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Abstract

We employ the Coq proof assistant to develop a mechanically-certified framework for evaluating
graph queries and incrementally maintaining materialized graph instances, also called views. The
language we use for defining queries and views is Regular Datalog (RD) – a notable fragment of
non-recursive Datalog that can express complex navigational queries, with transitive closure as
native operator. We first design and encode the theory of RD and then mechanize a RD-specific
evaluation algorithm capable of fine-grained, incremental graph view computation, which we
prove sound with respect to the declarative RD semantics. By using the Coq extraction mecha-
nism, we test an OCaml version of the verified engine on a set of preliminary benchmarks. Our
development is particularly focused on leveraging existing verification and notational techniques
to: a) define mechanized properties that can be easily understood by logicians and database
researchers and b) attain formal verification with limited effort. Our work is the first step to-
wards a unified, machine-verified, formal framework for dynamic graph query languages and
their evaluation engines.

KEYWORDS: Regular Datalog, Graph Queries, Graph Views, Incremental Maintenance, Finite
Semantics, Theorem Proving

1 Introduction

Modern graph query engines1 are gaining momentum, due to the proliferation of intercon-
nected data and related applications, spanning from social networks to scientific databases
and the Semantic Web. The adopted query languages are navigational, focusing on data
topology and, particularly, on label-constrained reachability. Notable examples (Angles
et al. 2017) include Neo4j’s openCypher (Cypher ), Facebook’s GraphQL (GraphQL ),
SPARQL (SPARQL ), Gremlin (Gremlin ), Oracle’s PGX (Oracle PGX ), and the recent
G-CORE (G-Core ), even though a standard graph query language is still undefined.

At a foundational level, these languages are based on conjunctive queries (CQ), cor-
responding to Datalog (Ceri et al. 1989) clauses, i.e., function-free Horn formulas. Their
common denominator is that they perform edge traversals (through join chains), while

1 Several successful commercial implementations exist, e.g., Neo4j (Neo4j ), Google’s Cayley (Cayley ),
Twitter’s FlockDB (FlockDB ) and Facebook’s Apache Giraph (Giraph ).
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specifying and testing for the existence of label-constrained paths. Recently, a solution to
the long standing open problem of identifying a suitable graph query Datalog fragment,
balancing expressivity and tractability, has been proposed in (Reutter et al. 2017). We
call this Regular Datalog (RD), a binary linear Datalog subclass that allows for complex,
regular expression patterns between nodes. RD provides additional properties over full
Datalog. First, its evaluation has NLOGSPACE-complete complexity, belonging to the
NC class of highly parallelizable problems. Second, RD query containment is decidable,
with an elementary tight bound (2EXPSPACE-complete) (Reutter et al. 2017).

To the best of our knowledge, no specific evaluation algorithm for RD queries has been
proposed yet. What are the main desiderata that such an algorithm should have? On
the one hand, real-world graphs are highly dynamic, ever-increasing in size, and ever-
changing in content. Hence, efficiency, i.e., accelerating graph-based query processing,
has become more relevant than ever. On the other hand, the sensitive nature of the data
that large-scale, commercial graph database engines operate on makes ensuring strong
reliability guarantees paramount.

We argue that having a deeply-specified framework for performing incremental graph
computation, based on logic programming, opens important perspectives in a variety of
areas, especially in light of security-sensitive applications involving graph-shaped topolo-
gies, e.g., financial transaction, forensic analysis, and network communication protocols.

Problem Statement: We target both requisites by developing a mechanically-verified
framework for the fine-grained incremental view maintenance of graph databases
(IVMGD). Specifically, let G be a graph database instance, ∆G, a set of modifications,
and V [G], the materialization of an RD view or query over G. We provide an IVMGD-
aware engine that computes an incremental view update ∆V [G; ∆G], making the resulting
view consistent with the updated graph database, i.e., V [G] ∪∆V [G; ∆G] = V [G ∪∆G].

Contributions: We build our mechanically-certified engine using theorem proving tech-
niques, in particular we use the Coq proof assistant (The Coq Development Team 2018)
to develop both the theory of the RD language and the evaluation engine itself. We
make three major contributions: a) we formalize, in Coq, the syntax and semantics of
Regular Queries, as Regular Datalog programs; b) we implement, in Coq’s functional
programming language Gallina, an executable engine for incremental RD maintenance;
c) we prove the engine is sound, i.e. that it correctly computes incremental view updates.

We encode the semantics of RD using the finite set theory in the Mathematical Com-
ponents library, which was developed to carry out the mechanized proof of the Feit-
Thompson theorem (Gonthier et al. 2013) on finite group classification; it thus provides
excellent support for finite reasoning. This brings the actual written-down mechanized
semantics very close to a mathematical language, making it more accessible to non-expert
practitioners – a central point to understand the guarantees provided by our development.

To develop our incremental graph view maintenance algorithm, we adapt the classical
delta-rule one for IVM (Gupta et al. 1993) — initially designed for non-recursive SQL
— to the RD evaluation setting.

Lastly, we prove our main result: “Let G be a base instance and Π, a RD program of
view V . If Π is satisfied by the materialized view V [G], then, for a G update ∆G, the
IVMGD engine outputs an incremental view update, ∆V [G; ∆G], such that Π is satisfied
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by V [G]∪∆V [G; ∆G]”. The proof relies on two key, newly-developed mechanized theories
for stratified and incremental satisfaction of Datalog programs.

As mentioned in (Fan et al. 2017), theoretical work on graph view maintenance is still
in its infancy and, as noted in (Beyhl and Giese 2016), most mainstream commercial
graph databases do not provide concepts for defining graph views and maintenance.2

Thus, we believe that our verified engine builds the foundations for certifying realistic
graph query and update engines, using declarative paradigms, such as Datalog subsets, as
their query language. Specifically, this certified specification could serve as a blueprint for
future graph query design and ongoing standardisation efforts (G-Core ). Additionally,
we consider that most of our verification techniques are not restricted to the Regular
Datalog setting, but are also applicable to broader logic programming contexts.

