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Abstract. We extend the Datalog engine VLog to develop a column-oriented
implementation of the skolem and the restricted chase – two variants of a sound
and complete algorithm used for model construction over theories of existential
rules. We conduct an extensive evaluation over several data-intensive theories
with millions of facts and thousands of rules, and show that VLog can compete
with the state of the art, regarding runtime, scalability, and memory efficiency.

1 Introduction

Rules of inference are a fundamental building block of many important algorithms in
automated reasoning, and in related fields, such as artificial intelligence, data analytics,
information integration, and knowledge management. They are at the core of leading
tools and methods in many areas, ranging from logic programming, tableaux-based
model construction, and “consequence-driven” approaches to ontological reasoning
[13,14], over data integration [11] and query answering under constraints [7], to reason-
ing over knowledge graphs [16], and even social network analysis [18]. The optimisation
of rule-based inferencing is therefore of crucial interest to automated reasoning.

In the recent past, there has been significant progress in this area, and many new
rule-based systems have been presented [2,3,5,6,12,17,20]. At the core of these imple-
mentations is the most basic rule language Datalog, which syntactically corresponds
to Horn logic without functions or existential quantifiers, while semantically it might
be viewed either as a query language (reasoning = second-order model checking) or as
a knowledge representation language (reasoning = first-order entailment checking) [1].
Systems nevertheless may exhibit strong differences due to the different use cases they
have been designed for, which often also leads to different extensions and limitations.

One of the most important such extensions is support for value invention, manifested
in the ability to handle either existential quantifiers or function terms in the consequences
of rules. Equivalent formalisms are existential rules in ontological modelling, tuple-
generating dependencies in database query answering, and Horn logic programs with
function symbols in logic programming. The ability to create new terms during reasoning
is crucial in many applications, e.g., for capturing incomplete information in databases
[1], or for creating auxiliary structures in knowledge modelling [15]. But it is also
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much harder to implement since the resulting logic may no longer admit finite universal
models, and reasoning becomes undecidable [10].

In this system description, we present our recent implementation of existential rule
reasoning support in the Datalog engine VLog [20]. VLog differs from many other
systems because of its column-based (“vertical”) approach for storing inferred facts. This
leads to high memory efficiency and competitive runtimes, but also requires specific
implementation strategies and data structures. To the best of our knowledge, existential
rule reasoning has never been implemented or studied in such an architecture.

Rule engines typically implement the so-called chase procedure – a saturation-based
bottom-up model construction akin to a Horn logic tableau procedure. We implement
it in two variants, the skolem chase and the restricted chase, of which the latter is more
complicated but can produce smaller models in many cases. Indeed, it has recently
been demonstrated that the restricted chase can compute models for many real-world
ontologies where the skolem chase fails to terminate altogether [8]. This often requires
Datalog rules to be preferred over existential rules, which we ensure in VLog.

We conduct an extensive evaluation to gauge the performance of our tool in com-
parison to the state of the art. In a recent evaluation of several chase implementations,
Benedikt et al. found RDFox to be the most efficient tool in many contexts [4]. RDFox
is also similar to VLog in that both conduct most of their computation in memory. We
therefore compare VLog against RDFox, repeating many experiments of Benedikt et al.
and adding several more using further real-world datasets. We find that, for reasoning
with plain existential rules on a reasonably powerful laptop, VLog can often deliver
comparable or even better performance than RDFox, while consistently needing much
less memory. The former came as a surprise, since RDFox could take full advantage of
its highly parallel algorithms, whereas VLog ran on a single thread on one CPU.

2 Preliminaries

Wegive a brief account of the relevant basic definitions and notation. Existential rules are
based on a standard predicate logic vocabulary consisting of infinite, mutually disjoint
sets of predicates P (each with a fixed arity), constants C, and variables V. A term is
a variable x ∈ V or a constant c ∈ C. An atom is a formula of the form p(t1, . . . , tn)
where t1, . . . , tn are terms, and p ∈ P is a predicate of arity n. An existential rule (or
simply rule in the context of this paper) is a formula of the form

∀x∀y.
(
B1 ∧ . . . ∧ Bk → ∃v.H1 ∧ . . . ∧ Hl

)
, (1)

where x, y, and v are mutually disjoint lists of variables, and B1, . . . , Bk are atoms with
variables from x and y, H1, . . . , Hl are atoms with all variables from y and v, l ≥ 1, and
all variables in y occur in B1, . . . , Bk . The premise of a rule is called the body, while its
conclusion is called the head. A Datalog rule is a rule without existential quantifiers,
and a rule with k = 0 is called a fact (a conclusion that is unconditionally true). A finite
set of facts is a database. Since all variables in rules are quantified, we often omit the
explicit preceding universal quantifiers.



