
Modeling Virtual Machines and Interrupts in
TLA+ & PlusCal

Valentin Schneider
Arm Limited, UK

The Arm Generic Interrupt Controller (GIC1) is a hardware component that manages
the interrupts in a system. When there are pending interrupts (e.g. a network card
has received a packet and raised an interrupt), it will signal them, which will lead to
triggering a CPU exception. The GIC also provides interfaces (registers) to handle
these interrupts, or even to generate new ones (software-generated interrupts).

Furthermore, the GIC includes virtualisation extensions. These extensions are used
to forward interrupts to Virtual Machines (VMs, or guests), either physical (e.g. system
timer) or purely virtual (e.g. virtual peripherals). This allows the hypervisor to control
which interrupts are visible to the VMs.

In our case, the hypervisor is KVM (Kernel-based Virtual Machine2), a virtualisa-
tion solution used within the Linux Kernel.

The use of the virtual extensions is not limited to simply forwarding interrupts. A
VM needs to be oblivious to which physical CPU it is running on, yet the GIC inter-
faces are per-CPU. Should we be running a VM with several virtual CPUs (vCPUs) on
a single core system, we would need to save and restore the state of the sole CPU inter-
face depending on which vCPU is being run. The hypervisor is tasked with handling
these GIC context switches.

This work thus involves two models:

1. A GIC model written in TLA+, which models interrupt states, interrupt signals,
active priorities, etc.

2. A KVM model written in PlusCal, which models the different software context
switches (Interrupt handler, hypervisor, VM/Guest) as well as the handling of
interrupts and interactions with the GIC by both the hypervisor and the VMs.

To make these interactions possible, the GIC specification and the KVM specifi-
cation share a communication channel. For instance, to write to a register, the KVM
specification will append the name of the register and the data to write to a command
queue.

1https://www.cl.cam.ac.uk/research/srg/han/ACS-P35/zynq/arm_gic_
architecture_specification.pdf

2https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

1



The presence of data on this command queue is an enabling condition of a step in
the GIC specification that will consume the command, update the internal GIC state
and append a reply to the communication channel.

Finally, both the KVM and GIC specifications are conjoined with a common next-
state relation. The resulting specification describes behaviors where KVM and the GIC
interact via that communication channel.

Using TLC, the goal is to verify:

(a) Safety properties such as interrupts delivered to the correct guests, recovering
from misbehaving guests not signalling the end of interrupt, correct context
switching of multiple vCPUs running on a physical CPU, correct migration of a
vCPU to a different physical CPU.

(b) Liveness properties such as deadlock freedom, interrupts eventually delivered to
a guest.

2


