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Abstract. In this paper we present an approach to reasoning with
large theories which is based on the abstraction-refinement framework.
The proposed approach consists of the following approximations: the
over-approximation, the under-approximation and their combination. We
present several concrete abstractions based on subsumption, signature
grouping and argument filtering. We implemented our approach in a the-
orem prover for first-order logic iProver and evaluated over the TPTP
library.
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1 Introduction

Efficient reasoning with large theories is one of the main challenges in automated
theorem proving arising in many applications ranging from reasoning with on-
tologies to proof assistants for mathematics. Current methods for reasoning with
large theories are based on different axiom selection methods. Some of them are
based on the syntactic or semantic structure of the axioms and conjecture formu-
las [15, 30]. These methods select relevant axioms based on syntactic or semantic
relationship between axioms and conjectures. Other methods for axiom selection
use machine learning to take advantage of previous knowledge about proved con-
jectures [16, 32, 33]. What those methods have in common are two phases of the
whole process for proving a conjecture: one is the axiom selection phase, and
the other one is the reasoning phase. Those phases are performed in a sequential
way. First, the axiom selection takes place, then using the selected axioms the
reasoning process starts.

Our proposed approach based on abstraction-refinement framework [8] has
the purpose of interleaving the axioms selection and reasoning phases, having
a more dynamic interaction between them. This proposed approach encom-
passes two ways for approximating axioms: one is called over-approximation
and the other one under-approximation. Those approximations are combined
to converge more rapidly to a proof if it exists or to a model otherwise. There
are a number of related works which consider different specific types of un-
der and/or over approximations in different contexts [1, 5, 7, 9, 12, 19, 22–24, 31].
Nevertheless, abstraction-refinement is largely overlooked in state-of-the-art au-
tomated theorem provers, with an exception of SPASS which was extended with



abstraction-refinement into a very specialised decidable fragment to approximate
general first-order reasoning [31]. Another relevant example is the Inst-Gen calcu-
lus [19] which under-approximates first-order formulas by propositional/ground
abstractions and refines these approximations by model-guided instantiations. In
the SMT setting, ground approximations are used in conflict and model-based in-
stantiation methods [11, 25]. In higher-order logic, over-approximations are used
for efficient encodings into first-order logic [2–4], propositional logic [6] and also
in higher-order patterns [10].

In this paper we take a pragmatic approach. Instead of targeting a specific de-
cidable fragment as an abstract domain we use abstraction-refinement to simplify
problems by different over and under approximations and their combinations.
We present a general abstraction-refinement framework for refutation theorem
proving which allows one to compare and combine different abstractions. Our
framework is general enough to represent abstractions not only within the same
language but also abstractions that extend or modify the language, in partic-
ular abstractions based on signature transformations. We present a number of
concrete abstractions based on subsumption, signature grouping and argument
filtering and discuss their combinations. In this paper we consider many-sorted
first-order logic in the context of first-order theorem proving but the approach
is applicable to SMT as well. 1

2 Abstraction Functions and Refinements

Let us consider a set of formulas F which we call a concrete domain and a set of
formulas F̂ which we will call an abstract domain. For example F can be the set
of all first-order formulas and F̂ can be a fragment of first-order logic. Concrete
and abstract domains can coincide.

An abstraction function is a mapping α : F 7→ F̂ . When there is no ambi-
guity we will call an abstraction function just an abstraction of F . The identity
function is an abstraction which will be called the identity abstraction αid .

A concretisation function for α is the inverse mapping γ : F̂ 7→ 2F , i.e.,
γ(F̂ ) = {F | α(F ) = F̂} for F̂ ∈ F̂ .

An abstraction α is called over-approximating abstraction (wrt. refutation)
if for every F ∈ F , F |= ⊥ implies α(F ) |= ⊥. An abstraction α is called
under-approximating abstraction (wrt. refutation) if for every F ∈ F , α(F ) |= ⊥
implies F |= ⊥.

We can compose abstractions as mappings. In particular, if α1 : F 7→ F1 and
α2 : F1 7→ F2 then α1α2 is an abstraction of F .

Proposition 1. Composition of over-approximating abstractions is an over-
approximating abstraction. Likewise, composition of under-approximating ab-
stractions is an under-approximating abstraction.