Example 1. The following rules capture basic part-whole relationships (meronomy),
and are a typical pattern in many ontologies.

Bicycle(x) → ∃v.hasPart(x, v) ∧Wheel(v) (2)
Wheel(x) → ∃w.properPartOf(x,w) ∧ Bicycle(w) (3)

properPartOf(x, y) → partOf(x, y) (4)
hasPart(x, y) → partOf(y, x) (5)
partOf(x, y) → hasPart(y, x) (6)

A major reasoning task of rule engines is (conjunctive) query answering. A conjunc-
tive query (CQ) is a formula ∃v.B1 ∧ . . . ∧ Bk , where Bi are atoms. Free variables (not
in v) are called answer variables. A substitution is a partial mapping σ : V → V ∪ C.
It is ground if it only maps to constants. Its application to terms and formulae is defined
as usual. An answer to a CQ q over a set of rules R and database D is a ground sub-
stitution σ defined on the answer variables of q such that R,D |= qσ under the usual
semantics of first-order logic. Existential variables can be replaced by function terms.
The skolemisation of a rule ρ as in (1) is obtained by replacing each variable v ∈ v by
the term fρ,v (y), where fρ,v is a fresh skolem function symbol specific to ρ and v.

3 The Chase

The chase is a class of sound and complete reasoning algorithms that are widely used
to implement query answering [4]. Rules are applied bottom-up until saturation, result-
ing in a universal model, which matches exactly those queries that are entailed by the
original rules (and given data). For existential rules, the chase may fail to terminate
(approximating an infinite universal model instead), and detecting termination is unde-
cidable [1]. However, many decidable criteria that are sufficient for termination have
been proposed and shown to be applicable in many practical cases [9]. There are many
variants of the chase, depending, e.g., on which conditions are checked to determine
whether the consequence of an applicable rule should be added. In this section, we
explain the restricted and skolem chase since these are among the most studied variants.

Any chase produces a sequence of databasesD0,D1, . . ., beginning from the initially
given database. In the cases we consider, we have Di+1 = Di ∪ ∆i+1, for the set ∆i+1 of
facts derived in step i + 1. We use abbreviations ∆[i, j] =

⋃j
k=i
∆k , ∆0 = D (the initial

database), and ∆−1 = ∅. In the chase variants we consider, only one rule is applied in
each chase step, and consecutive chase steps consider different rules. We therefore store,
for each rule ρ, the index prevρ of the chase step when it was last applied.

Algorithm 1 shows how one rule ρ is applied during the chase to compute ∆i+1.
Line 1.2 iterates over all matches of ρ: a match of a rule ∀x, y.ϕ→ ∃v.ψ over a database
D is a ground substitution σ defined on x ∪ y such that D |= ϕσ. The additional
requirement ϕσ ∩ ∆[`,i] , ∅ ensures that we only consider matches that were not found
up to the previous application of ρ. This corresponds to a semi-naive materialisation
strategy; we omit the details of how the matchesσ can be found in practice [20]. Line 1.3
verifies that the entailments under a given match are logically relevant. Line 1.4 selects



Algorithm 1: applyRule(rule ρ = ∀x, y.ϕ→ ∃v.ψ)
Global variables : index i, index prevρ, previous derivations (∆k )k≤i , bool changed

1.1 ∆i+1 = ∅ ` = prevρ
1.2 foreach match σ of ρ over ∆[0,i] with ϕσ ∩ ∆[`,i] , ∅ do
1.3 if ∆[0,i+1] 6 |= ∃v.ψσ then
1.4 σ′ = σ ∪ {v 7→ n} where n ⊆ Nulls is fresh
1.5 ∆i+1 = ∆i+1 ∪ {ψσ′}

1.6 prevρ = i + 1
1.7 i = i + 1
1.8 if ∆i+1 , ∅ then changed = true

Algorithm 2: restrictedChase(rule set R, database D)
2.1 i = 0 ∆0 = D changed = true prevρ = −1 for all rules ρ ∈ R
2.2 while changed do
2.3 changed = false
2.4 foreach ρ ∈ R do applyRule(ρ)

2.5 return ∆[0,i] // final result: union of all derived facts

fresh labelled nulls for instantiating the newly derived fact(s), which then get(s) added.
After finishing, we update ρ’s step counter (Line 1.6) and global chase step (Line 1.7).
Global variable changed records if any fact was derived (Line 1.8).

