
Proof Search Optimizations
for Non-clausal Connection Calculi

Jens Otten

Department of Informatics, University of Oslo
PO Box 1080 Blindern, 0316 Oslo, Norway

jeotten@ifi.uio.no

Abstract. The paper presents several proof search optimization techniques for
non-clausal connection calculi. These techniques are implemented and integrated
into the non-clausal connection prover nanoCoP. Their effectiveness is evaluated
on the problems in the TPTP library. Together with a fixed strategy scheduling,
these techniques are the basis of the new version 1.1 of nanoCoP.

1 Introduction

Most of the popular efficient proof search calculi require the input formula to be in
clausal form, i.e. in disjunctive or conjunctive normal form. First-order formulae that
are not in clausal form are translated into clausal form in a preprocessing step. While
the use of a clausal form technically simplifies the proof search and the required data
structures, it also has some disadvantages. Even the definitional translation into clausal
form introduces a significant overhead into the proof search [7]. Furthermore, a transla-
tion into clausal form modifies the structure of the original formula and the translation
of the clausal proof back into one of the original formula is not straightforward [14].

Non-clausal connection calculi for classical logic [8] and non-classical logics [11]
do not have these shortcomings. They combine the advantages of more natural non-
clausal calculi, such as sequent or (standard) tableau calculi [2, 3], with the efficiency
of a connection-based proof search. Recently, implementations of these calculi have
been presented: nanoCoP for classical logic [9, 10] and nanoCoP-i/nanoCoP-M for
intuitionistic/modal first-order logic [11]. But whereas the nanoCoP core provers have a
better performance than the core provers of the leanCoP series [9, 11], the full leanCoP
provers include additional optimizations techniques and a strategy scheduling, which
leads to a significantly better performance than the current nanoCoP (core) provers.

This paper presents techniques for optimizing the proof search in non-clausal con-
nection calculi (Section 3) and shows how these can be implemented and integrated
into the (classical) nanoCoP prover (Section 4). Among these techniques are restricted
backtracking and clause reordering techniques, which are already successfully used in
clausal connection calculi [7]. Using these techniques within a fixed strategy schedul-
ing, results in a new version 1.1 of nanoCoP. The effectiveness of all presented op-
timization techniques is evaluated and the nanoCoP 1.1 prover is compared to other
popular provers on the problems in the TPTP library (Section 5).

2 The Non-clausal Connection Calculus

A (first-order) formula (denoted by F) is built up from atomic formulae, the connectives
¬, ∧, ∨,⇒, and the standard first-order quantifiers ∀ and ∃. An atomic formula (denoted
by A) is built up from predicate symbols and terms. A literal L has the form A or ¬A.
Its complement L is A if L is of the form ¬A; otherwise L is ¬L. A connection is a
set {A,¬A} of literals with the same predicate symbol but different polarities. A term
substitution σ assigns terms to variables. The non-clausal connection calculus uses non-
clausal matrices. A non-clausal matrix M of a formula F is a set of clauses, in which
each clause consists of literals and (sub)matrices, and can be seen as a representation of
a formula in negation normal form; see [8] for details. In the graphical representation
of a non-clausal matrix, its clauses are arranged horizontally, while the literals and
matrices of each clause are arranged vertically.

The axiom and the rules of the non-clausal connection calculus are given in Fig-
ure 1. Compared to the formal clausal connection calculus [12], a decomposition rule
for decomposing clauses is added and the extension rule with its extension clause (e-
clause) is generalized; see [8, 9] for details. It works on tuples “C,M,Path”, where M is
a non-clausal matrix, C is a (subgoal) clause or ε and (the active) Path is a set of literals
“through M” or ε; σ is a (rigid) term substitution. A non-clausal connection proof of M
is a non-clausal connection proof of ε,M,ε . The rigid term substitution σ is calculated
whenever a connection is identified, i.e. a reduction or extension rule is applied.

For example, the formula P(a)∧(∀y(P(y)⇒P(g(y)))∨¬(Q⇒Q))⇒P(g(g(a))) has
the non-clausal matrix (the polarity 1 is used to represent negation):

{{P(a)1},{{{P(y)0,P(g(y))1}},{{Q1},{Q0}}},{P(g(g(a)))0}}
which has the following graphical representation and connection proof (using the term
substitution σ with σ(y) = a and σ(y′) = g(a)):

[P(a)1]

[[

P(y)0

P(g(y))1

] copy︷ ︸︸ ︷[
P(y′)0

P(g(y′))1

]]
[[

Q1][Q0]]
 [P(g(g(a)))0]

 .