In this paper we will define several atomic abstractions and we use this propo-
sition to compose them to obtain a large range of combined abstractions.
1 Preliminary version of this work was presented at the IWIL workshop [13].



We define an ordering on abstractions v called abstraction refinement or-
dering as follows: α v α′ if for all F ∈ F , α(F ) |= ⊥ implies α′(F ) |= ⊥. Two
abstractions are equivalent, denoted by α ≡ α′ if α v α′ and α′ v α. The strict
part @ of v is defined as α @ α′ if α v α′ and α 6≡ α′. An abstraction is pre-
cise if it is equivalent to the identity abstraction. An example of a non-trivial
precise abstraction can be obtained by renaming function and predicate sym-
bols. We have that every over-approximating abstraction αs is above and every
under-approximation abstraction αw is below the identity abstraction wrt. the
abstraction refinement ordering, i.e., αw v αid v αs.

Weakening abstraction refinement of an over-approximating abstraction α is
an abstraction α′ which is below α and above the identity abstraction in the
abstraction refinement ordering, i.e., αid v α′ v α. Strengthening abstraction
refinement of an under-approximating abstraction α is an abstraction α′ which
is above α and below the identity abstraction in the abstraction refinement
ordering, i.e., α v α′ v αid .

An over-approximation abstraction-refinement process is a possibly infinite
sequence of weakening abstraction refinements α0, . . . , αn, . . . such that αid v
. . . v αn v . . . v α0. Similar, an under-approximation abstraction-refinement
process is a possibly infinite sequence of strengthening abstraction refinements
α0, . . . , αn, . . . such that α0 v . . . v αn v . . . v αid .

3 Over-Approximation Procedure

We use ATPS to denote an automated theorem prover which is sound but pos-
sibly incomplete (wrt. refutation) [14]. On the other hand, we use ATPC to
make a reference to an automated theorem prover which is complete but not
necessary sound [5, 22]. Hence, if ATPS returns UNSAT then the conjecture is
proved and if ATPC returns SAT then the conjecture is disproved. The purpose
of these ATPs is to prove or disprove conjectures more efficiently than a sound
and complete ATP but with a possible loss of precision.

We consider a theory A which is a collection of axioms which we call concrete
axioms and a set of formulas Âs called abstract axioms. We will assume that the
negation of the conjecture is included in A, so proving the conjecture corresponds
to proving unsatisfiability of A.

The over-approximating procedure starts by applying an over-approximating
abstraction function αs to A, to obtain an abstract representation of axioms Âs,
Âs = αs(A). First, the procedure tries to prove unsatisfiability of the abstract
axioms Âs using an ATPC . If ATPC proves unsatisfiability of Âs, the proce-
dure extracts an abstract unsat core Âsuc from Âs, which can be obtained by,
e.g., collecting all axioms involved in the abstract proof. Next, the procedure
tries to prove unsatisfiability of the concretisation of the abstract unsat core
Auc = γs(Â

s
uc) using ATPS . If the ATPS proves unsatisfiability of Auc , the pro-

cess stops as this proves unsatisfiability of A. Otherwise, if Auc is shown to be
satisfiable, the set of axioms A is abstracted using a new abstraction α′s obtained
by weakening abstraction refinement of αs. In practice, the refinement procedure



refines αs until α′s(Auc) becomes satisfiable, which is always possible as at this
point we assume Auc is satisfiable. The procedure is repeated utilising the re-
fined set of abstract axioms. This loop finishes when the conjecture is proved or
disproved or the time limit of the whole procedure is reached. The diagram of
the over-approximating procedure is shown in Figure 1.

Concrete
axioms A

αs(A)
Abstract
axioms Âs ATPC Disproved

Conjecture C

Get
Âs

uc

Retrieve
concrete

axioms, γs(Âs
uc)

Refine abstrac-
tion α′

s(A)
ATPS Proved

UNSAT

SAT

UNSATSAT

Fig. 1. The over-approximation procedure

The main parameters of this procedure are an over-approximating abstrac-
tion function and weakening abstraction refinement.

Next we define several concrete over-approximating abstractions and discuss
abstraction refinement for these abstractions.