Organization: The paper is organized as follows. In Section 2, we illustrate the syntax
and semantics of RD and its Coq formalization. In Section 3, we present the IVMGD
algorithm and, in Section 4, we summarize its mechanized proof. Section 5 shows our
extracted engine’s performance on graph datasets with synthetic queries in RD. We
describe related work in Section 6 and conclude and outline perspectives in Section 7.
The Coq code for this paper can be downloaded from: https://github.com/VerDILog/
VerDILog/tree/iclp-2018.

2 Regular Datalog: Design and Formalization

In this section, we present the theory of Regular Datalog (RD) and its Coq mechanization.
The language is based on Regular Queries (RQs) (Reutter et al. 2017). In Sec. 2.1 and
Sec. 2.2, we detail our encoding of RD sytax and semantics. Sec. 2.3 illustrates potential
usages of the language, in the context of financial transaction and social network graphs.

2.1 RD Syntax

We fix the finite sets of constants (nodes) and symbols (edge labels), namely, V and Σ.

Definition 1 (Graph Database)
A graph instance G over Σ is a set of directed labelled edges, E, where E ⊆ V×Σ×V.
A path ρ of length k in G is a sequence n1

s1−→ n2 . . . nk−1
sk−→ nk. Its label is the

concatenation of edge symbols, i.e., λ(ρ) = s1 . . . sk ∈ Σ∗.

G can be seen as a database D(G) = {s(n1, n2) | (n1, s, n2) ∈ E}, by interpreting its edges
as binary relations between nodes. D(G) is also called the extensional database (EDB).

In order to model graphs in Coq, we assume a pair of finite types (finType), representing
edge labels and nodes. The graph encoding (egraph ) is, thus, a finitely supported
function (lrel ), mapping labels to their corresponding set of edges:

Variables (V Σ : finType).
Inductive L := Single | Plus.
Inductive egraph := EGraph of {set V * V}.
Inductive lrel := LRel of {ffun Σ * L -> egraph}

2 The only recent exception – which can handle named queries and updates – is Cypher for Apache
Spark https://github.com/opencypher/cypher-for-apache-spark.

https://github.com/VerDILog/VerDILog/tree/iclp-2018
https://github.com/VerDILog/VerDILog/tree/iclp-2018
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#egraph
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#lrel
https://github.com/opencypher/cypher-for-apache-spark
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t ::= n ∈ V | x ∈ V (Terms, Node ids)
A ::= s(t1, t2), where s ∈ Σ | t1 = t2 (Atoms),
L ::= A | A+ (Literals)
B ::= L1 ∧ . . . ∧ Ln (Conjunctive Body)
D ::= B1 ∨ . . . ∨Bn (Disjunctive Body)
C ::= (t1, t2)← D (Clause)
Π ::= Σ→ {C1, . . . , Cn} (Program)

Fig. 1: Regular Datalog Grammar

Note that, for each label, our graph representation maintains both the regular set of edges
and its transitive closure, denoted by the L type. We explain its usage in later sections.

Definition 2 (Regular Datalog (RD))
Regular Datalog is the binary — all atoms have arity 2 — Datalog fragment, with recur-
sion restricted to transitive closure and internalized as labels on literals.

There are several approaches to making the representation of logic programs amenable
to efficient mechanical reasoning. We have found that indexing completed clauses by head
symbols works well, as the corresponding canonical disjunctive definitions, from the clause
map, become readily accessible in proofs. Fig. 1 provides the formal syntax for Regular
Datalog programs. A program is a map from each symbol in Σ, to a single clause head
and normalized disjunctive body. The normalized form is obtained by first transforming
all clauses to a common head representation and then grouping their respective bodies.
This classical process is similar to the completion procedure in (Clark 1977). For example,
the program: s(a, b). s(z, y) ← p(x, y), q+(z, x) is normalized as s(x, y) ← (a = x ∧ b =

y)∨ (p(z, y)∧ q+(x, z)) and represented by a function from s to the head and disjunctive
body. We encode RD primitives in Coq as records:

Record atom := Atom { syma : Σ; arga : T * T }.
Record lit := Lit { tagl : L; atoml: atom }.
Record cbody := CBody { litb : seq lit }.
Record clause := Clause { headc: T * T; bodyc : seq cbody }.
Inductive program := Program of {ffun Σ -> clause T Σ L}.

A key feature of this formalization is that it is parametric in the variables Σ,T,L. This
design choice allows sharing the representation for ground and non-ground clauses, and is
central to the incrementality proof, in which we will decorate literals with customs labels.
Also, note our naming convention for Coq constants, whereby the last letter denotes the
type. For example, syma is the function that returns the symbol for an atom. syml
does the same for a literal. Similarly, satisfaction conditions will be named sTa, sTl, etc.,
depending on the argument type.

Definition 3 (Regular Queries (RQ))
A regular query Ω over G is a RD program Π, together with a distinguished query clause,
whose head is the top-level view (V ) and whose body is a conjunction of Π literals.

2.2 RD Semantics

The semantics of RD programs follows a standard term-model definition. As noted in
Sec. 2.1, for optimization purposes, interpretations G are modeled as indexed relations

https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#syma
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#syml
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(Σ×{∅,+})→ P(V×V), containing labeled graphs and their transitive closure. Then,
program satisfaction builds on the below definition of satisfaction for (ground) literals:

Definition 4 (Literal Satisfaction)
The satisfaction G |= L of a ground literal L = sl(n1, n2) is defined as:

G |= sl(n1, n2) ⇐⇒ (n1, n2) ∈ G(s, l)

Note that, in order for this definition to be correct, G must be well-formed, that is to
say, the information stored in G(s,+) has to correspond to the actual transitive closure
of G(s, ∅). We can state this condition as:

wfG(G) ⇐⇒ ∀s, is_closure(G(s, ∅),G(s,+))

is_closure(gs, gp) ⇐⇒ ∀(n1, n2) ∈ gp,∃ρ ∈ V+, path(gs, n1, ρ) ∧ last(ρ) = n2

path(g, n1, ρ) ⇐⇒ ∀i ∈ {1 . . . |ρ|}, (ni, ni+1) ∈ g

where the node list ρ ∈ V+ represents the path without including the initial node n1.

