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Abstract. If a conclusion follows from a set of axioms, then its justification is
a minimal subset of axioms for which the entailment holds. An entailment can
have several justifications. Such justifications are commonly used for the purpose
of debugging of incorrect entailments in Description Logic ontologies. Recently
a number of SAT-based methods have been proposed that can enumerate all justi-
fications for entailments in light-weight ontologies languages, such as EL. These
methods work by encoding EL inferences in propositional Horn logic, and find-
ing minimal models that correspond to justifications using SAT solvers. In this
paper, we propose a new procedure for enumeration of justifications that uses res-
olution with answer literals instead of SAT solvers. In comparison to SAT-based
methods, our procedure can enumerate justifications in any user-defined order
that extends the set inclusion relation. The procedure is easy to implement and,
like resolution, can be parametrized with ordering and selection strategies. We
have implemented this procedure in PULi—a new Java-based Proof Utility Li-
brary, and performed an empirical comparison of (several strategies of) our proce-
dure and SAT-based tools on popular EL ontologies. The experiments show that
our procedure provides a comparable, and often better performance than those
highly optimized tools. For example, using one of the strategies, we were able for
the first time to compute all justifications for all entailed concept subsumptions
in one of the largest commonly used medical ontology Snomed CT.

1 Introduction and Motivation

Axiom pinpointing, or computing justifications—minimal subsets of axioms of the on-
tology that entail a given logical consequence—has been a widely studied research topic
in ontology engineering [1–12]. Most of the recent methods focus on the so-called EL
family of Description Logics (DLs), in which logical consequences can be proved by
deriving new axioms from existing ones using inference rules. The resulting inferences
are usually encoded as propositional (Horn) clauses, and justifications are computed
from them using (modifications of) SAT solvers. To ensure correctness, the input infer-
ence set must be complete, that is, the inferences are enough to derive the consequence
from any subset of the ontology from which it follows.

In this paper, we present a new resolution-based procedure that enumerates all justi-
fications of an entailment given a complete set of inferences. Apart from requiring com-
pleteness, the form of inferences can be arbitrary and does not depend on any logic. For
example, our method can be used with the inferences provided by existing consequence-
based procedures [13–16]. The procedure can enumerate justifications in any given or-
der, provided it extends the proper subset relation on sets of axioms. Performance of



the procedure depends on the strategy it follows while enumerating justifications. We
have empirically evaluated three simple strategies and experimentally compared our
procedure with other highly optimized justification computation tools.

The paper is organized as follows. In Section 2 we describe related work. Section 3
introduces background on DLs, justifications, and resolution. In Section 4 we present
the new procedure, and in Section 5 we describe its implementation and empirical eval-
uation.

2 Related Work

There are, generally, two kinds of procedures for computing justifications [9] using a
DL reasoner. Black-Box procedures use a reasoner solely for entailment checking, and
thus can be used for any reasoner and DL. Glass-Box procedures require additional
information from a reasoner, such as inferences that the reasoner has used, and thus can
only work with reasoners that can provide such information.

In a nutshell, Black-Box procedures [4, 6, 7, 10] systematically explore subsets of
axioms and check using a reasoner, which of these subsets entail the given logical con-
clusion, and which not. Unnecessary tests are avoided using the monotonicity property
of the entailment.

Finding one justification is relatively easy. Starting from the set of all axioms that
entail the conclusion, one tries to remove axioms one by one. If after the removal the
entailment does not hold, the axiom is inserted back. This results in a subset from which
no axiom can be further removed without breaking the entailment, i.e., a justification for
the entailment. This justification, however, may be not unique as the result depends on
the order in which the axioms are considered for removal. In the worst case, there can be
exponentially-many different justifications. So, unsurprisingly, there is no polynomial
procedure for computing all justifications even in languages such as EL, for which en-
tailment checking is polynomially decidable [17]. Further, computing all justifications
is even hard in the number of justifications: it is already NP-hard to verify, given a set of
justifications, if there exists another justification not in this set [4]. Hence, in practice,
one is interested in algorithms for enumeration of justifications, i.e., algorithms that can
return justifications without necessarily finishing computing all of them.

