ro

p
a
g
a
ti

o
n

co
m

p
le

te
.

20

30

40

50

60

70

0.1 1 5 10 100 600 1800

Time

Files

(∞,∞)

(3, 3)

(1,∞)

(∞, 1)

Greedy

lingeling

MapleSat

Fig. 1. Cactus plot for the integer factoring case study. Time is given in seconds,
the overall number of files is 73. The legend describes the line styles for the studied
combinations of solvers and propagation quality tuples.

Studying the precise effect of inprocessing [18] on what constraint encodings
can be used most efficiently is left for future work. For instance, clauses that
solvers with inprocessing could automatically derive could be left out, which
may give rise to very different minimally-sized encodings.

Acknowledgements

This work was supported by DFG grant EH 481/1-1 and the Institutional Strat-
egy of the University of Bremen, funded by the German Excellence Initiative.
The authors want to thank Armin Biere for early feedback on the propagation
quality notions defined in this work and Erika Abraham for proposing MaxSAT
solvers as reasoning backend.

References

1. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: A parametric
approach for smaller and better encodings of cardinality constraints. In: Principles
and Practice of Constraint Programming - 19th International Conference, CP 2013,
Uppsala, Sweden, September 16-20, 2013. pp. 80–96 (2013), http://dx.doi.org/
10.1007/978-3-642-40627-0_9

2. Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality con-
straints of bounded size. In: Twenty-Fourth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. pp.
2677–2683 (2015), http://ijcai.org/Abstract/15/379

3. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality
networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011),
http://dx.doi.org/10.1007/s10601-010-9105-0

4. Babka, M., Balyo, T., Cepek, O., Gurský, S., Kucera, P., Vlcek, V.: Complexity
issues related to propagation completeness. Artif. Intell. 203, 19–34 (2013), http:
//dx.doi.org/10.1016/j.artint.2013.07.006

5. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equal-
ity reduction. In: Theory and Applications of Satisfiability Testing, 6th In-
ternational Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8,
2003 Selected Revised Papers. pp. 341–355 (2003), https://doi.org/10.1007/

978-3-540-24605-3_26

6. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010. FMV
Report Series Technical Report 10/1, Johannes Kepler University, Linz, Austria
(2010)

7. Bjork, M.: Successful SAT encoding techniques. Journal on Satisfiability, Boolean
Modeling and Computation Addendum Paper (2009)

8. Bordeaux, L., Marques-Silva, J.: Knowledge compilation with empowerment. In:
SOFSEM 2012: Theory and Practice of Computer Science - 38th Conference on
Current Trends in Theory and Practice of Computer Science, Špindler̊uv Mlýn,
Czech Republic, January 21-27, 2012. pp. 612–624 (2012), https://doi.org/10.
1007/978-3-642-27660-6_50

9. Brain, M., Hadarean, L., Kroening, D., Martins, R.: Automatic generation of
propagation complete SAT encodings. In: Verification, Model Checking, and Ab-
stract Interpretation - 17th International Conference, VMCAI 2016, St. Petersburg,
FL, USA, January 17-19, 2016. pp. 536–556 (2016), http://dx.doi.org/10.1007/
978-3-662-49122-5_26

10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986), https://doi.org/10.1109/TC.1986.

1676819

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2001), http:
//books.google.de/books?id=Nmc4wEaLXFEC

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Theory and Applications of
Satisfiability Testing, 6th International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003 Selected Revised Papers. pp. 502–518 (2003), https:
//doi.org/10.1007/978-3-540-24605-3_37

13. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT
2(1-4), 1–26 (2006), http://jsat.ewi.tudelft.nl/content/volume2/JSAT2_1_