Note that we compile the surface syntax s−(X,Y ) to s(Y,X) and s∗(X,Y ) to X =

Y ∨ s+(X,Y ). The Coq encoding sTl gl of G |= L is a direct transcription of Def. 4,
where we henceforth omit the G parameter, as is it assumed to be implicit:
Definition sTl gl := G (syml gl, tagl gl) (argl gl).1 (argl gl).2.

Definition 5 (Clause Satisfaction)
A RD clause with disjunctive body D ≡ (L1,1 ∧ . . . ∧ L1,n) ∨ . . . ∨ (Lm,1 ∧ . . . ∧ Lm,n)

and head symbol s is satisfied by G iff, for all groundings η, whenever the corresponding
instantiation of a body in D is satisfied, then the head is also satisfied. Formally:

G |=s (t1, t2)← (L1,1 ∧ . . . ∧ L1,n) ∨ . . . ∨ (Lm,1 ∧ . . . ∧ Lm,n) ⇐⇒
∀η,

∨
i=1..m(

∧
j=1..n G |= η(Li,j))⇒ η(s(t1, t2))

The Coq encoding of Def. 5 relies on the definition of an instantiation with a grounding
η. We model η as a function g, of type gr, mapping from V (the ordinal type ’I_n) to V.
This extends straightforwardly from terms to clauses.
Definition gr n := {ffun ’I_n -> V}.
Definition sTb b := all sTl (litb b).
Definition sTc n s c := [forall g : gr n, let gc := grc g c in

has sTb (bodyc gc) ==> G (s,Single) (headc gc)].

Note that has and all are the counterparts of the corresponding logical operations,
extended to lists. We can define a model for an RD program as:

Definition 6 (Program Satisfaction)
A well-formed interpretation G is a model for a program Π with respect to Σ iff G satisfies
all of the Π clauses indexed by symbols in Σ: G |=Σ Π ⇐⇒ ∀ s ∈ Σ,G |=s Π(s).

The Coq encoding is straightforward:
Definition sTp (p : program n) := [forall s, sTc n s (p s)].

The formalized definition of satisfaction in Def. 6 is crucial to understanding the main
soundness theorem in Sec. 4. It establishes that the output of the mechanized engine is
a model of the input program, i.e., that it complies to the satisfaction specification of
Def. 6 above. Hence, if this definition were to be incorrect — for example, by making
sTp p = true – the theorem would become meaningless.

https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#sTl


6 Bonifati and Dumbrava and Gallego Arias

X Y

pstransfer+

pstransfer+

(a) Potential Fraud

X Y

Z

c c c c

m
+

m
+

m
+

m
+

a

a

t

(b) Secured Transfer
Fig. 2: Fraud Detection

2.3 RD Examples

We write (r + s)(x, y) for r(x, y) ∨ s(x, y) and (r · s)(x, y) for r(x, z) ∧ s(z, y).

Example 1 (Fraud Detection)
Consider a financial transaction network, in which entities can connect and transfer
money to each other, as well asmonitor and accredit each other. A potential fraud/suspect
transaction, e.g., money laundering, is a cycle of pstransfer+, i.e., potentially secured
transfer chains (Fig. 2). A potentially secured transfer (pstransfer) is either a transfer
(t) or a secured transfer. A secured transfer from X to Y occurs if Y is accredited (a)
by X and if X secures a connection and transfers (t) to Y . X secures a connection to
Y (blue subgraph in Fig. 2), if it connects (c) via a chain of intermediaries that are
centrally monitored (m+) by an accredited (a) entity Z. Potentially fraudulent (suspect)
transactions can be computed with the RD program:

suspect(X,Y ) ← pstransfer+(X,Y ),pstransfer+(Y,X)
pstransfer(X,Y )← (transfer + stransfer)(X,Y )
stransfer(X,Y ) ← accredited(Y,X), secures(X,Y ), transfers(X,Y )
secures(X,Y ) ← (connected · cmonitored+ · connected)(X,Y )
cmonitored(X,Y )← connected(X,Y ),monitors+(Z,X),monitors+(Z, Y ),accredited(Z,X)

Example 2 (Brand Reach)
Consider a platform, such as Twitter, with asymmetric connections and, thus, an under-
lying directed graph topology. Let Z be a brand (central node in Fig. 3) that wants to
determine its reach, i.e. potential clients pairs (empty nodes in Fig. 3). A pair of users
(X, Y ) are potential clients, if both were exposed to Z. We say X is exposed to Z, if X
endorses Z or if it is connected, through a potential chain of followers, to an influencer
that endorses Z. We say a user endorses a brand, if it likes and advertises the brand.

reach(X,Y ) ← (pclients+ pclients−)(X,Y )
pclients(X,Y ) ← exposed(X,Z), exposed(Y,Z)
exposed(X,Z) ← (follows∗ · endorses)(X,Z)
endorses(X,Z) ← likes(X,Z), advertises+(X,Z)
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e
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Fig. 3: Brand Reach

3 Regular Datalog Evaluation: A Mechanized IVMGD-aware Engine

We now describe the design of the mechanized IVMGD engine, which is based on the non-
recursive bottom-up evaluation of RD programs. We first describe the top-level interface



Certified Graph View Maintenance with Regular Datalog 7

of the engine and the main execution loop. Then, in Sec. 3.2, we outline the building block
of non-incremental clause evaluation; in Sec. 3.3, we describe the delta-join incremental
clause evaluation algorithm. Finally, Sec. 3.4 explains the implementation of the delta-
join heuristic in the actual engine.

3.1 Top-level Interface and Overview

The incremental RD evaluation engine is designed around bottom-up non-recursive pro-
gram model computation. This is indeed adequate for graph and regular queries as these
internalize recursion using closure operations — usually computed by specialized tools
optimized for efficiency. While our engine builds on ideas from (Benzaken et al. 2017),
we have considerably redesigned all its core components: syntax is now based on a new
parametric and normalized representation, and the core evaluation infrastructure and
theory have been redesigned to account for stratified, single-pass, non-recursive incre-
mental model computation. The formalization workload is higher in our setting, as we
cannot rely on the usual fixpoint theorems, but must define a custom theory for modular
program satisfaction.

