
Proving properties of a minimal covering algorithm

Ioannis Filippidis and Richard M. Murray

Control and Dynamical Systems
California Institute of Technology ∗

May 26, 2018

1 Overview

This work concerns the specification and proof using TLA+ of properties of an algorithm for solving
the minimal covering problem [1], which we have implemented in Python [3]. Minimal covering
is the problem of choosing a minimal number of elements from a given set Y to “cover” all the
elements from another given set X , as defined by a given function f . An element y ∈ Y covers an
element in x ∈ X if f [x , y ], as illustrated in Fig. 1.

A more detailed description of the algorithm and its properties [2, Chapter 7], and the relevant
TLA+ modules [3] are available. The proofs of safety properties in these modules have been
checked with the proof assistant TLAPS (version 1.4.3) [4], in the presence of the tools Zenon,
CVC3, Isabelle, and LS4. We have been motivated to study and implement this algorithm for
converting binary decision diagrams to formulas of small size, so that humans can read the results
of symbolic computations [2].

2 Minimal covering algorithm

This algorithm was originally proposed for computing small implementations of circuits [1], and
requires that the covering problem be defined within a complete lattice, i.e., that a function
Leq ∈ [Z × Z → boolean ] defines a complete lattice, and the sets X ,Y ∈ subset Z , with Leq
used as the function f . If the given covering problem is not defined within a lattice, then it is first
mapped to one within a suitable lattice, as Fig. 2 illustrates for the problem shown in Fig. 1. We
refer to a cover of the set X that comprises of elements from the set Y as a cover “from Y ”.

The algorithm operates by repeating three steps:

1. Computing essential and ambiguous elements (cyclic core);
2. branching by picking an ambiguous element as candidate; and
3. pruning subtrees of the search tree created by branching, based on upper and lower bounds.

∗{ifilippi,murray}@caltech.edu

1



elements to be covered

Y

X

f

y1
y2

y3

y4

x1

x2 x3

x4

elements used to create a cover

C

Figure 1: Example of a minimal covering
problem, defined by the sets X ,Y , and the
function f ∈ [X × Y → boolean ]. A set
C ∈ subset Y is a cover of X if for each ele-
ment x ∈ X , there exists a y ∈ C such that
f [x , y ]. A cover C is minimal if no other
cover from Y has cardinality smaller than
C .

Yinit

Xinit

Leq

y1
y2

y3

y4

x1
x2 x3

x4

Lattice

Figure 2: The covering problem of Fig. 1 in
the presence of a (complete) lattice Leq , with
Xinit ,Yinit ∈ Z , and domain Leq = Z ×Z .

These steps are illustrated in Fig. 4. Given a covering problem, first an iterative computation finds
which elements of Y are necessary (called essential) to cover X . This computation transforms
the covering problem, with the resulting covering problem X c ,Y c called the cyclic core. After
finding the cyclic core, the computation proceeds by selecting an element yb ∈ Y c , and creating
two covering problems, depending on whether yb is included as part of the cover under construction
or not.

We formalized the computation of essential elements and cyclic core (step 1), and checked the
proofs of safety properties using TLAPS. These proofs are based on [1]. The cyclic core computation
is described by the algorithm in Fig. 5 and illustrated in Fig. 3. Each step transforms the covering
problem X ,Y to a new covering problem. The steps are repeated until X and Y stop changing.
Each step has the following effect:

• The step X 1 = Ceilings(X ,Y ,Leq) creates equivalence classes of the set X . For example,
two elements u1, u2 ∈ X belong to the same equivalence class if they are below the same set
of elements from Y , i.e., if ThoseOver(Y , u1,Leq) = ThoseOver(Y , u2,Leq). More precisely,
this transformation maps each u ∈ X to Ceil(u,Y ,Leq), which represents the equivalence
class of u.