Axiom (A)
{},M,Path

Start (S)
C2,M,{}
ε, M, ε

and C2 is copy of C1∈M

Reduction (R)
C,M,Path∪{L2}

C∪{L1},M,Path∪{L2}
and σ(L1)=σ(L2)

Extension (E)
C3,M[C1\C2],Path∪{L1} C,M,Path

C∪{L1},M,Path

and C3:=β -clauseL2(C2), C2
is copy of C1, C1 is e-clause of
M wrt. Path∪{L1}, C2 con-
tains L2 with σ(L1)=σ(L2)

Decomposition (D)
C∪C1,M,Path

C∪{M1},M,Path
and C1∈M1

Fig. 1. The non-clausal connection calculus

3 Optimization Techniques

The following proof search optimization techniques are integrated into the non-clausal
connection calculus: regularity, lemmata, restricted backtracking, positive and conjec-
ture start clauses, reordering clauses, and strategy scheduling.

3.1 Regularity and Lemmata

Regularity is an effective technique for pruning the search space in clausal connection
calculi [5]. The regularity condition states that no literal occurs more than once in the
active path (without losing completeness). This condition can be integrated in a simi-
lar way1 into the non-clausal connection calculus in Figure 1 by adding the following
restriction to the reduction rule and the extension rule:

∀ L′ ∈C∪{L1} : σ(L′) 6∈ σ(Path) .
Additional backtracking is avoided if the term substitution σ is not modified in order to
satisfy the regularity condition, e.g., by applying the restriction only to ground literals.

The idea of lemmata is to reuse subproofs during the proof search [5]. To this end
an additional set of lemmata (i.e. set of literals) and a lemma rule is added to the non-
clausal connection calculus in the same way as it is added to the clausal calculus [7].

3.2 Restricted Backtracking

As proof search in the presented connection calculus is not confluent, backtracking is
necessary in order to achieve completeness. In the clausal connection calculus back-
tracking is necessary when choosing clause C1 in the extension rule or literal L1 in the
reduction or extension rule. In the non-clausal calculus (see Figure 1) additional back-
tracking is required when choosing C1 in the decomposition rule (but no backtracking
is required when choosing M1).

The idea of restricted backtracking is to cut off any alternative solutions/connections
once a literal from the subgoal clause has been solved [7]. A literal L is called solved
if it is the literal L1 of a reduction or extension step (see Figure 1) and in case of
the extension rule, there is a proof for the left premise. Furthermore, backtracking can
also be restricted when selecting clause C1 in the start rule by omitting alternative start
clauses. Restricted backtracking is correct (as the search space is only pruned) and very
effective, but incomplete [7]. It can also be applied to the non-clausal calculus.

3.3 Positive and Conjecture Start Clauses

By default, the selection of the start clause C1 in the start rule (see Figure 1) is restricted
to positive clauses. A clause is positive iff all of its elements (matrices and literals)
are positive; a matrix is positive iff it contains at least one positive clause; a literal is
positive iff its polarity is 0. Furthermore, clauses that are not positive can be deleted
from the start clause C1 (or its copy C2).

1 Observe that the restriction to the active path is necessary in the non-clausal case as complete-
ness is lost, otherwise; see, e.g., the valid matrix {{p0},{p1,{{p0},{q0}}},{q1}} .

Whereas selecting positive start clauses can significantly prune the search space, this
technique is less appropriate for problems with a large number of axioms, i.e. formulae
of the form A1∧ ...∧An⇒C for a “large” n. In this case it is more goal-oriented to start
with clauses of the conjecture C, which leads to a smaller search space.2

3.4 Reordering Clauses

As already mentioned in Section 3.2, the connection calculus is not proof confluent. The
order in which clauses and literals are selected if more than one connection is possible
has a significant impact on the proof search. This is even more important for incomplete
techniques, such as restricted backtracking. One clause order might lead to an incom-
plete proof search, while another one might quickly lead to a proof. Hence, reordering
clauses is a crucial technique for connection calculi using restricted backtracking. For
non-clausal calculi it is important that a reordering technique leads to diverse orders
even for small sets of clauses, e.g., if a (sub)matrix contains only two or three clauses.