A key problem to solve when reasoning about incremental computation is the repre-
sentation of changes. Indeed, a formal definition of updates can be delicate to state, as
it must account for potentially overlapping additions and removals, order issues, etc. To
this end, we define canonical graph updates, reminiscent of, but weaker than “change
structures” — defined in (Cai et al. 2014):

Definition 7 (Graph Updates)
An update ∆ ≡ (∆+,∆−) is a pair of disjoint graphs, respectively representing insertions
and deletions.

In Coq, updates are encoded as a record edelta packing the graphs and a disjointedness
proof; this allows us to consider only well-formed updates. Note that addd and deld are
the record fields representing ∆+ and ∆−:

Definition wf_edelta addd deld := [forall s, [disjoint addd s & deld s]].
Structure edelta := { addd : lrel; deld : lrel; _ : wf_edelta addd deld }.

The core operations for updates are their application to a base graph, and themodification
of the changes pertaining to a particular symbol:

Definition 8 (Update application and modification)

G :+: ∆ ≡ G \∆− ∪∆+ (application)

∆{s→ (g+, g−)} ≡ (∆+{s→ g+},∆−{s→ g− \ g+}) (modification)

Armed with these definitions, plus those corresponding to the RD syntax and seman-
tics from Sec. 2, we can now define the top-level interface to our engine. A particular
challenge that arose during the development of the interface was allowing repeated, in-
cremental ∆-aware calls. Achieving composition proved to be quite challenging, as the
soundness invariant must be preserved along calls. In total, six parameters had to be
used. The static input parameters are: a program Π, a graph G, and a set of symbols, or
support supp, which indicates the validity of a subset of G, and thus what information

https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#edelta
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the incremental engine may not recompute. Indeed, a precondition of the engine is that
the input graph must be a model of Π up to supp, that is to say, G |=supp Π. Note that in
the database literature, Σ is usually seen as a disjoint set pair, (ΣE ,ΣI), corresponding
to the extensional and intensional parts of a program. For our engine, this distinction is
“dynamic”, in the sense that an already-processed strata-level is seen as “extensional”, or
immutable, for the rest of the execution. Thus, typical cases for supp will be supp ≡ ΣE ,
when the engine has been never been run before, or supp ≡ Σ, where G is the output of
a previous run, and thus the consequences for all clauses have been computed.

Whereas the program, graph, and support are fixed during the execution of the engine,
the latter will take an additional three dynamic parameters, representing the current
execution state. These are: ∆, the current update, which is modified at each iteration,
and Σ�,Σ�, which respectively represent the set of processed symbols/stratum and the
“todo” list. We write ∆O = TΠ

G,supp(Σ�,Σ�,∆) (written fwd_program in Coq) for a call
to the engine returning an update ∆O. We prove that the engine implements a program
consequence algorithm, thus satisfying G :+: ∆O |=Σ Π. Assuming a clause consequence
operator TΠ,s

G,supp(∆) (or fwd_or_clause ), the below Coq implementation of the engine
iterates over the unprocessed symbol list Σ� and, for each of its symbols s to be inspected,
it computes a new update ∆′. To this end, it modifies ∆ with the consequences for the
clause indexed by s and computes the corresponding closure of s. The algorithm then
makes the recursive call, adding s and s+ to the set of processed symbols.

Fixpoint fwd_program Π G supp Δ Σ� Σ� : edelta := match Σ� with
| [::] => Δ
| [:: s & ss] =>

let (arg, body) := Π s in
let Δ’ := fwd_or_clause G supp Δ s arg body in
let Δ’ := compute_closures G Δ’ s in
fwd_program Π G supp Δ’ (s ∪ s+ ∪ Σ�) ss

Note that the compute_closures function above is an abstraction over an arbitrary algo-
rithm for closure computation, that we assume correct. For instance, we hope to use the
verified implementation of Tarjan’s algorithm from (Cohen and Théry 2017).

As can be observed from the above code, the core part of the algorithm is concentrated
in clause evaluation. Hence, we now proceed to presenting base and incremental for
clause evaluation. Note that the base — or non-incremental — method is still needed
since in some cases, incremental evaluation is either not possible or not sensible, as full
re-computation may be faster.

3.2 The Base Engine for RD Evaluation

The base, or non-incremental, clause evaluation implements a forward-chaining conse-
quence operator, using a matching algorithm M ; this takes as input atoms, literals, or
clause bodies and returns a set of substitutions, as explained in (Abiteboul et al. 1995).
Basic literal matching, ML

G (l) (match_lit in Coq) takes a literal and returns the set of
all substitutions ss that satisfy it, so that ∀σ ∈ ss, G |= σ(l). Literal matching is extended
to body matching in an straightforward way, with MB

G (B) (match_body ) traversing B
and accumulating the set of substitutions obtained from the individual matching. The
algorithm we consider corresponds to computing nested-loop join and we implement it

https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#fwd_program
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#fwd_or_clause
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#match_lit_all
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#match_body
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in a functional style, using a monadic fold. Substitutions are then accumulated for each
disjunctive clause and grounded heads are added to the interpretation:

Definition 9 (Clausal Consequence Operator)
Given a RD clause Π(s) ≡ (t1, t2) ←

∨
i=1..nBi, the base clausal consequence operator

TΠ,s(G) computes the set of facts that can be inferred from G:

TΠ,s(G) ≡ {σ(t1, t2) | σ ∈
⋃

i=1..n

MB
G (Bi)}.

The Coq version is almost a direct transcription:

Definition fwd_or_clause_base G Δ s c : edelta := let GΔ := edb :+: Δ in
let T = [set gr σ c.headc | σ in \bigcup_(b <- c.bodyc) match_body G b ] in
Δ{s → GΔ s 	 T}

in the first line, we use a set comprehension to build the set of ground facts corresponding
to the consequence operator. Note that \bigcup_(x ← X) is the Coq notation for

⋃
x∈X

and that gr σ head denotes the application of the substitution σ to the input head. The
second line updates the resulting ∆, using the operator for modification (see Def. 8) and
that for graph difference (	). We remark that this base operator will re-derive all the
facts, as it does not make use of incrementality information.

3.3 Incremental Delta-Join Maintenance

Given a graph G, a program Π, and updates ∆, the engine in Sec. 3.2 non-incrementally
maintains the top-level view of Π. However, the engine is unable to reuse and adjust
previously computed maintenance information. This is makes it especially inefficient when
few nodes are added to an otherwise high-cardinality graph.