Een.pdf

http://dx.doi.org/10.1007/978-3-642-40627-0_9
http://dx.doi.org/10.1007/978-3-642-40627-0_9
http://ijcai.org/Abstract/15/379
http://dx.doi.org/10.1007/s10601-010-9105-0
http://dx.doi.org/10.1016/j.artint.2013.07.006
http://dx.doi.org/10.1016/j.artint.2013.07.006
https://doi.org/10.1007/978-3-540-24605-3_26
https://doi.org/10.1007/978-3-540-24605-3_26
https://doi.org/10.1007/978-3-642-27660-6_50
https://doi.org/10.1007/978-3-642-27660-6_50
http://dx.doi.org/10.1007/978-3-662-49122-5_26
http://dx.doi.org/10.1007/978-3-662-49122-5_26
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
http://books.google.de/books?id=Nmc4wEaLXFEC
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
http://jsat.ewi.tudelft.nl/content/volume2/JSAT2_1_Een.pdf
http://jsat.ewi.tudelft.nl/content/volume2/JSAT2_1_Een.pdf

14. Franco, J., Martin, J.: A history of satisfiability. In: Biere, A., Heule, M.J.H., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial
Intelligence and Applications, vol. 185, chap. 1, pp. 3–74. IOS Press (2009)

15. Gwynne, M., Kullmann, O.: Towards a theory of good SAT representations. CoRR
abs/1302.4421 (2013), http://arxiv.org/abs/1302.4421

16. Gwynne, M., Kullmann, O.: Generalising unit-refutation completeness and SLUR
via nested input resolution. J. Autom. Reasoning 52(1), 31–65 (2014), https:

//doi.org/10.1007/s10817-013-9275-8

17. Inala, J.P., Singh, R., Solar-Lezama, A.: Synthesis of domain specific CNF encoders
for bit-vector solvers. In: Theory and Applications of Satisfiability Testing - SAT
2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016. pp. 302–
320 (2016), http://dx.doi.org/10.1007/978-3-319-40970-2_19

18. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Automated Reasoning
- 6th International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29,
2012. pp. 355–370 (2012), https://doi.org/10.1007/978-3-642-31365-3_28

19. Kucera, P., Savický, P., Vorel, V.: A lower bound on CNF encodings of the at-most-
one constraint. In: Theory and Applications of Satisfiability Testing - SAT 2017 -
20th International Conference, Melbourne, VIC, Australia, August 28 - September
1, 2017. pp. 412–428 (2017), https://doi.org/10.1007/978-3-319-66263-3_26

20. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Biere, A., Heule,
M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in
Artificial Intelligence and Applications, vol. 185, chap. 19, pp. 613–631. IOS Press
(2009)

21. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Theory and Applications of Satisfiability Testing -
SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016. pp.
123–140 (2016), https://doi.org/10.1007/978-3-319-40970-2_9

22. Manthey, N., Heule, M., Biere, A.: Automated reencoding of Boolean formulas. In:
Hardware and Software: Verification and Testing - 8th International Haifa Verifica-
tion Conference, HVC 2012, Haifa, Israel, November 6-8, 2012. Revised Selected Pa-
pers. pp. 102–117 (2012), http://dx.doi.org/10.1007/978-3-642-39611-3_14

23. Petke, J.: Bridging Constraint Satisfaction and Boolean Satisfiability. Artificial
Intelligence: Foundations, Theory, and Algorithms, Springer (2015), http://dx.
doi.org/10.1007/978-3-319-21810-6

24. Roussel, O., Manquinho, V.: Pseudo-boolean and cardinality constraints. In: Biere,
A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185, chap. 22, pp. 695–
733. IOS Press (2009)

25. Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP hybrid MaxSAT solver. In:
Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016. pp. 539–546 (2016), https://doi.
org/10.1007/978-3-319-40970-2_34

26. Somenzi, F.: CUDD: CU Decision Diagram package release 3.0.0 (2015)

http://arxiv.org/abs/1302.4421
https://doi.org/10.1007/s10817-013-9275-8
https://doi.org/10.1007/s10817-013-9275-8
http://dx.doi.org/10.1007/978-3-319-40970-2_19
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-319-66263-3_26
https://doi.org/10.1007/978-3-319-40970-2_9
http://dx.doi.org/10.1007/978-3-642-39611-3_14
http://dx.doi.org/10.1007/978-3-319-21810-6
http://dx.doi.org/10.1007/978-3-319-21810-6
https://doi.org/10.1007/978-3-319-40970-2_34
https://doi.org/10.1007/978-3-319-40970-2_34

	Approximately Propagation Complete and Conflict Propagating Constraint Encodings