2



Y

X

Y

X

X1

Y

X2

Y

X2

Y1

X2

Y2

X3

Y3

X1
= Cei

ling
s(X

,Y
,Le

q)
X2 = Maxima(X1,Leq)

Y1 =
Floors

(Y ,X2,Le
q)

Y2 = Maxima(Y1,Leq)

Y3 = Y2 \ Ess

X3 = X2 \ Ess

Ess = X2 ∩Y2

Figure 3: Transformations of minimal covering problem during an iteration of the fixpoint compu-
tation that computes the cyclic core, described by the algorithm of Fig. 5.

• The step X 2 = Maxima(X 1,Leq) keeps those u ∈ X 1 that suffice to be covered.

• The step Y 1 = Floors(Y ,X 2,Leq) creates equivalence classes of the set Y . For example,
two elements y1, y2 ∈ Y belong to the same equivalence class if they are above the same
set of elements from X 2, i.e., if ThoseUnder(X 2, v1,Leq) = ThoseUnder(X 2, v2,Leq). More
precisely, this transformation maps each v ∈ Y to Floor(v ,X 2,Leq), which represents the
equivalence class of v .

• The step Y 2 = Maxima(Y 1,Leq) keeps those v ∈ Y 1 that suffice to cover X 2.

• The step Ess = X 2 ∩ Y 2 removes from Y 2 elements that are necessary for covering X 2, in
that each covers some element in X 2 uncovered by any other y ∈ Y 2. These elements are
removed also from X 2.

The operators mentioned above are defined in the modules Lattices and Optimization.
The specification and proof in the module CyclicCore contain only the body of the loop of the

algorithm in Fig. 5. Termination is proved by showing that X ,Y eventually stop changing. In the
presence of a loop condition as in Fig. 3, after X ,Y stop changing, the procedure returns. See also
[2, pp. 66–70].

3



ComputeCyclicCore

cyclic core

covering problems

problem 1 problem 2

assuming yb assuming yb
yb ∈ Yc

Xc ,Yc

X ,Y

in minimal cover not in minimal cover

Figure 4: The covering algorithm transforms a
minimal covering problem X ,Y using a fixpoint
computation that removes essential elements, and
identifies elements that cover the same subset
of X . If the resulting covering problem Xc ,Yc

(cyclic core), is nonempty, then branching leads
to a search over smaller problems.

def ComputeCyclicCore(Xinit ,Yinit ,Leq) :
X ,Y : = Xinit ,Yinit
Xold ,Yold ,E : = {}, {}, {}
while ⟨X ,Y ⟩ ̸= ⟨Xold ,Yold ⟩ :

Xold ,Yold : = X ,Y
Y : = MaxFloors(Y ,X ,Leq)
X : = MaxCeilings(X ,Y ,Leq)
Essential : = X ∩Y
X : = X \ Essential
Y : = Y \ Essential
E : = E ∪ Essential

return X ,Y ,E

Figure 5: The algorithm that computes the
cyclic core, described in a syntax that is sim-
ilar to PlusCal, with syntactic elements from
Python.

3 TLA+ modules

The theorems and proofs are organized into modules of general interest and modules specific to the
cyclic core computation, similarly to the specification of Naiad [5]. The modules FiniteSetFacts,
Optimization, and MinCover contain general results that are independent of the problem we study.
The modules Lattices, CyclicCore, and StrongReduction are progressively more specific, with the
last two specifying the cyclic core and cover reconstruction algorithms. The proofs and depen-
dency of theorems in the module Lattices are deeper than those in the modules CyclicCore and
StrongReduction, reflecting differences in their content [6, §5].

The module contents are as follows:

Table 1: TLA+ modules. The checking time is using TLAPS with CVC3, Zenon, LS4, and Isabelle.

Module Content TLAPS time Obligations

FiniteSetFacts Addendum to FiniteSetTheorems 5.8 s 27
Optimization Min/maxum/al elements, Antichains 31 s 311
MinCover Def of minimal covers, and their properties 30 s 237

Lattices Lattices, Floor, Ceiling, Essential elements 5min 1334
CyclicCore Spec of cyclic core fixpoint, safety properties 8min 1561
StrongReduction Spec of all mincovers below, correctness proofs 45min 3038

4



FiniteSetFacts

Optimization

MinCover

Lattices

CyclicCore

StrongReduction

FiniteSetFacts
Naturals

Integers
WellFoundedInduction

TLAPS

FunctionTheorems
Sequences
SequenceTheorems

extended by

Figure 6: Module dependency relation.