To remedy this situation, we would like to extend our algorithm so that it can take
into account the information of previously computed models. The key idea is to restrict
matching to graph updates. For example, let V be a materialized view, defined as a simple
join, in our case, as the path over two base edges, r and s, i.e. V (X,Y )← r(X,Z), s(Z, Y ).
We abbreviate this as V = r ./ s. Given base deltas, r∆ and s∆, we can compute the
view delta as ∆V = (r∆ ./ s)∪ (r ./ s∆)∪ (r∆ ./ s∆), or, after factoring, as V ∆ = (r∆ ./

s)∪ (rν ./ s∆), where rν = r∪ r∆. Hence, V ∆ = V ∆
1 ∪V ∆

2 , with V ∆
1 and V ∆

2 computable
via the delta clauses: δ1 : V ∆

1 ← r∆(X,Z), s∆(Z, Y ) and δ2 : V ∆
2 ← rν(X,Z), s∆(Z, Y ).

Generalizing, for a database G and a purely additive update ∆, we can determine the
view delta V ∆[G; ∆], i.e., the set of facts such that V [G :+: ∆] = V [G] ∪ V ∆[G; ∆].

Definition 10 (Delta Program)
Let V be a view defined by V ← L1, . . . , Ln. The delta program δ(V ) is {δi | i ∈ [1, n]}.
Each delta clause δi has the form V ← L1, . . . , Li−1, L

∆
i , L

ν
i+1, . . . , L

ν
n, where: Lνj marks

that we match Lj against atoms in G ∪∆G with the same symbol as Lj and L∆
j marks

that we match Lj against atoms in ∆G with the same symbol as Lj .

We revisit Example 1 to illustrate the computation of incremental view updates.

https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#fwd_or_clause
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Example 3 (Detectable Frauds)
Consider the transaction configuration in Fig. 4a, marking suspect transactions. A sus-
pect transaction between X and Y is detectable, if there exists an entity that monitors
both X and Y . We can compute all detectable suspect transactions with the RQ:

detectable(X,Y ) ← suspect(X,Y ),monitors(Z,X),monitors(Z, Y )

These are detectable = {(V6, V0), (V3, V0))}. When updating the previous graph to the one
in Figure 4b, we have: detectableν = {(V6, V0), (V3, V0), (V0,V2), (V2,V0), (V0,V5)}.
The delta update detectable∆ = {(V0,V2), (V2,V0), (V0,V5)} can be incrementally
computed with the program Π∆ = δ1 ∪ δ2 ∪ δ3, as follows: δ1 = ∅, δ2 = {(V2,V0)}, and
δ3 = {(V0,V2), (V0,V5)}. Indeed, detectable∆ = detectableν \ detectable.

V0

V1 V2

V3

V4V5

V6

mm s s
s s

s s m

m

(a) Initial Graph

V0

V1 V2

V3

V4V5

V6

mm s s

s s
s s m

m

m

m

s

(b) Updated Graph

δ1 : detectable∆(X,Y ) ← suspect∆(X,Y ),monitors(Z,X),monitors(Z, Y )
δ2 : detectable∆(X,Y ) ← suspectν(X,Y ),monitors∆(Z,X),monitors(Z, Y )
δ3 : detectable∆(X,Y ) ← suspectν(X,Y ),monitorsν(Z,X),monitors∆(Z, Y )

(c) Delta Program for Detectable Frauds
Fig. 4: Detectable Frauds

3.4 The ∆-Engine for RD Evaluation and Incremental View Maintenance

We now present the incremental version of the clause evaluation operator defined in
Sec. 3.2. We follow Sec. 3.3 and modify base matching to take into account ∆-clauses and
programs. Thus, for each body to be processed incrementally, we generate a body mask,
placing a tag — {B,D,F} — on each body literal, which indicates whether matching
should proceed against the base interpretation, against the update, or against both. The
incremental atom matching operator MA,m

G,∆ (match_delta_atoms ) is defined as:

MA,m
G,∆ (a) = (if m ∈ {B,F} then MA

G (a) else ∅) ∪ (if m ∈ {D,F} then MA
∆(a) else ∅)

thus, base matching is called with the instance corresponding to the atom’s tag.
Body ∆-matching, MB

G,∆ (match_delta_body ) takes as an input a body mask, that
is to say, a list of tag-annotated literals. A function body_mask generates the set B∆

of “decorated” literals. Generic syntax is extremely helpful here to avoid duplication and
to help state mask invariants in an elegant way. body_mask follows the diagonal factoring
described below, where each row corresponds to an element of B∆:

L1
D L2

F . . . Ln−1
F Ln

F

L1
B L2

D . . . Ln−1
F Ln

F

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L1
B L2

B . . . Ln−1
B Ln

D



https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#match_delta_atoms
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#match_delta_body
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#body_mask
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The last piece to complete the incremental engine is the top-level clausal maintenance
operator. This part of the engine is significantly more complex than its base counterpart,
as it must take into account which incrementality heuristics to apply:

Definition 11 (Incremental Clausal Maintenance Operator)
The TΠ,s

G,supp(∆) operator for incremental clausal maintenance (fwd_or_clause_delta )
acts in two cases. If s /∈ supp, or ∆ contains deletions for any of the literals in the
body of Π(s), it uses the base operator TΠ,s(G :+: ∆) — as we either cannot reuse the
previous model or cannot support deletions through our incremental strategy. Otherwise,
the operator will generate B∆ = body_mask(B), for each of the bodies B, and return⋃
Bm∈B∆

MB
G,∆(Bm).

4 Regular Datalog Evaluation: Certified Soundness

We now summarize the main technical points of the mechanized proof developed in Coq.
A key to effective mechanized proof development is the definition of the proper high-level
concepts and theories; unfortunately we lack the space here to describe all the definitions
used in our mechanized development in detail, so we highlight the main result, that proves
the soundness of the engine, and we briefly survey the two core theories for stratification
and incrementality. A few auxiliary results are described in Appendix A.