3.5 Strategy Scheduling

Trying different techniques or methods when solving a hard problem is, in general, a
successful approach. Hence, when trying to prove a formula, a mix of different tech-
niques or strategies is more likely to be successful. A strategy scheduling would subse-
quently try different techniques to find a proof of a formula, e.g., positive and conjecture
start clauses, with and without restricted backtracking, or using different clause orders.

4 Implementation

The proof search optimization techniques described in Section 3 have been imple-
mented and integrated into the non-clausal connection prover nanoCoP, which is avail-
able under the GNU General Public License and can be downloaded from the following
website: http://www.leancop.de/nanocop/ .

In a first step the input formula F is translated into a non-clausal (indexed) matrix
M; in the second step this matrix is written into Prolog’s database using the literal
lit(Lit,ClaB,ClaC,Grnd); see [9] for details.

The source code of the nanoCoP core prover is shown in Figure 2. The predicate
prove(Mat,PathLim,Set,Proof) implements the start rule (lines 1–11). Mat is the ma-
trix generated in the preprocessing step, PathLim is the maximum size of the active
path used for iterative deepening (lines 7–11), Set is a strategy (see below), and Proof

contains the returned connection proof.
The predicate prove(Cla,Mat,Path,PathI,PathLim,Lem,Set,Proof) implements

the axiom (line 12), the decomposition rule (lines 13–17), the reduction rule (lines 18–
21, 24–25, 34), and the extension rule (lines 18–21, 27–45) of the non-clausal connec-
tion calculus in Figure 1. It succeeds iff there is a connection proof for the tuple “Cla,
Mat, Path” with |Path|< PathLim. The predicate prove_ec calculates an appropriate
extension clause (lines 35–45). The substitution σ is stored implicitly by Prolog.

2 This approach is incomplete, though, as shown by the following formula: (P∧¬P)⇒ Q .

(1)
(2)
(3)
(4)
(5)
(6)

(7)
(8)
(9)

(10)
(11)

(12)

(13)
(14)
(15)
(16)
(17)

(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)

(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)

% start rule
prove(Mat,PathLim,Set,[(I^0)^V:Cla1|Proof]) :-

(member(scut,Set) -> (append([(I^0)^V:Cla1|_],[!|_],Mat) ;
member((I^0)^V:Cla,Mat), positiveC(Cla,Cla1)) -> true ;
(append(MatC,[!|_],Mat) -> member((I^0)^V:Cla1,MatC) ;
member((I^0)^V:Cla,Mat), positiveC(Cla,Cla1))),

prove(Cla1,Mat,[],[I^0],PathLim,[],Set,Proof).

prove(Mat,PathLim,Set,Proof) :-
retract(pathlim) ->
(member(comp(PathLim),Set) -> prove(Mat,1,[],Proof) ;

PathLim1 is PathLim+1, prove(Mat,PathLim1,Set,Proof)) ;
member(comp(_),Set) -> prove(Mat,1,[],Proof).

% axiom
prove([],_,_,_,_,_,_,[]).

% decomposition rule
prove([J:Mat1|Cla],MI,Path,PI,PathLim,Lem,Set,Proof) :- !,

member(I^_:Cla1,Mat1),
prove(Cla1,MI,Path,[I,J|PI],PathLim,Lem,Set,Proof1),
prove(Cla,MI,Path,PI,PathLim,Lem,Set,Proof2),
append(Proof1,Proof2,Proof).

% reduction and extension rules
prove([Lit|Cla],MI,Path,PI,PathLim,Lem,Set,Proof) :-

Proof=[[I^V:[NegLit|ClaB1]|Proof1]|Proof2],
\+ (member(LitC,[Lit|Cla]), member(LitP,Path), LitC==LitP),
(-NegLit=Lit;-Lit=NegLit) ->

(member(LitL,Lem), Lit==LitL, ClaB1=[], Proof1=[]
;
member(NegL,Path), unify_with_occurs_check(NegL,NegLit),
ClaB1=[], Proof1=[]
;
lit(NegLit,ClaB,Cla1,Grnd1),
(Grnd1=g -> true ; length(Path,K), K<PathLim -> true ;

\+ pathlim -> assert(pathlim), fail),
prove_ec(ClaB,Cla1,MI,PI,I^V:ClaB1,MI1),
prove(ClaB1,MI1,[Lit|Path],[I|PI],PathLim,Lem,Set,Proof1)

),
(member(cut,Set) -> ! ; true),
prove(Cla,MI,Path,PI,PathLim,[Lit|Lem],Set,Proof2).

