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Multiple Objectives and Cost Bounds in MDP
Arnd Hartmanns, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann

Markov decision processes [15] (MDPs) with rewardsor costs
are a popular model to describe planning problems under
uncertainty. Planning algorithms typically find strategies that
minimise the expected costs to fulfil a task. However, many
scenarios call for minimising the probability to run out of
resources before reaching the goal: while it isbeneficial
for a plane to reach its destination with lowexpectedfuel
consumption, it isessentialto reach its destination with the
fixed available amount of fuel. Strategies that optimise solely
for the probability to fulfil a task are often very expensive.
Decision makers have to trade the success probability against
the costs. Different types of costs such as time, energy, money,
or capacity have to be considered at once [2], [5], [13],
[16]. This makes many planning problems inherently multi-
objective [3], [5]. In this extended abstract, we summarise our
results on practically efficient multi-objective model checking
methods for multiple cost bounds implemented in the STORM

tool [7] and presented at TACAS 2018 [11].
Related work: The analysis of single-objective cost-

bounded reachability in MDPs is an active area of research in
both the AI and formal method communities. We build on [10],
where three different practically efficient cost-bounded model
checking approaches are explored and compared, in particular
including the sequential epoch analysis of [12]. For multi-
objective analysis, the model checking community focuses on
probabilities and expected costs [4], [8], and our implementa-
tion uses the value iteration-based approach of [9].

Problem Statement:Given an MDPM with multiple cost
structures over non-negative costs and` ≥ 2 objectives of the
form “maximise the probability to reach a state in the goal set
Gi such that the cumulative cost for theji-th cost structure
is at mostbi” (written Pmax(〈ji〉≤bi

Gi)), obtain the Pareto-
optimal points to compute their probabilities and visualise the
underlying trade-offs between the objectives.

Approach: A naive approach for this problem is to first
unfoldM by encoding the incurred costs in the state space [1],
[14], resulting in the unfolded modelMunf , and then apply
existing multi-objective model checking algorithms (e.g. [9])
for unboundedreachability probabilities onMunf . Figure 1
illustrates this approach for̀ = 2 objectives with cost
boundsb0 = 1 and b1 = 2. Each so-calledepoch model
Mx,y reflects a copy of the given MDPM for cost epoch
(x, y) ∈ {⊥, 0, . . . , b0} × {⊥, 0, . . . , b1}. The epochs encode
the costs that can still be incurred to satisfy the objectives.
Transitions that incur non-zero costs are redirected to a suc-
cessive epoch. If thei-th component of the current epoch is
⊥, the corresponding cost bound has already been exceeded.
For thei-th objective we consider the probability to eventually
reach a goal state in an epoch where thei-th entry is not⊥.

Our approach [11] avoids explicitly considering the poten-
tially large unfolding ofM . We analyse the epoch models one
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Fig. 1. Illustration of unfoldingMunf

after the other: forMe, only the results for epoch modelsMe′

with e′ ≤ e are relevant. This naturally extends approaches for
the single-objective case [10], [12]. The similarity of the epoch
modelsMx,y enables an efficient implementation. We embed
this approach into the value-iteration based multi-objective
model checking framework of [9].

Besides the objectives mentioned above, the approach also
supports lower cost bounds, minimal probabilities, conjunc-
tions of cost bounds (e.g. “maximise the probability to reach
the target within the given timeand energy limits”), and cost-
bounded expected costs (e.g. “minimise the expected energy
consumption within the first minute”).

Visualisations:Users need to consider the tradeoffs between
objectives and make informed decisions for system design.
The results of multi-objective model checking are typically
presented as a Pareto curve as in Fig.2. However, Pareto set
visualisations alone may not provide sufficient information,
about, e.g., which objectives are aligned or conflicting. Cost
bounds add an extra dimension for each cost structure, mak-
ing the underlying tradeoffs significantly harder to discover
and understand. However, for each Pareto-optimal scheduler,
our method has implicitly computed the probabilities of the
objectives for all reachable epochs as well, i.e. for all cost
values below the boundsbi required in the query. We visualise
this information for better insights into the behaviour of each
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Fig. 3. Remaining cost budget (red is high, blue is low) vs. the probabilities of the two objectives
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Fig. 4. Runtime (y-axis) of SEQ (+) and UNF (×) for increasing cost bounds (x-axis)

scheduler, its robustness w.r.t. the bounds, and its preferences
for certain objectives depending on the remaining budget for
each quantity. In Fig.3, we show one such heatmap-style
visualisation, comparing the two Pareto-optimal schedulersS1

andS2 from Fig. 2. The probabilities of two objectives using
the same cost structure are mapped to the x and y axes while
the colour indicates the remaining cost value. Comparing the
two schedulers, we see that the left one achieves higher goal
probabilities for medium remaining budget, while the right one
is safer overall at the cost of performance.

Experiments: The discussed approach is implemented in
STORM [7] v1.2, and available via [6]. Comparing the naive
unfolding approach (UNF) with the sequential approach (SEQ)
on different models, we observe that SEQ is less sensitive to
increases in the magnitude of the cost bounds, as illustrated in
Fig. 4. We refer to [11] for more details on the experiments.
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