Most existing algorithms for enumeration of justifications rely, in one way or the
other, on the hitting set duality that was introduced in the field of Model Based Diag-
nosis [18, 19] and later adapted for DLs [5, 7]. A hitting set for a collection of sets is
a set containing at least one element from each set in the collection. A minimal hit-
ting set of all justifications for an entailment is a repair—a minimal set of axioms,
removal of which breaks the entailment. Dually, every minimal hitting set of all repairs
is a justification. Existing justification enumeration algorithms, in fact, also (implicitly)
enumerate repairs in addition to justifications.

Suppose that one has computed some justifications and repairs for an entailment. To
find a new justification or a repair, it is sufficient to find a set M of axioms that has at
least one axiom from each repair and misses at least one axiom from each justification.
I.e., M is a hitting set of the computed repairs, and its complement (within the set of all
axioms) is a hitting set of the computed justifications. If no such setM exists, then there



are no new justifications or repairs, for otherwise a new justification or the complement
of a new repair would satisfy this requirement. Now, if M entails the conclusion, then
a justification can be extracted from M by repeatedly removing axioms as described
before. This justification will be different from all previously computed justifications
becauseM is not a super-set of any of them. On the other hand, ifM does not entail the
conclusion, then a new repair can be extracted from the complement of M similarly, by
removing axioms until the set is no longer a repair. Likewise, this will be a new repair
since the complement of M is not a super-set of any previously computed repairs. By
repeating this procedure, one can enumerate all repairs and all justifications.

Finding a suitable setM satisfying the requirements above can be accomplished us-
ing a propositional SAT solver. Specifically, for each computed repair, we add a clause
consisting of atoms corresponding to the axioms in the repair. Similarly, for each com-
puted justification, we add a clause consisting of the negations of atoms corresponding
to the axioms in the justification. Then for every model of these clauses, the set M
consisting of the axioms whose atoms are true, satisfies the requirements. SAT solvers
can also be used to optimize the entailment tests, which are usually main bottleneck
of Black-Box procedures. For example, in the case of EL, all necessary information
about entailments from subsets of axioms can be represented by (a polynomial number
of) inferences. Every EL inference can be translated to a propositional (Horn) clause
with the negative atoms corresponding to the premises of the inference, and the positive
atom corresponding to its conclusion. A conclusion is derivable from axioms using the
inferences iff the translation of the inferences entails the (Horn) clause whose negative
atoms correspond to axioms and the positive atoms corresponds to the conclusion.

The above Glass-Box procedure was first proposed and implemented in EL+SAT
[11, 12], and later improved in EL2MUS [3] and SATPin [8]. These tools differ mainly
in the way how they enumerate models corresponding to the candidate sets M , and
further optimizations employed. EL+SAT and EL2MUS use two instances of a SAT
solver—one for enumeration of candidate models, and another for verifying derivability
using inferences—whereas SATPin [8] uses one (modified) SAT solver for both of these
tasks. The encoding for finding the candidate set M described above is most close to
the implementation of EL2MUS. EL+SAT and SATPin do not explicitly enumerate
repairs, but each time a model is found that corresponds to a set M that does not entail
the conclusion, a "blocking" clause is added to ensure that such a model is not returned
again. However, the number of such blocking clauses is at least as large as the number
of repairs. Further differences are that in EL2MUS the entailment checking solver is
specialized in Horn clauses, and that EL+SAT and SATPin extract justifications by a
deletion-based procedure (as outlined above), while EL2MUS uses an insertion-based
procedure. Another tool EL2MCS [2] uses MaxSAT [20, 21] to compute all repairs
and extracts justifications from them using the hitting set duality, but it cannot return
any justification before all repairs are computed. Further, BEACON [1] is a tool that
integrates the justification procedure of EL2MUS.

Up to a few optimizations, the mentioned SAT-based tools use EL inferences only
for the entailment checks. Had they delegated the entailment checks to a separate DL
reasoner, they could be regarded as Black-Box. Our approach uses a similar encoding
of inferences in propositional logic, however, it relies neither on a SAT solver nor on the



Table 1. The syntax and semantics of EL

Syntax Semantics
Roles:

atomic role R RI

Concepts:
atomic concept A AI

top > ∆I

conjunction C uD CI ∩DI

existential restriction ∃R.C {x | ∃y ∈ CI : 〈x, y〉 ∈ RI}
Axioms:

concept inclusion C v D CI ⊆ DI

R0
C v C R−u

C v D1 uD2

C v D1 C v D2
Rv

C v D
C v E : D v E ∈ O

R>
C v > R+

u
C v D1 C v D2

C v D1 uD2
R∃

C v ∃R.D D v E
C v ∃R.E

Fig. 1. The inference rules for reasoning in EL

hitting set duality. In particular, our method does not enumerate repairs (explicitly or
implicitly). As we operate on inferences directly, a Black-Box version of our procedure
would not be possible.