4.1 Stratification Conditions

Definition 12 (Stratified Programs)
A key precondition for the soundness of our engine is program stratification. A program
Π is stratified, if there exists a mapping σ : Σ→ [1, n] such that, for all s in Σ, the Π(s)

clause (t1, t2) ← B satisfies: max
r∈sym(B)

σ(r) < σ(s), where sym returns the set of symbols

occurring in B. We then call σ a stratification of Π. In Coq, we encode stratification using
a list of symbols and a predicate is_strata that recursively checks each uninspected
symbol against an accumulator. This choice of representation is practical as it will guide
model computation in the engine.

Definition 13 (Well-formed Program Slices)
In order to reason about stratified satisfaction, we need a strengthened notion of well-
formedness stating that a program is closed w.r.t. a symbol set. A symbol set Σ is a
well-formed slice of Π if, for all s in Σ, sym(Π(s)) ⊆ Σ.

We establish that the engine operates over well-formed slices, which allows us to isolate
reasoning about the current iteration, see the appendix for more technical details.

4.2 IGVM-Engine Characterization Result

Let Π be a safe RD program, Σ� and Σ�, symbol sets corresponding the “extensional”
(already processed) and “intensional” (to be processed) strata, G a graph instance, and
∆ an update. Then we establish:

https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#fwd_or_clause_delta
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#is_strata_rec
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Theorem 1 (IGVM-Engine Soundness)
Assume (H1) G is a model of the program for supp, G |=supp Π, (H2) Σ� is a well-formed
slice of Π, (H3) ∆ only contains information up to the processed strata, sym(∆) ⊆ Σ�,
(H4) Σ�,Σ� are a stratification of Π, and (H5) the currently model is sound, G :+:

∆ |=Σ�
Π then, the engine — implementing the maintenance operator TΠ

G,supp(Σ�,Σ�,∆)

— outputs an update ∆O, such that G :+: ∆O |=Σ Π holds.

Proof
The proof is a consequence of the soundness of the incremental clausal maintenance
operator TΠ,s

G,supp (Lem. 5). We proceed by induction on Σ�. The base case follows from
Σ� = Σ, as G :+: ∆ |=Σ�

Π holds by assumption. For the inductive case, let Σ� ≡
{s} ∪ Σ′� and C be the clause Π(s). Given a set of symbols S and an update ∆O, such
that G :+: ∆O |=S Π, the induction hypothesis (IH) ensures that G :+: ∆O |=S∪Σ′�

Π.
Now, we need to prove that G :+: TΠ

G,supp({s} ∪ Σ�,Σ
′
�, T

Π,s
G,supp(∆)) |=Σ�∪{s}∪Σ′�

Π.
The conclusion results from instantiating (IH) with S = {s}∪Σ� and ∆O = TΠ,s

G,supp(∆).
To this end, we need to first establish that G :+: TΠ,s

G,supp(∆) |={s}∪Σ�
Π. This ensues from

clause maintenance soundness and from modularity of model satisfaction.
The rest of preconditions needed by IH hold, as follows. From H4, since ({s}∪Σ′�)∪Σ�

stratifies Π, we have that Σ′� ∪ {s} ∪ Σ� also stratifies Π. Moreover, s /∈ Σ�, and
sym(C) ⊆ Σ�. From H2, we have that Σ� is a well-formed slice of Π, which, together
with sym(C) ⊆ Σ�, proves {s} ∪ Σ� is a well-formed slice. From H3, we know that
sym(∆) ⊆ Σ�. The auxiliary supp∆_fwd_or_clause lemma ensures that sym(∆O) ⊆
{s} ∪ sym(∆); it then follows, by transitivity, that sym(∆O) ⊆ {s} ∪Σ�. The Coq proof
is about 25 lines long and comparable to this text-based version in size. The first line sets
up the induction, with the rest of the proof consisting in the instantiation of the proper
lemmas. The statement of the theorem itself takes 7 lines for the preconditions (1 per
line) plus an additional line for the conclusion: ssTp (edb :+: ∆O) (Σ ∪ Σ�) Π.

5 Experimental Analysis

In this section, we present the experimental validation of our certified engine on realistic
graph databases. Our empirical analysis aims to confirm that incremental view main-
tenance (IVM) is more beneficial than full view materialization (FVM), corresponding
to recomputing the view from scratch, at each modification of the underlying data. The
comparison has been established by computing the runtimes on the same engine.

As it is common practice in the verification community, our extracted engine has been
obtained through the mechanism of program extraction (Letouzey 2008), starting from
our underlying Coq formalization. Assuming that Coq extraction is semantics preserving,
also the underlying premise of our engine, the correctness of the obtained OCaml engine is
readily guaranteed by the Coq specification we provided. This is a reasonable assumption,
made by past verified tools, such as (Leroy 2009).

Our tests have been performed on a Intel Core i7 vPro G6 laptop, with 16GB RAM,
running Ubuntu 17.10 64 bit, and OCaml 4.06.0.

For our experimental analysis, we generated synthetic datasets and query workloads
using gMark (Bagan et al. 2017), which allowed us to encode, two state-of-the-art bench-
marks: WD, the Waterloo SPARQL Diversity Test Suite (Wat-Div) (Aluç et al. 2014),

https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#fwd_or_clause
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and SNB, the LDBC Social Network Benchmark (Erling et al. 2015). These graphs –
henceforth denoted by G – are diverse in terms of their density (increasing from SNB
to WD) and of their in-degree and out-degree distributions (Bagan et al. 2017). They
represent two extreme cases to be considered in benchmarking graph database engines.
Each schema size |supp(G)| is fixed at 82 and 27 predicates, for WD, respectively, SNB.

Based on this, we generate graph instances and companion query workloads, such that
|G| = 1K nodes and |W| = 10 queries (queries represent views in our setting). Note
that the gMark-generated queries are UC2RPQs – a notable subset of Regular Queries
(RQs) 3. This should not be considered a restriction, as these queries already let us
stress (for view maintenance) the navigational part of our engine and use the recursion
in the form of Kleene-star – a bottleneck in many practical graph query engines (such as
Neo4J) (Bagan et al. 2017).