Algorithm 2 now shows the overall restricted chase procedure. It is named after the
check in Line 1.3, which restricts the application of rules – when omitting this check,
one obtains the oblivious chase instead. The restricted chase can reduce the number of
derived facts, which may allow it to terminate in more cases than the oblivious chase.

Example 2. Consider the restricted chase over the rules from Example 1 with database
D = {Bicycle(c)}. Applying rules in the given order, the first iteration of Line 2.4 yields
∆0 = D, ∆1 = {hasPart(c, n1),Wheel(n1)}, ∆2 = {properPartOf(n1, n2),Bicycle(n2)},
∆3 = {partOf(n1, n2)}, ∆4 = {partOf(n1, c)}, and ∆5 = {hasPart(n2, n1)}. Note that,
when computing ∆2, the check in Line 1.3 finds that ∆[0,2] 6 |= ∃w.partOf(n1,w) ∧
Bicycle(w). No further derivations are produced thereafter; specifically the previous
inferences already entail ∃v.hasPart(n2, v),Wheel(v). In contrast, the oblivious chase
in this case would not terminate, since it would continue to apply rule (2) to new nulls.

Example 3. In contrast to the oblivious chase, the restricted chase is sensitive to the order
of rules. For Example 2, if we apply rules in order (2), (3), (5), (6), (4), then we obtain
∆0 = D, ∆1 = {hasPart(c, n1),Wheel(n1)}, ∆2 = {properPartOf(n1, n2),Bicycle(n2)},
∆3 = {partOf(n1, c)}, ∆4 = ∅, and ∆5 = {partOf(n1, n2)}. Rule (3) can then be applied
to match {x 7→ n2} before hasPart(n2, n1) gets inferred. The chase does not terminate.

Finally, the skolem chase is obtained by initially applying skolemisation to the rules
in R. This eliminates all existential variables, so that we have σ = σ′ in Line 1.4.



Algorithm 3: restrictedOrderedChase(rule setR, database D)
3.1 i = 0 ∆0 = D changed = true prevρ = −1 for all rules ρ ∈ R
3.2 while changed do
3.3 changed = false
3.4 foreach Datalog rule ρ ∈ R do applyRule(ρ)
3.5 if ¬changed then
3.6 foreach Non-Datalog rule ρ ∈ R do applyRule(ρ)

3.7 return ∆[0,i] // final result: union of all derived facts

Moreover, Line 1.3 in this case is merely a syntactic check for duplicates: since ψσ
is ground, ∆[0,i+1] |= ψσ holds only if ψσ ⊆ ∆[0,i+1]. The skolem chase terminates in
significantly more cases than the oblivious chase, but it is still inferior to the restricted
chase in this respect.

4 Chasing in VLog

VLog adopts the distinctive approach of computing each set ∆i in bulk using an effi-
cient “set-at-a-time” processing, storing the set of derivations column-by-column rather
than row-by-row. Recent literature on columnar databases has shown that columnar data
structures are very memory efficient and enable fast data access, but cannot be updated
easily [20]. To avoid this problem, VLog works in an append-only mode and stores each
set ∆i into a dedicated data structure. This strategy avoids the problem of updates alto-
gether, and in practice has resulted in significantly shorter runtimes and lower memory
consumption than the state-of-the-art – sometimes up to an order of magnitude.

The rest of this section sums up some of our main insights on implementing the
restricted and the skolem chase efficiently in VLog. For the restricted chase, we make
two further adjustments. First, we do not consider facts that were derived in the current
(ongoing) chase step for checking if a rule application is restricted. Line 1.3 therefore
checks if ∆[0,i] 6 |= ∃v.ψσ. This leads to what is called the 1-parallel restricted chase [4].

Second, we ensure that Datalog rules are applied exhaustively before considering
existential rules, as shown inAlgorithm 3. This is motivated by recent studies of Carral et
al., who proposed a criterion that uses this order to detect chase termination inmore cases
than previous works [8]. In fact, Example 1 shows a case for which VLog’s restricted
chase terminates, while other restricted chase implementations (e.g., of RDFox) do not.

From an implementation perspective, the execution of a rule can be split into the
computation of all matches of the rule and the consequent computation of instantiations
of the head. The first operation is the same regardlesswhether the rule contains existential
quantifiers or not. Thus, we can reuse the same efficient algorithms developed for non-
existential rule execution. The second operation, in contrast, requires ad-hoc operations
due to the existence of unbound variables.