3 Preliminaries

3.1 The Description Logic EL

The syntax of EL is defined using a vocabulary consisting of countably infinite sets of
(atomic) roles and atomic concepts. Complex concepts and axioms are defined recur-
sively using Table 1. We use letters R,S for roles, C,D,E for concepts, and A,B for
atomic concepts. An ontology is a finite set of axioms.

An interpretation I = (∆I , ·I) consists of a nonempty set ∆I called the domain
of I and an interpretation function ·I that assigns to each role R a binary relation
RI ⊆ ∆I × ∆I , and to each atomic concept A a set AI ⊆ ∆I . This assignment
is extended to complex concepts as shown in Table 1. I satisfies an axiom α (written
I |= α) if the corresponding condition in Table 1 holds. I is a model of an ontology
O (written I |= O) if I satisfies all axioms in O. We say that O entails an axiom α
(written O |= α), if every model of O satisfies α. A concept C is subsumed by D w.r.t.
O if O |= C v D. The ontology classification task requires to compute all entailed
subsumptions between atomic concepts occurring in O.

Reasoning in EL can be performed by applying inference rules that derive subsump-
tions between concepts [17]. We use a variant of EL rules shown in Figure 1 that do not
require normalization [14]. As usual, the premises of the rules (if any) are given above
the horizontal line, and the conclusions below. Note that rule Rv can only use D v E
from the ontology O. This side condition should be distinguished from the premises



of the rules, where one can use any derived axiom. This restriction has been made for
efficiency reasons: if to useD v E as the second premise of Rv, like for rule R∃, there
would be too many unnecessary inferences.

The rules in Figure 1 are sound and complete for entailment checking, i.e., the
entailment O |= α holds iff α is derivable from O using the rules.3 Furthermore, for
deriving α, it is sufficient to use inferences that contain only concepts appearing inO or
α [14]. I.e., it is not necessary to apply R+

u if D1 uD2 does not appear in O or α. This
so-called subformula property implies that checking the EL entailment O |= α can
be performed in polynomial time [17, 14] since there are at most polynomially-many
different rule applications that can use only concepts appearing in O or α.

3.2 Inferences, Support, and Justifications

Although our experimental evaluation is concerned about EL, our method can be used
with a large class of inference systems of which the system in Figure 1 is just one
example. In general, we assume that the rules manipulate with objects that we call
axioms, and an ontology is any finite set of such axioms. An inference is an expression
inf of the form 〈α1, . . . , αn ` α〉 where α1, . . . , αn is a (possibly empty) sequence of
axioms called the premises of inf, and α is an axiom called the conclusion of inf.

Let I be a set of inferences. An I-derivation from O is a sequence of inferences
d = 〈inf1, . . . , infk〉 from I such that for every i with (1 ≤ i ≤ k), and each premise
α of infi that is not in O, there exists j < i such that α is the conclusion of infj . An
axiom α is derivable from O using I (notation: O `I α) if either α ∈ O or there exists
an I-derivation d = 〈inf1, . . . , infk〉 from O such that α is the conclusion of infk. A
support for O `I α is a subset of axioms O′ ⊆ O such that O′ `I α. A justification for
O `I α is a subset-minimal support for O `I α.

Suppose that |= is an entailment relation between ontologies and axioms. A justi-
fication for O |= α (also sometimes called a minimal axiom set MinA [4]) is a min-
imal subset O′ ⊆ O such that O′ |= α. An inference 〈α1, . . . , αn ` α〉 is sound if
{α1, . . . , αn} |= α. A set of inferences I is complete for the entailment O |= α if
O′ |= α impliesO′ `I α for every subsetO′ ⊆ O. Note that if I is complete forO |= α
then O′ |= α iff O′ `I α for every O′ ⊆ O. In particular, justifications for O `I α
coincide with justifications for O |= α.