In order to build the deltas necessary for incremental view maintenance, we sam-
pled the original graph instance G by support size, i.e., by considering arbitrary sub-
graphs, whose number of symbols represent certain fractions of those in G. We call this
method symbol-based sampling. Concretely, we retained a varying percentage ρsupp ∈
{0.05, 0.1, 0.15, 0.2, 0.25} from supp(G). Next, we took all corresponding instance facts
with symbols in ρsupp to be our bulk insertions, ∆+, where

|supp(∆+)|
|supp(G)| = ρsupp. These

bulk insertions correspond to adding the subgraphs of G, whose sets of symbols, sampled
from supp(G), reflect the ρsupp ratio. We consider G′ = G \∆+ to be our base instances,
i.e., the initial sets of facts to be processed by our engine.

Since we relied on symbol-based sampling, the actual sizes of deltas (|∆+|) vary de-
pending on the content of G. We denote the percentage capturing the relative sizes of
the bulk inserts with respect to those of the base instances, as ρ = |∆+|

|G′| ∗ 100 and report
its actual values in the second column of each of the Tables 1 and 2.

Next, we evaluated each query in a workload W over G′ and materialized the resulting
views. Upon updating G′ with ∆+, we compared the average timings for incremental view
maintenance (IVM) and full view recomputation (FVM), over all view materializations,
in each of the workloads. We summarize the results in Table 1 and Table 2.

We observe that the absolute time gain (ms) of our engine running IVM with respect to
it running FVM, i.e., Time Gain = FVM−IVM, is always positive and that the relative
ratio gain (%), i.e., Ratio Gain = 100 − 100∗IVM

FVM , is always better for sparser graphs.
As expected, our engine works best on bulk updates involving very small individual
symbol updates, as these types of updates are targeted by delta join matching. Indeed,
the complexity of our delta join depends on how many matchings have to be computed.
Note that the lower the sparsity of the underlying graph, the less matches we have
and the faster our engine is. This explains why the runtimes over SNB (less dense) are
comparatively much better than the ones over WD (very dense).

3 To the best of our knowledge, there currently is no practical benchmark capable of generating query
workloads over the full fragment of Regular Datalog studied in this paper. The generation of graph
query workloads for UC2RPQs has indeed been proved to be NP-complete (Bagan et al. 2017).
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ρsupp ρ FVM IVM Time Gain Ratio Gain
0.05 1.4% 558.7 484.75 73.95 13.23%
0.1 3.67% 561.89 472.7 89.19 15.87%
0.15 17.93% 562.67 475.96 86.71 15.41%
0.2 9.7% 562.13 476.4 85.73 15.25%
0.25 18.26% 563.4 482.64 80.76 14.33%

Table 1: Avg. WWD Runtimes (ms) for Varying Support Update Size (ρsupp)

ρsupp ρ FVM IVM Time Gain Ratio Gain
0.05 10.89% 18.75 10.88 7.87 41.97%
0.1 19.3% 17.77 10.55 7.22 40.63%
0.15 10.77% 17.55 11.68 5.82 33.25%
0.2 26.09% 17.17 11.71 5.46 31.79%
0.25 28.34% 14.71 11 3.71 25.22%

Table 2: Avg. WSNB Runtimes (ms) for Varying Support Update Size (ρsupp)

6 Related Work

To the best of our knowledge, no verified graph query or IVM engine exists, which we both
design and mechanize in this paper, using Regular Datalog. Bounded 4 incremental graph
computation has been addressed in (Fan et al. 2017) and shown beyond reach already with
Regular Path Queries (RPQs), a restricted navigational RQ subset. The paper’s idea is to
incrementalize the bulk RPQ evaluation, by leveraging NFAs and auxiliary structures on
large-scale graphs. We focus instead on the verification of forward-chaining-based IVM
for the more expressive RQ graph query fragment. Although recent work has addressed
certifying SQL semantics (Chu et al. 2017), by proving the semantic preservation of
rewriting rules in SQL query optimizers for relational data, such a mechanization is not
applicable to the graph-data setting, where the key data model component is no longer a
tuple, but a path (connecting pairs of graph nodes). To this end, our Coq development is
based on the standard connectivity notion from the Mathematical Components library.

Similarly, verified frameworks for the relational data model and nested relational al-
gebra query compilers (Benzaken et al. 2014; Auerbach et al. 2017) are fairly orthogonal
to our work. The optimization issues around RQ evaluation have never been formally
addressed in the database literature and, even for the simple UC2RPQ class, current
graph database engines perform poorly (see (Bagan et al. 2017)). Even though our goal
is not to provide a RQ optimizer, we touch base with some simple optimizations. These
are clause normalization, a lightweight indexing mechanism (leveraging graph edges in
the definition of supports), and our incremental supported satisfaction definition. This
leads to a more elegant framework for reasoning about incremental properties.

Despite RD not being fully recursive, our engine handles stratified evaluation in a Dat-
alog style. Focusing on linear recursion (Jagadish et al. 1987) is indeed sufficient for our
purposes, as it allows us to build a RQ-specific engine that inherently handles transitive
closures. By limiting recursion, we can express graph recursive queries (RQs) that are ef-

4 The theory of bounded computational complexity for dynamic graph problems (Ramalingam and Reps
1996) considers the cost of incremental computation as a polynomial function of the input and output
changes.
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ficiency prone, being highly parallelizable (Greenlaw et al. 1995). The work in (Benzaken
et al. 2017) presents the SSReflect certification of a stratified static Datalog toy engine,
implementing the bottom-up heuristic. While it supports Datalog’s full recursion, this is
actually a bottleneck even for non-verified graph query engines (Bagan et al. 2017); also,
it does not handle graph updates and IVM.

Finally, efficient Datalog engines have been designed in the last two decades, such as
DLV2 (Alviano et al. 2017) and LogicBlox (Aref et al. 2015). Our proposed methodology
can be implemented on top of such advanced engines, to combine their efficiency with
our certified mechanization. We hope that our work paves the way for a future inter-
play of the various optimized heuristics and implemented semantics for Datalog, with
its comprehensively verified evaluation. While the Coq extraction mechanism is mature
and well-tested, we plan to integrate the recent advances on the trusted extraction and
compilation (Anand et al. 2017; Mullen et al. 2018) of Coq code into our framework.