• The module FiniteSetFacts contains results about finite sets (extending the TLAPS module
FiniteSetTheorems).

• The module Optimization formalizes notions of minimum, minimal, maximum, and maximal
elements, binary relations as functions, antichains, and their properties.

• The module MinCover defines what a minimal cover is, and includes theorems about minimal
covers, with emphasis on the finite case.

• The module Lattices defines operations relevant to minimal covering in a lattice, and theorems
about them. These operations are performed repeatedly during the cyclic core computation,
until a fixpoint is reached. The Lattices module proves that transformations due to these
operations allow us to reconstruct minimal solutions of the input problem, and that for finite
sets as input, every iteration decreases the problem size or reaches a fixpoint. These results are
used in the modules CyclicCore and StrongReduction to prove correctness of the algorithm.

• The module CyclicCore specifies the cyclic core fixpoint algorithm, and proves relevant safety
properties (checked by TLAPS), and its termination (checked by human).

• The module StrongReduction specifies an algorithm that we designed for constructing all the
minimal covers of the input problem from the minimal covers of the cyclic core, and proves
its safety properties of interest (checked by TLAPS).

Checking these proofs with TLAPS takes about an hour (for 6508 obligations) on a 3.1 GHz CPU,
as shown in Table 1. Fig. 6 shows how the above modules depend on each other, on standard
modules, and on modules from the TLAPS library.

4 An algorithm for enumerating all minimal covers

The cyclic core and branch-and-bound computations transform the covering problem, until an
empty problem is obtained. The path of transformations determines the cardinality of the minimal
cover to the input problem Xinit ,Yinit . The branch-and-bound search terminates when the path
is known to yield a minimal cover, as detected using the lower and upper bounds. A minimal cover
for the input problem can be constructed by taking the union of essential elements along the path,
and finding for each one an element from Yinit that is above it, as described in [1]. In addition to

5



X ,Y X2,Y X2,Y1 X2,Y2 X3,Y3

MinCovers MinCovers1 MinCovers2 MinCovers3
MinCovers

C3 ∈ MinCovers3

MinCovers unchanged

Enumerate all unfloors C3 ∪ (X2 ∩Y2)

Maxima(Y1,Leq)

Floors(Y ,X2,Leq)

MaxCeilings(X ,Y ,Leq)

Essential

for C3 ∈ MinCovers3

C ∈ MinCovers

An iteration of the cyclic core computation

Enumerating all minimal covers

Constructing one minimal cover of X ,Y

1234

Enumerate all min covers below

Figure 7: Obtaining solutions of the problem X ,Y from solutions of the problem X3,Y3 at the
end of an iteration. A single minimal cover C3 of X3 from Y3 can be transformed in one step to a
minimal cover of X from Y . The set of minimal covers of X3 from Y3 can be transformed to the
set of minimal covers of X from Y in multiple steps.

computing one solution, the set of all minimal covers may also be of interest. Fig. 7 illustrates a
single iteration of the cyclic core computation, the enumeration of all minimal covers of the problem
at the start of that iteration, and the construction of one minimal cover, which is simpler.

While developing this TLA+ proof, we noticed that the original cyclic core algorithm yields
some minimal covers, but not necessarily the entire set of minimal covers. Some minimal covers
can be lost with that approach, as witnessed by a counterexample shown in Fig. 16. We modified
the original algorithm to produce all the minimal covers of the input problem. The algorithm
specification and proof are in the module StrongReduction, and the algorithm is described in Fig. 17.
So formalization helped locate a bug in the original algorithm, and prepared us for amending it.