Example 1. Consider the following applications of rules R−u and R+
u in Figure 1: Ie =

{〈A v B u C ` A v B〉, 〈A v B u C ` A v C〉, 〈A v C,A v B ` A v C uB〉}.
Thus, Ie is a set of inferences over EL axioms. LetOe = {A v B u C;A v B;A v C}
be an EL ontology and αe = A v C uB an EL axiom. Note that Oe `Ie αe.

It is easy to see that O′
e = {A v B;A v C} `Ie αe and O′′

e = {A v B u C} `Ie
αe, but {A v B} 6`Ie αe and {A v C} 6`Ie αe. Hence,O′

e andO′′
e are justifications for

Oe `Ie αe. All inferences in Ie are also sound for the EL entailment relation |=. Since
O′
e and O′′

e are the only two justifications for Oe |= αe, the inference set Ie is complete
for the entailment Oe |= αe.

3Actually, w.l.o.g., one can also assume that the axioms inO are only used in the side condi-
tions of rule Rv. Indeed, any axiom D v E ∈ O can be derived in this way by first deriving a
tautology D v D by R0 and then deriving D v E by Rv from D v D using D v E ∈ O.



Resolution
c ∨ a ¬a ∨ d

c ∨ d Factoring
c ∨ a ∨ a
c ∨ a

Fig. 2. Propositional resolution and factoring rules

3.3 Resolution with Answer Literals

Our procedure for enumeration of justifications is based on the resolution calculus,
which is a popular method for automated theorem proving [22]. We will mainly use
resolution for propositional Horn clauses. A (propositional) literal is either an atom
l = a (positive literal) or a negation of atom l = ¬a (negative literal). A (proposi-
tional) clause is a disjunction of literals c = l1 ∨ · · · ∨ ln, n ≥ 0. As usual, we do
not distinguish between the order of literals in clauses, i.e., we associate clauses with
multisets of literals. Given two clauses c1 and c2, we denote by c1 ∨ c2 the clause con-
sisting of all literals from c1 plus all literals from c2. A clause is Horn if it has at most
one positive literal. The empty clause � is the clause with n = 0 literals. The inference
rules for the propositional resolution calculus are given in Figure 2. We say that a set
of clauses S is closed under the resolution rules if S contains every clause derived by
the rules in Figure 2 from S. The resolution calculus is refutationally complete: every
set of clauses S closed under the resolution rules is satisfiable if and only if it does not
contain the empty clause. This means that for checking satisfiability of the input set of
clauses, it is sufficient to deductively close this set under the resolution rules and check
if the empty clause is derived in the closure.

To reduce the number of resolution inferences (and hence the size of the closure)
several refinements of the resolution calculus were proposed. The rules in Figure 2
can be restricted using orderings and selection functions [22]. In particular, for Horn
clauses, it is sufficient to select one (positive or negative) literal in each clause, and
require that the resolution inferences are applied only on those (Theorem 7.2 in [22]).4

This strategy is called resolution with free selection. In addition to rule restrictions,
one can also use a number of simplification rules that can remove or replace clauses
in the closure S. We will use two such rules. Elimination of duplicate literals removes
all duplicate literals from a clause (including duplicate negative literals). Subsumption
deletion removes a clause c from S if there exists another sub-clause c′ of c in S, i.e.,
c = c′ ∨ c′′ for some (possibly empty) clause c′′. In this case we say that c′ subsumes c.

Example 2. Consider the set of Horn clauses 1-7 below. We apply resolution with free
selection that selects the underlined literals in clauses. Clauses 8-10 are obtained by
resolution inferences from clauses shown in angle braces on the right.

1: ¬p1 ∨ p2
2: ¬p1 ∨ p3
3: ¬p2 ∨ ¬p3 ∨ p4

4: p1
5: p2
6: p3

7: ¬p4 8: ¬p3 ∨ p4 〈3, 5〉
9: p4 〈6, 8〉

10: � 〈7, 9〉

Note that the resolution rule was not applied, e.g., to clauses 3 and 6 because literal
¬p3 in clause 3 is not selected. Also note that many clauses in the closure above can
be derived by several resolution inferences. For example, clause 5 can be obtained by

4Note that the factoring rule cannot apply to Horn clauses.



resolving clauses 1 and 4 and clause 6 by resolving 2 and 4. Therefore the empty clause
10 can be derived from several subsets of the original clauses 1-7.