The exact operations differ depending on whether a restricted or a skolem chase
is being computed. In the first case, we perform a series of merge joins between the
set of matches and the columnar data structures that store the existing facts to remove



Table 1. Rules and databases used in benchmarks (MA is maximal predicate arity)

Dataset Number of rules Number of facts MA
Uniprot-005 / 010 531 4,713,207 / 9,252,708 2
Reactome-040 / 060 / 080 601 3,144,962 / 4,400,913 / 5,604,133 2
UOBM-10 / 20 / 40 426 1,926,879 / 3,980,967 / 7,843,543 2
STB-128 198 1,109,037 10
Ontology-256 529 2,146,490 11
doctors-10K / 1M 16 10,837 / 951,500 6
LUBM-010 / 100 / 1K 136 1,272,575 / 13,405,381 / 133,573,854 2
deep-100 / 200 / 300 1,100 / 1,200 / 1,300 1,000 4

partly instantiated matches. A merge join is very efficient here because the columnar
data structures are already sorted [20]. Notice that if the head of the rule is a conjunction
of multiple atoms, this procedure must be repeated for each head atom. Whenever the
merge join finds a substitution to remove, it adds an entry into a positional index and
use this index to skip to-be-removed matches. This strategy is adopted to avoid costly
in-place removals. In the second case, we do not need to remove matches but we must
retrieve the correct skolem terms. To support this operation, the system maintains a
series of hash maps in main memory (one per rule/variable) with the arguments of the
function and use it to return fresh IDs with average constant time.

5 Evaluation

We conducted an evaluation to gauge the performance and correctness of VLog.3 We
compared to RDFox, which emerged as a leading tool in [4]. Experiments were con-
ducted in a laptop system (2.2 GHz Intel Core i7 (4 CPUs), 16GB 1600MHz DDR3,
512GB SSD, MacOS High Sierra v10.13.3). The benchmark inputs we use are shown
in Table 1. UOBM, Reactome, and Uniprot are based on data-intensive OWL ontolo-
gies,4 which we converted to rules after removing non-deterministic axioms that do not
correspond to Horn logic rules. The remaining benchmarks are as given by Benedikt et
al., where we omitted the rules with equality, which are not supported by VLog [4].

For all tests, we measured the time and peak memory used for computing (a) the
restricted chase and (b) the skolem chase. We also verified that the size of the skolem
chases was the same for VLog and RDFox in all cases (the restricted chase shows minor
fluctuations, as expected for the different implementations). The results are shown in
Fig. 1. VLog could finish deep-300 on our laptop, but using some OS swap space. Since
we cannot measure this reliably, we only report a lower bound.

VLog generally usedmuch lessmemory, on average 40%ofwhatwas used byRDFox
in either chase. This is expected since VLog uses highly optimised compressed data
structures. In cases where only VLog finished (LUBM-1K and deep-300), RDFox ran
out of memory. The times taken by VLog ranged from 5.8% (deep-100, rest.) to 137.5%
(doctors-1M, rest.) of what was needed by RDFox. This is surprising, since VLog used

3 All files used in this section are available at https://github.com/karmaresearch/Chasing-VLog.
4 Source http://www.cs.ox.ac.uk/isg/tools/PAGOdA/2015/jair/, accessed 2 Feb 2018

https://github.com/karmaresearch/Chasing-VLog
http://www.cs.ox.ac.uk/isg/tools/PAGOdA/2015/jair/


Fig. 1.Memory usage (left) and materialisation time (right) for VLog and RDFox

only a single thread, whereas RDFox usedmaximal parallelism and often achieved above
700% CPU utilisation. Comparing the chase variants, VLog used significantly less time
and memory for the restricted chase, except on deep-100, deep-200, and Ontology-256.
RDFox shows similar behaviour, though the additional cost on deep is more pronounced.
Nevertheless, the restricted chase seems to be the more efficient algorithm in general.

6 Conclusions

VLog is a fast and memory-efficient system for constructing models for Horn Logic.
We extended its set-at-a-time and columnar approach to handle existential rules and
discussed our implementation of the chase, which exhibits excellent performance.

The system is free and open source,5 with only few dependencies for optional
database connectors. Pre-compiled Docker images enable quick installation on major
platforms (Docker repository karmaresearch/vlog). Users can control VLog through a
command-line tool, a web interface (useful for demonstrating the system), and though
the Java bindings of the companion project VLog4j.6 The latter is available as a Maven
package that includes the necessary binaries for major operating systems. In the future,
we plan to add further expressive features, such as equality, negation, or aggregation.
This can make VLog useful in even more scenarios, and thereby further advance our
understanding of the potential of this architecture for automated reasoning in general.

5 C++ source code and documentation: https://github.com/karmaresearch/vlog
6 Java source code and documentation: https://github.com/mkroetzsch/vlog4j

https://github.com/karmaresearch/vlog
https://github.com/mkroetzsch/vlog4j
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