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Two-player zero-sum turn-based games played on graphs are commonly used
to model interactions between a computer system and its environment: the sys-
tem wants to achieve a goal - to satisfy a certain property - and the environment
acts in an antagonistic way [6, 4]. When modelling interacting computer systems
this kind of model is too restrictive, and a setting with more than two agents
whose objectives are not necessarily antagonistic is more realistic. These games
are called multiplayer non zero-sum turn-based games and agents are modelled
by players [2]. In such a game, each player chooses a strategy : it is the way he
plays given some information about the game and past actions of all players.
Given a fixed strategy per player, this set of strategies is called a strategy pro-
file, written σ. Following a strategy profile σ from an initial vertex v0 results
in an infinite sequence of vertices of the graph game called a play. This play is
denoted by 〈σ〉v0 . Given a play, a gain for each player can be associated with it.
We use the notation Gain(〈σ〉v0) to express the gain profile of players associated
with the play 〈σ〉v0 , i.e., it is a tuple such that each component corresponds to
the gain of a player. In this paper we focus on ω-regular Boolean objectives:
either a player satisfies his objective (gain of 1) or he does not (gain of 0).

In this multiplayer game setting, one classical solution concept is the concept
of Nash equilibrium (NE). Roughly, a Nash equilibrium is a strategy profile
such that no player has incentive to deviate unilaterally from his strategy to
obtain a better gain. In other words no player has a profitable deviation. In the
context of games played on graphs, a more relevant solution concept is the one of
subgame perfect equilibrium (SPE) because it takes into account the sequential
structure of the game. Weak Nash equilibria (weak NE) are a recent variant of
NE introduced in [1, 3], in which motivations for considering weak NE can be
found. The difference between weak NE and NE is that players can only use
profitable deviations with a finite number of deviations from the initial strategy
profile. In this paper, we are interested in the concept of weak subgame perfect
equilibrium (weak SPE). Weak NE are to weak SPE what NE are to SPE. We
illustrate the difference between NE and weak NE in Figure 1. In this game,
player P1 (resp. P2) owns round vertices (resp. square vertices) and wants to
reach v1 (resp. v3) infinitely often. The strategy profile σ is depicted by dashed
arrows and the play resulting in following it from v0 is 〈σ〉v0 = v0v1v2v

ω
3 . Notice

that along this play only player P2 satisfies his objective and P1 has an incentive
to deviate from his strategy. In order to satisfy his objective, P1 can repeatedly
go to v1 each time he has a choice to make, and this is the only profitable
deviation. So, the strategy profile depicted by dashed arrows is not an NE.
Nevertheless, it is a weak NE because always switching to v1 in place of v3
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Figure 1: Example of a weak NE which is not an NE.

occurs an infinite number of times from the initial strategy profile.
The constraint problem for equilibria is a natural problem already studied

in [5]. It asks to determine whether there exists an equilibrium such that the
gain of the players satisfies some constraints, i.e., given a game with n players,
an initial vertex v0 and two Boolean thresholds x, y ∈ {0, 1}n, the constraint
problem for weak SPE asks whether there exists a weak SPE σ such that x ≤
Gain(〈σ〉v0) ≤ y.

The goal of our ongoing research is to characterise the complexity of the
constraint problem for the class of games with ω-regular Boolean objectives.
We are interested about classical objectives: Explicit Muller, Muller, Büchi,
co-Büchi, Parity, Streett, Rabin, Reachability and Safety. In our setting, all
players have the same type of objective; for example, as illustrated in Figure 1,
all players have a Büchi objective. In this sense, the games we study are games
with multiple objectives.

Up to now, the results we have obtained for classical ω-regular Boolean
objectives are shown in Table 1. Exact complexity for Büchi objectives remains
open. We only obtained a non-deterministic algorithm in polynomial time.
Moreover, as SPE and weak SPE are equivalent for Reachability (Boolean)
objectives, it proves that the constraint problem is PSPACE-complete for SPE
too. This is interesting since, to our knowledge, the exact complexity for the
constraint problem in the case of Reachability Boolean SPE was unknown.

Table 1: Complexity of the constraint problem for ω-regular Boolean objectives.
exp. Muller Muller co-Büchi Parity Streett Rabin Reach Safety

P ×
NP-c × × × × ×
PSPACE-c × ×
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