% extension clause (e-clause)
prove_ec((I^K)^V:ClaB,IV:Cla,MI,PI,ClaB1,MI1) :-

append(MIA,[(I^K1)^V1:Cla1|MIB],MI), length(PI,K),
(ClaB=[J^K:[ClaB2]|_], member(J^K1,PI),

unify_with_occurs_check(V,V1), Cla=[_:[Cla2|_]|_],
append(ClaD,[J^K1:MI2|ClaE],Cla1),
prove_ec(ClaB2,Cla2,MI2,PI,ClaB1,MI3),
append(ClaD,[J^K1:MI3|ClaE],Cla3),
append(MIA,[(I^K1)^V1:Cla3|MIB],MI1)
;
(\+member(I^K1,PI);V\==V1) ->
ClaB1=(I^K)^V:ClaB, append(MIA,[IV:Cla|MIB],MI1)).

Fig. 2. Source code of the nanoCoP 1.1 core prover

Regularity and Lemmata The regularity condition is implemented in line 20. In order
to avoid backtracking, it is restricted to ground literals, i.e. literals without term vari-
ables or literals whose term variables have been substituted by terms that do not contain
term variables. The lemma rule is implemented in line 22. Furthermore, the list Lem
containing all literals that have been “solved” so far is added to the arguments of the
prove predicate. In line 34 the current literal Lit is added as lemma to the set Lem.

Restricted Backtracking The restricted backtracking technique for start clauses is
implemented in line 2 and 3. Restricted backtracking for the reduction and extension
rule (and the lemma rule) is implemented in line 33. In the former case an implicit
Prolog cut in an if-then-else condition is used to cut off alternative start clauses, in the
latter case a Prolog cut is used to cut off alternative connections. In both cases, restricted
backtracking can be switched on or off (see below for details).

Positive and Conjecture Start Clauses By default, start clauses are restricted to posi-
tive clauses (lines 3 and 5). The predicate positiveC(Cla,Cla1) returns a positive start
clause Cla1 if clause Cla is positive. It is implemented within another seven lines of
Prolog code. If start clauses are restricted to conjecture clauses, a “!” is inserted into
the matrix to split the clauses of the conjecture formula from the axiom clauses. In this
case only clauses in front of the “!” are considered as start clauses (lines 2 and 4). See
the full source code on the nanoCoP website for details.

Reordering Clauses By default, clauses are arranged in ascending order according
to the number of paths through its elements. If reordering of clauses is switched on
(see Section 4), all (sub-)clauses are reordered using a compact shuffle algorithm. It is
implemented within 13 lines of Prolog code; see the full source code for details.

Strategy Scheduling The argument Set of the prove predicate (see, e.g., lines 1, 7, 13,
and 18) defines a strategy. It is a list of options and may contain the following elements:

– “scut” (switch on restricted backtracking for start clauses),
– “cut” (switch on restricted backtracking for reduction, extension and lemma rule),
– “conj” (use conjecture start clauses),
– “reo(J)” for J∈ IN (reorder the clauses J times before the proof search starts), and
– “comp(I)” for I∈ IN (restart proof search using a complete search strategy, i.e. with-

out scut, cut, and conj, if PathLim exceeds I).

These are the main strategies used for the fixed strategy scheduling together with
the total time ratio allotted to them: [cut,comp(7)]/15%, [reo(22),conj,cut]/20%,
[scut]/10%, [scut,cut]/5%, [reo(20),conj,cut]/10%, [reo(30),conj,scut,cut]/
10%, and [reo(34),conj,scut,cut]/5%. Afterwards, 12 different strategies are in-
voked for 20% of the total time. Finally, the strategy [] is used for the remaining time
(≥ 5%). As the first strategy and the last strategy are complete, the whole prover is
complete (provided an arbitrary large total time is given). The strategy scheduling is
implemented with a shell script that invokes the Prolog prover.