The resolution calculus is mainly used for checking satisfiability of a clause set,
and is not directly suitable for finding unsatisfiable subsets of clauses. To solve the
latter problem, we use an extension of resolution with so-called answer literals [23].
To determine, which subsets of the input clauses are unsatisfiable, we add to every in-
put clause a fresh positive answer literal. Resolution rules can then be applied to the
extended clauses on the remaining (ordinary) literals using the usual orderings and se-
lection functions. If some clause with answer literals is derived, then this clause with
the answer literals removed, can be derived from the clauses for which the answer liter-
als were introduced. In particular, if a clause containing only answer literals is derived,
then the set of clauses that corresponds to these answer literals is unsatisfiable. Com-
pleteness of resolution means that all such unsatisfiable sets of clauses can be found in
this way. If answer literals are added to some but not all clauses and a clause with only
answer literals is derived, then the set of clauses that corresponds to the answer literals
plus clauses without answer literals is unsatisfiable.

Example 3. Consider the clauses 1-7 from Example 2. Let us add answer literals a1-a3
to clauses 4-6 and apply the resolution rules on the remaining (underlined) literals like
in Example 2, eliminating duplicate literals if they appear.

1: ¬p1 ∨ p2
2: ¬p1 ∨ p3
3: ¬p2 ∨ ¬p3 ∨ p4
4: p1 ∨ a1
5: p2 ∨ a2
6: p3 ∨ a3
7: ¬p4

8: p2 ∨ a1 〈1, 4〉
9: p3 ∨ a1 〈2, 4〉

10: ¬p3 ∨ p4 ∨ a2 〈3, 5〉
11: ¬p3 ∨ p4 ∨ a1 〈3, 8〉
12: p4 ∨ a2 ∨ a3 〈6, 10〉
13: p4 ∨ a1 ∨ a2 〈9, 10〉
14: p4 ∨ a1 ∨ a3 〈6, 11〉

15: p4 ∨ a1 〈9, 11〉
16: a2 ∨ a3 〈7, 12〉
17: a1 ∨ a2 〈7, 13〉
18: a1 ∨ a3 〈7, 14〉
19: a1 〈7, 15〉

The framed clauses 16-19 contain only answer literals, so the corresponding sets of
clauses are unsatisfiable in conjunction with the input clauses without answer literals.
For example, clause 16 means that clauses 1-3, 5-7 are unsatisfiable and clause 19
means that clauses 1-4, 7 are also unsatisfiable. Note that clause 19 subsumes clauses
17-18; if subsumed clauses are deleted, we obtain only clauses with answer literals that
correspond to minimal subsets of clauses 4-6 that are unsatisfiable in conjunction with
the remaining input clauses 1-3, 7.

4 Enumerating Justifications using Resolution

In this section, we present a new procedure that, given an ontologyO, an inference set I
and a goal axiom αg , enumerates justifications for O `I αg . It uses the usual reduction
of the derivability problem O `I αg to satisfiability of propositional Horn clauses [11,
12, 2, 8] in combination with the resolution procedure with answer literals .

Given a derivability problem O `I αg , we assign to each axiom αi occurring in I
a fresh propositional atom pαi

. Each inference 〈α1, . . . , αn ` α〉 ∈ I is then translated
to the Horn clause ¬pα1

∨ · · · ∨ ¬pαn
∨ pα. In addition, for each axiom α ∈ O that



appears in I, we introduce a (unit) clause pα. Finally, we add the clause ¬pαg
encoding

the assumption that αg is not derivable. It is easy to see that O `I αg if and only if the
resulting set of clauses is unsatisfiable.

We now extend this reduction to find justifications for O `I αg . Recall that a subset
O′ ⊆ O is a support for O `I αg if O′ `I αg . Hence, the subset of clauses pα for
α ∈ O′ is unsatisfiable in combination with the clauses for the encoding of inferences
and ¬pαg

. We can find all such minimal subsets (corresponding to justifications) by
adding a fresh answer literal to every clause pα with α ∈ O, and applying resolution on
non-answer literals together with elimination of redundant clauses.

Example 4. Consider the ontology Oe, inferences Ie and axiom αe from Example 1.
To encode the derivability problem Oe `Ie αe we assign atoms p1–p4 to the axioms
occurring in Ie as follows:

p1 : A v B u C, p2 : A v B, p3 : A v C, p4 : A v C uB.