3.1 Subsumption-based Abstraction

In this section we present abstraction-refinement based on subsumption. Infor-
mally, we partition concrete axioms based on joint literal occurrences and for
each partition we define an abstract clause which subsumes all clauses in the
partition.

We define the initial abstraction of A as follows. With each set of clauses A′,
we associate a literal `k in A′ which we call a partition literal for A′. An initial
partition of A is defined as A = A`

+
1 ∪ A`

−
1 where `1 is a partition literal for A,

members of A`
+
1 are all clauses containing `1 and A`

−
1 = A \A`

+
1 . We recursively

continue partitioning A`
−
1 in the same way until we obtain the empty set. The

result of this process is the following partition of A:

A =

n⋃
k=1

A`
−
1 ...`

−
k−1`

+
k ,



where `k is the partition literal for A`
−
1 ...`

−
k−1 , we assume A`

−
1 ...`

−
n is empty and

A`
−
1 ...`

−
k−1`

+
k = A`

+
1 for k = 1.

For each partition A`
−
1 ...`

−
k−1`

+
k literals `1, . . . , `k−1 do not occur in any clause

in the collection and `k occurs in all clauses in A`
−
1 ...`

−
k−1`

+
k . Figure 2 shows an

example of such partition.
We say that `k is a leading literal in A`

−
1 ...`

−
k−1`

+
k and each leading literal is

the abstraction of their corresponding set. These abstractions form the set of
abstract axioms Âs. In practice, we can select the leading literal based on a
heuristic criteria, e.g., the number of occurrences of a literal in the clause set.

Example 1. Consider the following set of concrete clauses A and its partition
consisting of A`

+
1 , A`

−
1 `

+
2 and A`

−
1 `
−
2 `

+
3 . Where the leading literals are `1, `2, `3

and they form the abstract set of clauses Âs, Âs = {`1, `2, `3}.

`1 ∨ `10 ∨ `3

`1 ∨ `9 ∨ `10

`1 ∨ `6 ∨ `9

`2 ∨ `7 ∨ `4

`2 ∨ `5 ∨ `7

`2 ∨ `8 ∨ `4

`3 ∨ `5 ∨ `8

A `1 ∨ `10 ∨ `3

`1 ∨ `9 ∨ `10

`1 ∨ `6 ∨ `9

A`+1

`2 ∨ `7 ∨ `4

`2 ∨ `5 ∨ `7

`2 ∨ `8 ∨ `4

`3 ∨ `5 ∨ `8

A`−1

`2 ∨ `7 ∨ `4

`2 ∨ `5 ∨ `7

`2 ∨ `8 ∨ `4

A`−1 `+2

`3 ∨ `5 ∨ `8

A`−1 `−2

`3 ∨ `5 ∨ `8

A`−1 `−2 `+3

∅

A`−1 `−2 `−3

`
+
1

`
−
1

`
+
2

`
−
2

`
+
3

`
−
3

Fig. 2. Partitions of A are in bold

The mapping from sets of the form A`
−
1 ...`

−
k−1`

+
k to the leading literals gives

us the abstraction function αs, which is defined as

αs(D) = `k for D ∈ A`
−
1 ...`

−
k−1`

+
k .

Consequently, the concretisation function γs is defined as

γs(`k) = A`
−
1 ...`

−
k−1`

+
k .

We use the set of abstract axioms to try to prove a conjecture. If the con-
jecture is proved, we consider the abstract axioms from the unsat core. Those



abstract axioms are refined and then replaced by their refined versions. Then,
the proving process is repeated using the refined set of abstract axioms. This
process continues until we get a concrete proof of the conjecture.

The refinement of abstract axioms will be defined further in this section, but
first consider the following definitions. During the refinement process we will
partition A into sets of the form Aσ where σ is a sequence of signed literals
σ = `s11 . . . `snn , where sj is either + or − for 1 ≤ j ≤ n. A literal `sjj occurs in
all clauses of Aσ if sj = + and does not occur in any of the clauses in the set if
sj = −.