Fig. 13 illustrates the operation of the algorithm. This algorithm corresponds to step No. 2 in
Fig. 7. It enumerates all minimal covers from the set Y that refine a minimal cover from the set
Maxima(Y ,Leq) (where Refines(A,B ,Leq) ≜ ∀u ∈ A : ∃v ∈ B : Leq [u, v ]). This enumeration is
performed starting with a minimal cover Cm ∈ subset Maxima(Y ,Leq), and iteratively replacing
each element with an element from Y that is below it and also above all elements of X uniquely
covered by the element that is replaced, as illustrated in Figs. 12 and 13.

4.1 Proof structure

The proof of safety properties of the enumeration algorithm is structured as follows. Given the set
of minimal covers from Max ≜ Maxima(Y ,Leq), we want to find the set of minimal covers from Y .
Each minimal cover C from Y refines some minimal cover Cm from Max , as illustrated in Fig. 8.
Therefore, it suffices to find, for each Cm , those minimal covers from Y that refine Cm (Fig. 9),
i.e., the set

AllMinCoversBelow(Cm ,X ,Y ,Leq) ≜ {C ∈ subset Y : ∧ IsAMinCover(C ,X ,Y ,Leq)
∧ Refines(C ,Cm ,Leq)}

6



The proof has two directions (Fig. 10):

1. Soundness: Given a minimal cover Cm from Max , enumeration yields only minimal covers
from Y .

2. Completeness: No minimal covers from Y that refine the cover Cm are missing from the set
MinCoversBelow returned by the algorithm of Fig. 17.

Given a minimal cover Cm ∈ subset Maxima(Y ,Leq), the enumeration algorithm successively
replaces each element ymax with an element yk ∈ BelowAndSuff (ymax ,Q ,Y ) (Line 3347 in the
module StrongReduction). The elements yk are those that cover the elements x that only ymax

covers (Figs. 11 and 12).

4.1.1 Soundness proof

Successive replacements are illustrated in Fig. 13. Let Q ≜ Partial ∪Patch(k), from the definition
of the invariant PartialCoversInStack (Partial corresponds to PartialCover in Fig. 17). The invari-
ant PartialCoversInStack implies the following two invariance properties, which ensure that each
PartialCover augmented with the set Patch(k) (equal to Image(Lm, k ..N )) is a minimal cover:

1. Cover: If Q is a cover, then elementwise replacement (of ymax by yk ) yields a QNext that is
a cover (Line 3535 in the module StrongReduction).

2. Minimality: Elementwise replacement preserves cardinality, so Cardinality(QNext) = N (Line
3607 in the module StrongReduction).

Thus, each Q is a minimal cover from Y . So any PartialCover added to MinCoversBelow is a
minimal cover (these additions occur in steps that satisfy the action Collect).

The assertion that the intermediate sets Q are covers (Line 3535 in the module StrongReduction)
is proved by considering two cases:

1. yk covers those x that are covered by only ymax (i.e., the set Only(ymax ,Q)) (Line 3578 in
the module StrongReduction).

2. Elements x /∈ Only(ymax ,Q) are covered by elements in Q \ {ymax}, which is a subset of
QNext (Line 3540 in the module StrongReduction).

The theorem StackContainsPartialCovers asserts the above properties. This theorem is used to
prove the theorem StrongReductionSoundness.

4.1.2 Completeness proof

Completeness is established by proving that there are no minimal covers that refine Cm but are
not returned by the enumeration algorithm (such covers would correspond to the area with the
question mark in Fig. 10).

7



Cm,1
Cm,2

C2
C1

C3

refined by

MinCoversOf (X ,Y ,Leq)

let Max ≜ Maxima(Y ,Leq)
in MinCoversOf (X ,Max ,Leq)

Max

C

ymax
,1

y1 y2

ymax
,2

ymax
,3

ymax
,4

ymax
,5

y3
y4

Each yi ∈ C can be mapped to

some ymax ,j ∈ Max ≜ Maxima(Y ,Leq),

with Leq [yi , ymax ,j ], thus each cover C

to some cover of maximal elements.