7 Conclusion and Perspectives

We propose a Coq formal library for certified incremental graph query evaluation and
view maintenance in the Regular Datalog fragment. It consists of 1062 lines of defini-
tions, specifying our mechanized theory, and 734 lines of proofs, establishing the central
soundness guarantee. Our mechanized specification builds on a library fine-tuned for
the computer-aided theorem proving of finite-set theory results. We take advantage from
this, by giving a high-level, mathematical representation of core engine components. This
leads to composable lemmas that boil down to set theoretic statements and, ultimately,
to a condensed development, avoiding the proof-complexity explosion characteristic of
formal verification efforts. Moreover, we managed to extract a runnable engine exhibit-
ing performance gains versus the non-incremental approach on realistic graph database
benchmarks. Our foundational approach shows it is promising to combine logic program-
ming and proof assistants, such as Coq, to give certified specifications for both a uniform
graph query language and its evaluation. We plan to mechanize more optimized heuris-
tics, particularly for efficiently handling joins, and to integrate custom algorithms, such
as Tarjan, for transitive closure computation.

Acknowledgments: We would like to thank the anonymous referees and Pierre Jouvelot
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Appendix A Notations and Proofs Highlights

The main notations used in the paper are summarized in Table. A 1. We describe in some
more detail the theories used in our formal proof, in particular we summarize the main
lemma for modular model reasoning as well as the intermediate soundness results. The
reader is encouraged to look at the development directly, whose definitions are intended
to be readable and understood even by non-experts.

In the rest of the section, G is assumed to be a labelled graph, g a non-labelled graph
(set of edges), ∆ an update, Π a program, C a clause, Σ, Σ�, Σ� set of symbols, and s
a symbol.

A.1 Formal Theory for Modular Satisfaction

Lemma 1 (Modularity of Clause Satisfaction (sTc_mod )) Assume s /∈ sym(∆) and also
sym(C) ∩ sym(∆) = ∅. Then, G :+: ∆ |=s C ⇐⇒ G |=s C.

http://graphql.org/
http://tinkerpop.apache.org/
https://neo4j.com/
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix
https://www.w3.org/TR/sparql11-query/
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#sTc_mod
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Σ,V,V , Symbol (Signature), Variable, and Constant (Domain) Sets
σ, σ, η , Substitution, Substitution Extension, and Closed Substitution (Grounding)

Σ�,Σ� , Already and To-Be Processed Stratas
Π,G,∆,∆+,∆− , RD Program, Graph Instance, Batch Updates, Insertions, and Deletions

∆+(s),∆−(s) , Batch Insertions and Deletions for symbol s
V, V [G] , Top-Level RD Program View, View Materialization over Base Instance G

V [G :+: ∆] , View Re-Materialization over Updated Instance G :+: ∆

∆V [G :+: ∆] , Incremental View Update
TΠ
G,supp(Σ�,Σ�,∆) , Program Maintenance Operator (fwd_program)

TΠ,s(G) , Base Clausal Maintenance Operator (fwd_or_clause_base)
TΠ,s
G,supp(∆) , Incremental Clausal Maintenance Operator (fwd_or_clause_delta)

MB
G ,M

B
G,∆ , Base and Incremental Body Matching (match_body, match_delta_body)

MA
G ,M

A,m
G,∆ , Base and Incremental Atom Matching (match_atom, match_delta_atom)

Table A 1: Notation Table

Lemma 2 (Modularity of Program Satisfaction (ssTp_mod )) Assume Σ a well-formed
slice of Π and s /∈ Σ. Let ∆′ = (∆′+,∆

′
−), where ∆′+ = ∆+ ∪ {s(t1, t2) | (t1, t2) ∈ g} and

∆′− = ∆− \ {s(t1, t2) | (t1, t2) ∈ g}. Then,

G :+: ∆′ |={s}∪Σ Π ⇐⇒ G :+: ∆′ |=s Π(s) ∧ G :+: ∆ |=Σ Π

A.2 Formal Theory for Clause-level Operators

Lemma 3 (Soundness of Base Clausal Maintenance (fwd_or_clause_baseP )) Assume
(H1) Π(s) is a safe clause; (H2) Σ� is complete for closures; (H3) Σ� is a well-formed
slice of Π; (H4) s /∈ Σ�; (H) sym(Π(s)) ⊆ Σ�, and G |=Σ�

Π. Then G :+: ∆s |={s}∪Σ�
Π,

where ∆s = TΠ,s(G :+: ∆).

Lemma 4 (Soundness of Incr. Clausal Maintenance (fwd_or_clause_deltaP )) Assume
(H1) Π(s) is a safe clause; (H2) Σ� is complete for closures; (H3) Σ� is a well-formed
slice of Π; (H4) s /∈ Σ�; (H5) sym(Π(s)) ⊆ Σ�; (H6) G :+: ∆ |=Σ�

Π; (H7) sym(∆) ⊆
Σ�. Also assume the incrementality conditions: (H8) G |=Σ Π; (H9) s ∈ Σ; (H10)
sym(Π(s)) ∩ sym(∆−). Then, G :+: ∆s |={s}∪Σ�

Π, where ∆s = TΠ,s
G (∆). This oper-

ator is called by the supported maintenance operator when incrementality can be used.

Lemma 5 (Soundness of Supported Clausal Maintenance (fwd_or_clauseP )) Assume
(H1) Π(s) is a safe clause, (H2) G |=Σ Π; (H3) Σ� is well-formed wrt closures; (H4) Σ�

is a well-formed slice of Π; (H5) s /∈ Σ�; (H6) sym(Π(s)) ⊆ Σ�; (H7) sym(∆) ⊆ Σ�. If
G :+: ∆ |=Σ�

Π, then G :+: ∆s |={s}∪Σ�
Π, where ∆s = TΠ,s

G,supp(∆).

Lemma 6 (Soundness of Incr. Body Matching (fwd_delta_body_sound )) Let B a con-
junctive body; σ a substitution. Assume sym(B) ∩ sym(∆−) = ∅, that is to say, no
deletions are scheduled for B, then for all σ ∈ MB

G,∆(B) there exists an instantiation of
B, B, such that σ(B) = B.

https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#ssTp_mod
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#fwd_or_clause_baseP
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#fwd_or_clause_deltaP
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#fwd_or_clauseP
https://github.com/VerDILog/VerDILog/tree/iclp-2018/html/VUP.vup.html#fwd_delta_body_sound
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