In figure 2, the leaves different to the empty set are the partition of A and
they have the form Aσ. The set of literals in σ with positive signs is defined
as σ+ = {` : `s ∈ σ and s is +}. The set Aσ is abstracted with the clause
Cσ

+

=
∨
`∈σ+ `. Therefore, the abstraction function αs is defined as

αs(D) = Cσ
+

,

where D ∈ Aσ. Then, concretisation function is γs(Cσ
+

) = Aσ. The set Aσ is
fully concretised if Aσ = {Cσ+}.

For a set of clauses A′, let L(A′) denote the set of all literals occurring in
clauses in A′. The refinement process is applied to an unsat core Âsuc consisting
of abstract clauses. The refinement process subpartitions one of Aσ = γs(C

σ+

),
where Cσ

+ ∈ Âsuc , such that Aσ is not fully concretised. Let σ = `s11 . . . `skk . This
process starts by selecting a new partition literal `k such that

`k+1 ∈ L(Aσ) \ σ+.

Note, that since Aσ is not fully concretised, L(Aσ) \ σ+ is not empty. Using the
literal `k+1, we obtain the starting partition Aσ = Aσ`

+
k+1 ∪ Aσ`

−
k+1 . Then, we

continue recursively partitioning Aσ`
−
k+1 as before until we obtain the empty set.

The result of this recursive process is the partition of Aσ defined as follows:

Aσ =

m⋃
j=1

Aσ`
−
k+1...`

−
k+j−1`

+
k+j ,

where `k+j is the partition literal for Aσ`
−
k+1...`

−
k+j−1`

+
k+j and Aσ`

−
k+1...`

−
k+m−1`

−
k+m

is the empty set. Denote σi = σ`−k+1 . . . `
−
k+j−1`

+
k+j for 1 ≤ i ≤ m. Then refined

abstraction α′s is defined as:

α′s(D) =

{
Cσ

+
i if D ∈ Aσi for some 1 ≤ i ≤ m,

αs(D) if D 6∈ Aσ.

An example of this refinement is shown in Figure 3, where the refined abstraction
of A consists of {`1, `3, `2 ∨ `4, `2 ∨ `5}.

Let us note that the subsumption abstraction is an over-approximation ab-
straction and subsumption abstraction refinement is a weakening abstraction
refinement, in particular, αid v α′s v αs.



`1 ∨ `10 ∨ `3

`1 ∨ `9 ∨ `10

`1 ∨ `6 ∨ `9

`2 ∨ `7 ∨ `4

`2 ∨ `5 ∨ `7

`2 ∨ `8 ∨ `4

`3 ∨ `5 ∨ `8

A

`1 ∨ `10 ∨ `3

`1 ∨ `9 ∨ `10

`1 ∨ `6 ∨ `9

A`+1

`2 ∨ `7 ∨ `4

`2 ∨ `5 ∨ `7

`2 ∨ `8 ∨ `4

`3 ∨ `5 ∨ `8

A`−1

`2 ∨ `7 ∨ `4

`2 ∨ `5 ∨ `7

`2 ∨ `8 ∨ `4

A`−1 `+2

`2 ∨ `7 ∨ `4

`2 ∨ `8 ∨ `4

A`−1 `+2 `+4

`2 ∨ `5 ∨ `7

A`−1 `+2 `−4

`2 ∨ `5 ∨ `7

A`−1 `+2 `−4 `+5

∅

A`−1 `+2 `−4 `−5

`3 ∨ `5 ∨ `8

A`−1 `−2

`3 ∨ `5 ∨ `8

A`−1 `−2 `+3

∅

A`−1 `−2 `−3

`
+
1

`
−
1

`
+
2

`
−
2

`
+
3

`
−
3

`
+
4

`
−
4

`
+
5

`
−
5

Fig. 3. Refinement of A`−1 `+2 (dotted circle); partitions of A are in bold

3.2 Generalisation Abstraction

In the generalisation abstraction we abstract clauses with their generalisations.
A clause D is a generalisation of a clause C if C = Dσ for a substitution σ.
Generalisation ordering on clauses can be defined as C vg D if C = Dσ. A
generalisation abstraction αg is a function that maps clauses to their generali-
sations, so we have C vg αg(C). One example of the generalisation abstraction
would be replacing certain non-variable terms by variables. For example, using a
generalisation abstraction one can abstract the set of clauses into the Effectively
PRopositional (EPR) fragment. Another abstraction strategy can be based on
targeting inference positions eligible for superposition.