Leq [y1, ymax ,1]

Figure 8: Each minimal cover containing elements from Y refines some minimal cover comprised of
elements from Maxima(Y ,Leq). So the set of minimal covers of X from Y can be partitioned into
subsets, each subset containing covers that refine the same minimal cover from Maxima(Y ,Leq).
The operator MinCoversOf is defined in the module StrongReduction.

Cm,1
Cm,2

C2

C1

C3

refined by

MinCoversOf (X ,Y ,Leq)

Figure 9: A cover C may refine two covers Cm,1,Cm,2 from Max ≜ Maxima(Y ,Leq). The al-
gorithm described in the module StrongReduction enumerates all the minimal covers from Y
that refine a given minimal cover Cm from Max . Applying this algorithm to all minimal cov-
ers from Max , the resulting set contains all minimal covers from Y , as asserted by the theorem
MinCoversSubseteqUnionCandidatesBelow .

8



Cm

Ci

?

AllMinCoversBelow(Cm ,X ,Y ,Leq)

Soundness: Enumerating from Cm yields only minimal covers.

Completeness: Is enumeration missing any minimal covers that refine Cm?

Figure 10: A single run of the enumeration algorithm generates all the minimal covers Ci that refine
a given minimal cover Cm ∈ Maxima(Y ,Leq). The theorem StrongReductionSoundness asserts
that the algorithms enumerates only minimal covers. The theorem StrongReductionCompleteness
asserts that no minimal covers that refine Cm are missed by the algorithm. These two theorems
are combined in the theorem StrongReductionSafety . The module StrongReduction contains these
theorems.

y1 y2 y3

Only y2 covers x1, x2, x3

Cm

X

Leq

A minimal cover

x2

Both y1 and y2 cover x4

x1 x3x4

Figure 11: A minimal cover contains only es-
sential elements, as established by the theo-
rem MinimalHasAllEssential . Each essential
element yi ∈ Cm covers an element xj ∈ X
that is uncovered by other yj ∈ Cm \ {yi}.

ymax

Only(ymax ,Cm) = {x1, x2, x3}

Cm

X

Leq

A minimal cover

x2
x1

x3

y1 y2

Figure 12: The set BelowAndSuff (ymax ,Cm ,Y )
contains those y ∈ Y that are below ymax (i.e.,
Leq [y , ymax ]), and that cover all x that within Cm

are uniquely covered by ymax .

9



Cm

ymax

Cm ∈ subset Maxima(Y ,Leq)

ymax

ymax

k = 1

k = 2

k = 3

Lmk + 1

k + 1

k + 1

yk

yk

yk

Only(ymax ,Q)

Cm

Q

Q = Cm = Patch(k)

Q

Only(ymax ,Q)

Only(ymax ,Q)

Partial

Partial

First ⟨Next⟩vars -step

Second ⟨Next⟩vars -step

Third ⟨Next⟩vars -step

Patch(k) \ {ymax}

Patch(k) \ {ymax}

Patch(k)

Patch(k) \ {ymax}

Patch(k)

Figure 13: Given a minimal cover Cm ∈ subset Maxima(Y ,Leq), the enumeration algorithm suc-
cessively replaces each element ymax with an element yk ∈ BelowAndSuff (ymax ,Q ,Y ). Each re-
placement yk ∈ BelowAndSuff (ymax ,Q ,Y ) yields a different partial cover Partial , thus leading to
different minimal covers from Y .

10



Cm ∈ subset Maxima(Y ,Leq)

Lm[1]

g [1] g [2]

Lm[2]

g [N ]

Lm[N ]

Leq

im
po
ss
ib
le

Cm is a minimal cover

C is a minimal cover

C ∈ subset Y

Figure 14: The lattice function Leq induces a bijection between a minimal cover
Cm ∈ subset Maxima(Y ,Leq), and a minimal cover C ∈ subset Y that refines Cm , i.e.,
C ∈ AllMinCoversBelow(Cm ,X ,Y ,Leq). Each element of Cm covers exactly one element of C , so
¬Leq [g [i ],Lm[j ] for i ̸= j and i , j ∈ 1..N .