5 Experimental Evaluation

The different optimization techniques described in Section 3 and implemented in Sec-
tion 4 were evaluated on all 8044 first-order (so-called FOF) problems in the TPTP
library v6.4.0 [16]. Furthermore, nanoCoP was compared to other popular provers. All
evaluations were conducted on a 2.3 GHz Xeon system with 32 GB of RAM running
Linux 2.6.32. ECLiPSe Prolog 5.10 was used for all provers implemented in Prolog.

5.1 Evaluation of Different Optimizations

The following versions of nanoCoP are evaluated: a version without regularity and lem-
mata (“basic”), the standard version using regularity and lemmata (i.e. strategy []), a
version with conjecture start clauses ([conj]), two versions with restricted backtrack-
ing ([scut] and [cut]), nanoCoP 1.0, which uses only the strategy [cut,comp(7)], a
version with reordering clauses (“reo”=[reo(22),conj,cut]), and nanoCoP 1.1 using
the strategy scheduling described in Section 4.

Table 1 shows the results of the evaluation for a CPU time limit of 10 seconds. The
table shows the number of proved (valid) problems (i.e. with TPTP status “Theorem”
or “Unsatisfiable”) and the number of refuted (invalid) problems (i.e. with TPTP status
“Countersatisfiable” or “Satisfiable”). The entry “errors” shows the number of problems
for which nanoCoP terminates with a stack overflow error by Prolog. It also shows the
number of new problems (“new proved”) that were not proved by a preceding version
(“compared to”) of nanoCoP.

Whereas regularity and lemmata ([]) show only a small improvement, conjec-
ture start clauses ([conj]) and restricted backtracking ([scut] and [cut]) are very
effective techniques proving many more problems. For example, the [cut] version
proves 421 new problems compared to the standard version ([]). Using the strategy
[cut,comp(7)], nanoCoP 1.0 combines the [] and the [cut] techniques. The “reo”
version proves 242 new problems compared to nanoCoP 1.0, showing that reordering
clauses and conjecture start clauses are effective techniques as well. Using a strategy
scheduling, which is limited to the CPU time limit of 10 seconds (i.e., not all 20 strate-
gies are used), nanoCoP 1.1 proves significantly more problems than nanoCoP 1.0.

Table 1. Evaluation of different optimization techniques

“basic” [] [conj] [scut] [cut] 1.0 “reo” 1.1
proved 1465 1516 1682 1598 1691 1854 1855 2138

0 to 1sec. 1254 1294 1419 1350 1419 1620 1510 1620
1 to 10sec. 211 222 263 248 272 234 345 518

new proved – 64 253 248 421 446 242 335
compared to – “basic” [] [] [] [] 1.0 1.0

refuted 131 133 – – – 133 – 133
total 1596 1649 1682 1598 1691 1987 1855 2271
errors 110 101 94 89 90 140 86 11

Table 2. Evaluation of different provers

leanTAP leanCoP Prover9 E nanoCoP 1.0 nanoCoP 1.1
proved 555 2541 2694 4125 2094 2490

0 to 1sec. 520 1643 1936 2783 1620 1620
1 to 10sec. 20 369 471 717 234 234

10 to 100sec. 15 529 287 625 240 636
refuted 0 67 0 479 134 133
total 555 2608 2694 4604 2228 2623
errors 1850 64 1456 446 448 177

5.2 Comparison with Other Provers

The performance of nanoCoP 1.1 is compared to the following provers: the lean (non-
clausal) tableau prover leanTAP 2.3 [1], the resolution prover Prover9 (2009-02A) [6],
the superposition prover E 1.9 [15] (using options “--auto --tptp3-format”), and
leanCoP 2.2 (casc16) [7]. For leanTAP, leanCoP, and nanoCoP, the required equal-
ity axioms were added in a preprocessing step (which is included in the timings).