Example 2. Consider the following set of clauses:

S = {p(g(x), g(x)) ∨ q(f(g(x))); g(f(f(x))) ' g(f(x))}.

A possible generalisation abstraction of S can be:

αg(S) = {p(x, x) ∨ q(f(x)); g(f(x)) ' g(x)}.

Let us note that, e.g., superposition inference is applicable from the second
into the first clause in S under any simplification ordering, which can easily
lead to non-termination. On the other hand, there is no eligible superposition
inferences between two abstracted clauses due to abstraction of terms headed
with g in the first clause and the fact that superposition is not applied into the
variable positions.

The generalisation abstraction refinement α′ of α can be based on restoring ab-
stracted terms in abstract clauses from the unsat core, i.e., C vg α′g(C) vg

αg(C) for C ∈ Âsuc and α′g(C) = αg(C) for C 6∈ Âsuc . We note that the
generalisation abstraction is an over-approximation abstraction and generalisa-
tion abstraction refinement is a weakening abstraction refinement, in particular,
αid v α′g v αg .

In practice, the generalisation abstraction can be naturally combined with
the subsumption abstraction, by first generalising and then applying the sub-
sumption abstraction.

3.3 Argument Filtering Abstraction

In this section we present the argument filtering abstraction. Informally, argu-
ment filtering abstraction is based on removing certain arguments in signature
symbols.

Consider a signature Σ consisting of predicate and function symbols. We
will represent argument selection using bit-vectors. Consider a bit-vector bv . We
denote the length of bv by |bv |, the number of 1s in bv by |bv|1 and 0s by |bv|0.
Let 1̄n, 0̄n denote bit-vectors of length n, consisting of 1s and 0s, respectively.
Let Bn denote the set of all bit-vectors of length n. We will omit index n when
the bit-vector length is clear from the context or irrelevant.

With each signature (i.e., predicate or function) symbol f of arity n and
a bit-vector bv of length n we associate an abstract symbol fbv with the arity
|bv|1. An abstract domain for a signature symbol f , denoted fB is the set of all
abstract symbols fbv , where |bv | = arity(f). An abstract signature is defined as
ΣB = ∪f∈ΣfB. A signature abstraction is a function: αf : Σ 7→ ΣB such that
αf (f) ∈ fB.

A signature abstraction can be extended to terms and atoms recursively:

αf (t) =

x if t = x,
fbv (αf (ti1), . . . , αf (tik)) if t = f(t1, . . . , tn), αf (f) = fbv , and

bv(i) = 1 iff i ∈ {i1, . . . , ik}.



In turn, αf is extended to clauses and sets of clauses in an obvious way by
applying αf to atoms.

If we abstract every signature symbol f to f 1̄ then we obtain a precise ab-
straction, i.e., equivalent to the identity abstraction. Therefore, w.l.o.g., we will
identify every signature symbol f with its f 1̄ abstraction.

Let us consider some special cases. If we abstract every predicate symbol p
to p0̄ then we obtain a pure propositional abstraction, which we denote αprop

f . If
we abstract every function symbol f to f 0̄ and every predicate symbol p to p1̄

then we obtain an EPR abstraction, which we denote αEPR
f . If we abstract every

signature symbol f to f 1̄ then we obtain a precise abstraction, i.e., equivalent
to the identity abstraction.

Example 3. Let us consider the following set of clauses

S = {p(x, f(x, g(y))) ∨ ¬p(c, x);¬p(g(f(x, y)), g(y)); p(c, x)}.

Then pure propositional abstraction will result in the following set of clauses:

αprop
f (S) = {p0̄ ∨ ¬p0̄;¬p0̄; p0̄},

which is unsatisfiable. One the other hand the EPR abstraction is:

αEPR
f (S) = {p(x, f 0̄) ∨ ¬p(c, x);¬p(g0̄, g0̄); p(c, x)}.

It is easy to see that the EPR abstraction is satisfiable and therefore the original
set of clauses is also satisfiable.