Establishing a bijection The proof is by contradiction, assuming that there exists a minimal
cover C that refines Cm . For any such cover C , there exists a bijection between C and Cm ,
as asserted by the theorem MinCoverRefinementInducesBijection in the module StrongReduction,
which is illustrated in Fig. 14. The proof of this theorem depends on three other theorems:

• The theorem AtMostOneBelow : A ym ∈ Cm cannot cover more than one y ∈ C . Otherwise,
N − 1 elements from Cm would suffice to cover C , because by minimality Cardinality(C ) =
Cardinality(Cm) and Cardinality(Cm) = N . C is a cover, so N − 1 elements would suffice
to cover X , contradicting that Cm is minimal.

• The theorem AtMostOneAbove: A y ∈ C cannot be below more than one ym ∈ Cm . If so,
then by the theorem AtMostOneBelow , the two elements of Cm that cover y would not cover
any other elements of C , and one of them would suffice to cover y . The cover C refines Cm ,
so N − 1 elements of Cm would suffice to cover C , and thus X , contradicting that Cm is
minimal.

• The theorem MinCoverRefinementHasBelow : If the cover C refines a minimal cover Cm

(with respect to Leq), then each ym ∈ Cm is above some y ∈ C .

Proving these theorems relies on finiteness of the sets C and Cm .

Completeness by contradiction The theorem StrongReductionCompleteness uses the bijection
between C and Cm to show that if any element ymax ∈ Cm is replaced by an element y ∈ (Y \
BelowAndSuff (ymax ,Q ,Y )), then some x ∈ Only(ymax ,Q) remains uncovered, so C cannot be a
cover. This is proved in two steps:

1. Any element yc ∈ Partial is in Q \ {ymax}, so yc cannot cover x , by the definition of Only
(Line 2502 in the module StrongReduction).

2. Any element yc ∈ After ≜ Image(g , (k + 1)..N ) is below some yt ∈ Patch(k + 1), by the
bijection between C and Cm . Thus, if yc covered x , then yt would cover x (by transitivity
of Leq), but yt ∈ Q \ {ymax}, a contradiction (Line 2562 in the module StrongReduction).

11



Cm

ymax

k

y
Q

Only(ymax ,Q)

PartialCover

Patch(k) \ {ymax}

Patch(k)

im
po
ss
ib
leimpossible

After

im
p
os
si
b
le

C

x

Figure 15: Completeness is proved by assuming that a minimal cover C ∈ subset Y refines Cm ,
and that C is not found by the enumeration algorithm. Thus, some replacement step introduces
a y ∈ C that leaves uncovered some x that cannot be covered by any elements from C \ {y},
contradicting the assumption that C is a cover.

This reasoning is illustrated in Fig. 15.

4.2 Stack-based and set-based variants

The module CyclicCore specifies and proves properties of the cover reconstruction algorithm of
Fig. 17, which uses a stack. This choice has little effect on the algorithm’s size, but makes the proof
more complicated, due to the presence of sequences (order). We observed this consequence while
developing the proof, and decided to complete the stack-based proof, so that we can compare with
a set-based specification and proof, which we plan to develop. A variant of the algorithm that uses
a set instead of a stack is listed in Fig. 18.

5 Practical observations

During development we collected observations about practical details and utility features that
we would find useful if available. For example, declaring a constant in a module and stating
assumptions about its properties in other modules, instead of using instantiation and substitution
by a given expression, reduces expression nesting. Automated reporting of the maximal step number
used in a proof level would aid writing of a proof before renumbering. Theorem names as directives
for what lines to prove would also be convenient when directly calling the proof manager. More
extensive memoization of proof results would help accelerate development.