Table 2 shows the results of the evaluation for a CPU time limit of 100 seconds (the
strategy scheduling of leanCoP 2.2 and nanoCoP 1.1 are adapted to this limit). The
entry “errors” shows the number of problems for which the prover terminated with-
out result before the CPU time limit was exceeded, e.g., because of a stack overflow
(leanTAP, leanCoP, and nanoCoP) or an empty set-of-support (Prover9). nanoCoP 1.1
proves slightly less problems than Prover9 and about the same number of problems as
leanCoP. The advantage of dealing directly with a non-clausal form is compensated
by the overhead for dealing with the non-clausal data structure. Only few problems in
the TPTP library are in a (deeply) nested non-clausal form; in this case proofs found
by nanoCoP can be significantly shorter than the clausal proofs found by leanCoP [9].
nanoCoP 1.1 proves 150, 755, 301, and 452 problems not proved by leanCoP, Prover9,
E, and nanoCoP 1.0, respectively.

6 Conclusion

The paper presented a few effective optimization techniques for non-clausal connection
calculi and described their integration into the nanoCoP prover. Together with a strategy
scheduling, these techniques are the basis for the nanoCoP 1.1 prover. It solves almost
400 more problems from the TPTP library than the first version of nanoCoP, which
essentially consists only of the Prolog core prover.

Future work include an improved representation of the clauses stored in Prolog’s
database and the integration of further techniques to prune the search space, such as
learning [4]. Furthermore, most of the presented techniques can be used for reasoning
in non-classical, e.g., intuitionistic or modal first-order connection calculi [11, 13] as
well, by taking the prefixes of the literals into account.

Acknowledgements. The author would like to thank Michael Färber for many useful
discussions on the nanoCoP prover.

References

1. Beckert, B., Posegga, J.: leanTAP: lean, tableau-based deduction. Journal of Automated
Reasoning 15(3), 339–358 (1995)

2. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39,
176–210, 405–431 (1935)

3. Hähnle, R.: Tableaux and Related Methods. In: Robinson, A., Voronkov, A. (eds.) Handbook
of Automated Reasoning, pp. 100–178. Elsevier, Amsterdam (2001)

4. Kaliszyk, C., Urban, J.: FEMaLeCoP: Fairly Efficient Machine Learning Connection Prover.
In: Davis, M. et al. (eds.) LPAR 2015. LNAI, vol. 9450, pp. 88–96. Springer, Heidelberg
(2015)

5. Letz, R., Stenz, G.: Model Elimination and Connection Tableau Procedures. In: Robin-
son, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 2015–2114. Elsevier,
Amsterdam (2001)

6. McCune, W.: Release of Prover9. Mile high conference on quasigroups, loops and nonasso-
ciative systems, Denver (2005)

7. Otten, J.: Restricting backtracking in connection calculi. AI Communications 23, 159–182
(2010)

8. Otten, J.: A Non-clausal Connection Calculus. In: Brünnler, K., Metcalfe, G. (eds.)
TABLEAUX 2011, LNAI, vol. 6793, pp. 226–241. Springer, Heidelberg (2011)

9. Otten, J.: nanoCoP: A Non-clausal Connection Prover. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016, LNAI, vol. 9706, pp 269–276. Springer, Heidelberg (2016)

10. Otten, J.: nanoCoP: Natural Non-clausal Theorem Proving. In Sierra, C. (ed.) IJCAI 2017,
Sister Conference Best Paper Track, pp. 4924–4928. ijcai.org (2017)

11. Otten, J.: Non-clausal Connection Calculi for Non-classical Logics. In: Schmidt, R., Nalon,
C. (eds.) TABLEAUX 2017, LNAI, vol. 10501, pp 209–227. Springer, Heidelberg (2017)

12. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. Journal of Symbolic
Computation 36, 139–161 (2003)

13. Otten, J., Bibel, W.: Advances in Connection-Based Automated Theorem Proving. In:
Hinchey, M. at al. (eds.) Provably Correct Systems. NASA Monographs in Systems and
Software Engineering, pp. 211-241. Springer, Heidelberg (2017)

14. Reis, G.: Importing SMT and connection proofs as expansion trees. In: Kaliszyk, C., Paske-
vich, A. (eds.) 4th Workshop PxTP, EPTCS 186, pp. 3–10 (2015)

15. Schulz, S.: E – a brainiac theorem prover. AI Communications 15(2), 111–126 (2002)
16. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. Journal of Auto-

mated Reasoning 59(4), 483–502 (2017)