In order to define abstraction-refinement we introduce a partial ordering on
abstract symbols: fbv0 vaf f

bv1 iff bv1(i) ≤ bv0(i), for all 0 ≤ i < arity(f). Then
we extend this ordering on abstractions by defining α0

f vaf α1
f iff α0

f (f) vaf

α1
f (f) for all f ∈ Σ. We call vaf argument filtering ordering. The top element

in this ordering is the pure propositional abstraction.
The following proposition implies that argument filtering abstraction is an

over-approximation abstraction and abstraction refinement based on the argu-
ment filtering ordering is a weakening abstraction refinement.

Proposition 2. The argument filtering ordering is compatible with the abstrac-
tion refinement ordering, i.e., if α0

f vaf α1
f then α0

f v α1
f . Moreover, every

argument filtering abstraction is above the identity abstraction, i.e., αid v αf .

In the example above, the EPR abstraction is a refinement of the proposi-
tional abstraction. In practice, one can start with a propositional or EPR ab-
straction and define the weakening refinement process by restoring arguments of
abstract symbols occurring in the unsat core, as described in the Section 3.



Abstracting variable dependencies. Let us observe how argument filtering can
be used to abstract variable dependencies. As an example we consider clause
splitting without backtracking [26], which can be defined as follows. Given a
clause C(x̄, ȳ)∨D(x̄, z̄) one can split this clause into two clauses by introducing
a fresh splitting predicate over joint variables sp(x̄) and replacing this clause
with two clauses C(x̄, ȳ) ∨ sp(x̄) and ¬sp(x̄) ∨D(x̄, z̄). In this way the splitting
predicate represents variable dependencies between different subclauses. We can
abstract such variable dependencies by restricting argument filtering abstraction-
refinement to the splitting predicates. In the same way we can target formula
definitions introduced during clausification and Skolem functions which encode
existential variable dependencies.

3.4 Signature Grouping Abstraction

Consider a finite signature Σ and let T be the set of all types of symbols in
Σ. In many-sorted first-order logic, a type of a symbol can be represented as a
sequence of sorts in a standard way. We partition Σ into groups Σ =

⋃
τ∈T Στ ,

such that symbols in Στ are all symbols in Σ of type τ . With each non-empty
subset of στ ⊆ Στ we associate an abstract symbol fστ of type τ . The abstract
signature ΣS is defined as the union of all abstract symbols.

Consider partitioning Σ into groups Σ = ∪ni=1σi, such that all symbols in
σi have the same type. We define a signature grouping abstraction αsig as a
function: αsig : Σ 7→ ΣS such that αsig(f) = fσi if f ∈ σi for some 1 ≤ i ≤ n.
In a similar way to Section 3.3, we extend αsig to an abstraction over terms,
atoms and clauses. We can also define an ordering on abstract symbols: fσ0 vsig

fσ1 iff σ0 ⊆ σ1 and extend this ordering to abstractions: α0
sig vsig α1

sig iff
α0
sig(f) vsig α

1
sig(f) for all f ∈ Σ. We call vsig the signature grouping ordering.

Let us note that the top element in this ordering is the abstraction corresponding
to the maximal partitioning Σ =

⋃
τ∈T Στ and the bottom element is a precise

abstraction corresponding to the partitioning into singleton sets.

Example 4. Consider the following set of clauses over a signature consisting of
a single non-Boolean sort:

{q(f(c)) ∨ p(f(c));¬p(f(x)) ∨ s(g(z), f(a));¬p(g(x)) ∨ r(f(z), g(a));¬r(x, y)},

we can group symbols of the same type such as q and p which are replaced by
q′. Predicates s and r are replaced by s′; functions symbols f and g are replaced
by f ′. The resulting abstract set is:

{q′(f ′(c));¬q′(f ′(x)) ∨ s′(f ′(z), f ′(a));¬s′(x, y)}.

This abstraction is unsatisfiable and we can refine it by concretising certain
abstract symbols occurring in the unsat core, e.g.,

{q(f ′(c)) ∨ p(f ′(c));¬p(f ′(x)) ∨ s′(f ′(z), f ′(a));¬s′(x, y)},

where q′ is concretised.