In the context of this work we developed scripts for common tasks, including creating “header”
files by removing proofs, typesetting a collection of TLA+ modules as a single document, and a

12



Y2

Y2

X

3 4

6

2 3 4 5

7 8

6

2

3 4

7

5

8

6 7 8

6
3 4

7

8

3 4

Y1 = Floors(Yinit ,Xinit ,Leq)

Y2 = Maxima(Y1,Leq)

X
1
=
C
ei
li
n
gs
(X

,Y
2
,L
eq
)

X2 = Maxima(X1,Leq)

Essential

Ceilings(X ,Y ,Leq),
Maxima(X ,Leq),
Essential

Essential

Yinit

Xinit

6

3 4

8

Y1

X

Leq

X1

Figure 16: An example of computing a minimal cover. One iteration of transformations suffices to
reach a fixpoint, and the cyclic core is empty (X3 = {} and Y3 = {} in Fig. 3). Lattice elements
above and below Xinit ,Yinit are not shown. See also [1, Figs. 13–15 on pp. 119–120] and [2,
Figs. 7.13–7.14 on p. 79].

13



def EnumerateMincoversBelow(Cm) :
stack : = ⟨{}⟩
Lm : = Enumerate(Cm)
N : = Cardinality(Cm)
MinCoversBelow : = {}
while stack ̸= ⟨ ⟩ :

end : = Len(stack)
PartialCover : = stack [end ]
i : = Cardinality(PartialCover)
stack : = SubSeq(stack , 1, end − 1)
if i = N :

MinCoversBelow : = MinCoversBelow ∪ {PartialCover}
continue

k : = i + 1
succ : = BelowAndSuff (Lm[k ],PartialCover ∪ Image(Lm, k ..N ),Y )
for z ∈ succ :
NewCover : = PartialCover ∪ {z}
stack : = stack ◦ ⟨NewCover ⟩

return MinCoversBelow

Figure 17: Stack-based variant of the enumeration algorithm. Proofs of safety properties for this
algorithm are in the module StrongReduction, where the operators Enumerate and BelowAndSuff
are defined. The operators Len and SubSeq are defined in the standard module Sequences, and the
operator Cardinality in the standard module FiniteSets [7, p. 341].

def EnumerateMincoversBelow(Cm) :
Partials : = {{}}
Lm : = Enumerate(Cm)
N : = Cardinality(Cm)
MinCoversBelow : = {}
while Partials ̸= {} :
PartialCover : = choose p ∈ Partials : true
Partials : = Partials \ {PartialCover}
i : = Cardinality(PartialCover)
if i = N :
MinCoversBelow : = MinCoversBelow ∪ {PartialCover}
continue

k : = i + 1
succ : = BelowAndSuff (Lm[k ],PartialCover ∪ Image(Lm, k ..N ),Y )
Partials : = Partials ∪ {PartialCover ∪ {z} : z ∈ succ}

return MinCoversBelow

Figure 18: Set-based variant of the enumeration algorithm. Compare to Fig. 17.

14



Environment
in LATEX document Python script

TLA2TEX.TeX

*.tex

*.tla

*.tex

in *.tex files
memoization

Figure 19: Call graph and file operations for calling TLA2TEX from within a LATEX environment
via a Python script.

LATEX environment that calls TLA2TEX via Python to typeset the environment’s content, mem-
oizing the results on disk, and updating only when the content’s hash changes. The operation of
this script is shown in Fig. 19, where a LATEX environment that contains TLA+ source dumps its
contents to a *.tla file, and calls a Python script, which calls TLA2TEX to convert the *.tla file
to a *.tex file. The Python script reads the *.tex output of TLA2TEX, and extracts the LATEX
source, placing it in a tlatex environment. To avoid typesetting an unchanged TLA+ environment
twice, the Python script memoizes the LATEX source code generated by TLA2TEX for each envi-
ronment, using *.tex files. Memoized environments that are obsolete because their contents have
changed are identified on each run, and garbage collected on the next run. In the presence of an
\includeonly statement, garbage collection is active for only the included files, so that memoized
environments that correspond to files unmentioned by the \includeonly statement be omitted
from garbage collection.

References

[1] O. Coudert, “Two-level logic minimization: An overview,” Integration, the VLSI Journal,
vol. 17, no. 2, pp. 97–140, 1994.

[2] I. Filippidis, “Decomposing formal specifications into assume-guarantee contracts for
hierarchical system design,” Ph.D. dissertation, California Institute of Technology, 2017.
[Online]. Available: http://resolver.caltech.edu/CaltechTHESIS:12172017-171304566

[3] ——, “Cyclic core computation specification and proofs,” California Institute of Technology,
Tech. Rep., 2017, PDF available at: https://thesis.library.caltech.edu/10611/6/mincover.pdf
TLA+ source available at: https://github.com/johnyf/omega/tree/master/spec/mincover
Python implementation at: https://github.com/johnyf/omega/blob/master/omega/symbolic/
cover.py .

[4] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “A TLA+ proof system,” in Proc. LPAR
Work., Knowledge Exchange: Automated Provers and Proof Assistants Work., vol. 418, 2008,
pp. 17–37.

15



module OptimizationSummary
Definitions of binary function properties (ir/reflexive, transitive, anti/symmetric, support), antichains, minimal,
maximal, minimum, maximum elements.
Theorems about maxima: Idempotence, identity for antichains, the set of maxima is an antichain, existence of smaller
element if non-maximal.
Theorems about support of function with domain of the form S × S .
Properties of Lt (“less than”), existence of a minimal element in finite set with Leq transitive and antisymmetric,
existence of a minimal element below any given element, if Leq is also reflexive.

module MinCoverSummary
Definitions of cover, cover from a set Y , set of covers, refinement.
Definitions of minimal cover, minimal cost.
Theorems: Minimal cover properties (generic and with cardinality as cost), all minimal covers have same cardinality,
a minimal cover has minimal cardinality, adding elements to and removing elements from a cover.

module LatticesSummary
Definitions
Theorems about lattices, existence and uniqueness of Inf ,Sup, monotonicity, domain symmetry.
Theorems about Floor and Floors, existence, monotonicity, shrinking, idempotence, cardinality.
Theorems about Geq ≜ UpsideDown(Leq).
Theorems about Ceil and Ceilings.
Theorems about the variant: if Cardinality(X ),Cardinality(Y ) are unchanged in one cyclic core iteration, then X ,Y
are unchanged.
1⃝ Theorems about MinCovers transformation when adding or removing essential elements.

Theorems about Hat and MaxHat .
4⃝ Theorems about MaxCeilings leaving the set of covers unchanged.
2⃝ Theorems about Maxima(Y ,Leq) and minimal covers.

3⃝ Theorems about the effect of Floors(Y ,X ,Leq) (and Unfloors) on minimal covers.

module CyclicCoreSummary
Assumptions, Algorithm specification, Definitions
Auxiliary invariance theorems.
Proofs that minimal covers can be constructed from minimal covers of the covering problem in the current step,
together with the set of essential elements.
Proof that cyclic core steps yield feasible covering problems.
Termination theorem (checked by hand).

module StrongReductionSummary
Assumptions, Algorithm specification, Definitions
Auxiliary theorems about intermediate results during the enumeration.
Minimal cover properties: essentiality, partitioning, refinement.
Leq induces bijection between minimal covers in case one refines the other.
Proofs of safety properties.

Figure 20: Summaries of the modules Optimization, MinCover , Lattices, CyclicCore, and
StrongReduction. The circled numbers correspond to steps in Fig. 7.

16



[5] T. L. Rodeheffer, “The Naiad clock protocol: Specification, model checking, and correctness
proof,” Microsoft Research, Tech. Rep. MSR-TR-2013-20, Feb 2013.

[6] L. Lamport, “How to write a 21st century proof,” Journal of fixed point theory and applications,
vol. 11, no. 1, pp. 43–63, 2012.

[7] ——, Specifying systems. Addison-Wesley, 2002.

17