Proposition 3. The signature grouping ordering is compatible with the abstrac-
tion refinement ordering, i.e., if α0

sig vsig α1
sig then α0

sig vsig α1
sig . More-

over, every signature grouping abstraction is above the identity abstraction, i.e.,
αid v αsig .

Let us note that signature grouping can be naturally combined with the argu-
ment filtering abstraction. In particular, argument filtering can reduce symbol
types which in turn can be used to produce larger groups of abstract symbols.

4 Abstraction by Under-Approximation

The process starts by applying the weakening abstraction function to the set of
concrete axioms A, Âw = αw(A). This set Âw of weaker axioms is used to prove
the conjecture, using an ATPS . If the conjecture is proved the procedure stops
and provides the proof. Otherwise, a model I of Âw and the negated conjecture
is obtained. This model is used to refine the set of weaker axioms Âw. During
this refinement (strengthening abstraction refinement), the procedure tries to
find a set of axioms Ă that turns the model into a countermodel but are still
implied by A, i.e., I 6|= Ă and A |= Ă. If the set of axioms Ă is empty, Ă = ∅,
the procedure stops and disproves the conjecture. Otherwise, the obtained set
of axioms is added to the set of weaker axioms, Âw := Âw ∪ Ă. Using this new
set of abstract axioms Âw, another round for proving the conjecture starts. The
process finishes when the conjecture is proved or disproved or the time limit
for the quest of a proof is reached. The diagram of this procedure is shown in
Figure 4.

Concrete
axioms A

αw(A)
Abstract
axioms
Âw

ATPS Proved

Conjecture C

I |=
Âw ∧ ¬C

Refine abstraction Âw

find a set Ă, I 6|= Ă
Âw := Âw ∪ Ă

Disproved

UNSAT

SAT

Ă = ∅

Ă 6= ∅

Fig. 4. Under-approximation

4.1 Weakening Abstraction Function

In the case of under-approximation, we propose two weakening abstractions:
instantiation abstraction and deletion abstraction. In the case of instantiation



abstraction, abstraction function generates ground instances of the concrete ax-
ioms as it is done in the Inst-Gen framework [19]. In the case of deletion ab-
straction we delete certain concrete axioms from the theory. This abstraction
can be used to incorporate other axioms selection methods into this framework,
which are based on removing irrelevant axioms. In particular, we incorporated
SInE [15] which selects axioms based on syntactic relevance. In practice, different
abstractions can be recombined.

4.2 Strengthening Abstraction Refinement

In the case of deletion abstraction, refinement can be done by adding concrete
axioms Ă that turn the model I, which is obtained form ATPS , into a coun-
termodel, Ă ⊆ {ă | ă ∈ A, I 6|= ă}. In the case of instantiation abstraction,
refinement can be done by generating a set of ground instances of axioms Aσ
such that I 6|= Aσ, Ă := Aσ.

5 Combined approximation

We can combine over- and under-approximations as follows. We use under-
approximation in the outer-loop and over-approximation in the place of ATPS
(see Figure 4). Let us note that abstractions can be shared between approxima-
tion loops. This combination allows us incorporate other axiom selection meth-
ods [15, 30, 32, 33] as part of the under-approximation abstraction and combine
them with over-approximation abstractions described in this paper.

6 Evaluation and Experimental Results

We implemented the abstraction-refinement framework described in this paper
as part of the current version of iProver v2.7 [18, 19]2, which is also the ATP
that we utilised in our experiments.

We evaluated our implementation of the abstraction-refinement framework on
the standard benchmark for first-order theorems provers: the TPTP library [29]
with the set of problems from the Large Theory Batch (LTB) category in CASC-
26 [17, 21, 28], during the competition the wall clock time limit was 90000s per
batch. All experiments described in this section were performed using a cluster
of computers with the following characteristics: Linux v3.13, cpu 3.1GHz and
memory 125GB. We used a time limit of 240s for each attempt to solve a problem.

We experimented with different types of over-approximation abstractions:
i) subsumption abstraction, ii) argument filtering abstraction, iii) argument
filtering restricted to Skolem functions and splitting predicates, vi) signature
grouping abstraction, and v) signature grouping restricted to Skolem functions.
We implemented arbitrary combinations of these abstractions, which can be
specified as a command line option to iProver, e.g.,
2 iProver is available at: http://www.cs.man.ac.uk/˜ korovink/iprover/



--abstr_ref "[subs;sig;arg_filter]".

For under-approximation abstractions we used the SInE axiom selection al-
gorithm [15] and the Inst-Gen calculus which is the backbone of iProver. SInE
is included with Vampire’s [20] clausifier, which we also used for clausification.

The first set of experiments were performed over 1500 problems out of which:
716 were solved by signature grouping, 704 by signature grouping of Skolem sym-
bols and constants, 637 by subsumption and 627 by argument filtering. Results
are shown in Table 1.

Table 1. Problems solved by over-approximation abstractions with SInE.

Abstraction Solutions
signature grouping 716
signature grouping Skolem/constants 704
subsumption 637
argument filter 627

In the next set of experiments we combined different over-approximation
abstractions. In Table 2, we present the results obtained from combining different
abstractions. Abstractions were applied in the same order as they are presented.

From these results, we can conclude that combination of abstractions con-
siderably improves the performance. The best combination of abstractions is
subsumption, signature grouping and argument filtering which solves around
the 55% of the 1500 problems.

Table 2. Problems solved by iProver combination of abstractions and SInE

Abstraction Solutions
subs; sig grouping; arg filter 826
subs; sig grouping 798
subs; sig grouping Skolem/constants; arg filter 733
subs; sig grouping Skolem/constants 719
subs; arg filter 630

We experimented with the top 3 strategies by restricting argument filtering
and signature grouping to Skolem functions and splitting predicates and com-
pared these to unrestricted versions. In this experiments the option --schedule
was set to default. The results are shown in Table 3.

Table 4 shows the number of solutions found by each strategy but excluding
the problems solved by the previous ones. The total number of solved problems
is 1044. There are several strategies from other combinations of abstractions,
which solved small number of problems but turned out that those solutions are
unique. If we combine these solutions with solutions shown in Table 4, the total



Table 3. Problems solved by iProver default schedule with abstractions and SInE

Abstraction Solutions
subs; sig grouping; arg filter Skolem/splitting 957
subs; sig grouping; arg filter 942
subs; sig grouping Skolem/constants; arg filter 930

Table 4. Top strategies after removing overlapping solutions with default schedule.
Where subs stands for subsumption, sig for signature, arg-filt for argument filtering,
SK restriction to Skolem functions and splitting symbols in iProver.

Abstractions Signature Arg-filter Until SAT Solutions
subs, sig, arg-filt SK false 957
subs, sig, arg-filt SK default false 38

subs default true 27
subs, sig, arg-filt default true 11
subs, sig, arg-filt default false 8

subs default false 2
subs, sig, arg-filt SK default true 1

Total 1044

number of solutions increases to 1070. Finally, in Table 5 we compare iProver
and recent CASC-26 results. From this table we can conclude that integration
of combinations of over-approximation abstractions considerably improves per-
formance of iProver. Overall iProver considerably outperforms E-LTB [27] and
gets close to the top systems Vampire [20] and MaLARea [32].

Table 5. Comparison with CACS-26 LTB results

Vampire-LTB MaLARea iProver-v2.7-all iProver-v2.7 iProver-LTB-v2.6 E-LTB
1156 1131 1070 957 777 683

7 Conclusion and Further Work

In this paper, we presented a theoretical framework to abstraction-refinement for
reasoning with large theories. We presented a number of concrete abstractions
based on subsumption, argument filtering and signature grouping and discussed
their combinations. We implemented the abstraction-refinement framework in
iProver and evaluated different abstractions over the large theory problems in the
TPTP library. The results are encouraging and show considerable improvements
in the number of overall solved problems in the LTB category. Overall, the
number of solved problems is 1070 problems out of 1500 which is considerably
larger than the number of problems solved by the previous version of iProver-
LTB-2.6 (777) and E-LTB-2.1 (683). Although still below the CASC winner



Vampire-LTB-4.2 (1156) and MaLARea-0.6 (1144). We believe that fine-tuning
abstraction parameters will help to further improve the performance.

Acknowledgements. We would like to thank anonymous reviewers for many help-
ful suggestions.
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