The encoding produces clauses 1-7 from Example 3: the inferences Ie are encoded
by clauses 1-3, the axioms in Oe result in clauses 4-6 with answer literals, and the
assumption that αe is not derivable is encoded by clause 7. The derived clauses 16-19
correspond to supports of Oe `Ie αe, and by eliminating redundant clauses 17-18, we
obtain clauses 16 and 19 that correspond to justifications O′

e and O′′
e from Example 1.

One disadvantage of the described procedure is that it requires the closure under the
resolution rules to be fully computed before any justification can be found. Indeed, since
derived clauses may be subsumed by later clauses, one cannot immediately see whether
a clause with only answer literals corresponds to a justification. For example, clause
19 in Example 3 subsumes clauses 17-18 derived before, thus 17-18 do not correspond
to justifications. We address this problem by using non-chronological application of
resolution inferences. Intuitively, instead of applying the rules to clauses in the order in
which they are derived, we apply the rules to clauses containing fewer answer literals
first. Thus, in Example 3, we apply the rules to clause 15 before clauses 12-14.

The improved procedure can enumerate justifications, i.e., return justifications one
by one without waiting for the algorithm to terminate. This procedure is described in
Algorithm 1. It is a minor variation of the standard saturation-based procedure for com-
puting the closure under (resolution) rules, which uses a priority queue to store unpro-
cessed clauses instead of an ordinary queue. Let - be a total preorder on clauses (a
transitive reflexive relation for which every two clauses are comparable). As usual, we
write c1 ≺ c2 if c1 - c2 but c2 6- c1. We say that - is admissible if c1 ≺ c2 when-
ever the set of answer literals of c1 is a proper subset of the set of answer literals of c2.
For example, it is required that ¬p3 ∨ p4 ∨ a1 ≺ p4 ∨ a1 ∨ a2, but not necessary that
p4 ∨ a1 ≺ p4 ∨ a2 ∨ a3. Note that if c is derived by resolution from clauses c1 and c2
then c1 - c and c2 - c since c contains the answer literals of both c1 and c2.

We say that a clause d (not necessarily occurring in Q) is minimal w.r.t. Q if there
exists no clause c ∈ Q such that c ≺ d. A priority queue based on - is a queue in
which the remove operation returns only a minimal element w.r.t. Q.5 Given such a

5If there are several minimal elements in the queue, one of them is chosen arbitrarily.



Algorithm 1: Enumeration of justifications using resolution
Enumerate(O `I α, -): enumerate justifications for O `I α
input : O `I α – the problem for which to enumerate justifications,

- – an admissible preorder on clauses

1 Q← createEmptyQueue(-) ; // for unprocessed clauses
2 Q.addAll(encode(O `I α)); // add the clause encoding of the problem
3 S← createEmptyList() ; // for processed clauses
4 while Q 6= ∅ do
5 c← Q.remove(); // take one minimal element out of the queue
6 c← simplify(c); // remove duplicate literals from c
7 if c is not subsumed by any c′ ∈ S then
8 S.add(c);
9 if c contains only answer literals then

10 report decode(c); // a new justification is found
11 else // apply resolution rules to c and clauses in S
12 for c′ ∈ resolve(c,S) do
13 Q.add(c′);

queue Q, Algorithm 1 initializes it with the translation of the input problem O `I α
(line 2) and then repeatedly applies resolution between minimal clauses taken out of
this queue (loop 4-13) and the clauses in S that were processed before. Specifically, the
removed minimal clause c is first simplified by removing duplicate literals (line 6) and
then checked if it is subsumed by any previously processed clauses in S (in particular,
if c was processed before). If c is subsumed by some c′ ∈ S, it is ignored and the next
(minimal) clause is taken from the queue Q. Otherwise, c is added to S (line 8). If c
contains only answer literals, then it corresponds to a justification (as we show next),
which is then reported by the algorithm (line 10). Otherwise, resolution inferences are
then applied on the selected non-answer literal in c (line 12). The new clauses derived
by resolution are then added to Q (line 13) and the loop continues until Q is empty.

We now prove that Algorithm 1 in line 10 always returns a (new) justification. It is
easy to see that if a clause d was minimal w.r.t. Q in the beginning of the while loop
(line 4) then it remains minimal w.r.t. Q at the end of the loop (line 13). Indeed, for the
clause c taken from the queue (line 5), we have c 6≺ d. For all clauses c′ obtained by
resolving c with clauses from S (line 12) we have c - c′. Hence c′ 6≺ d for all c′ added
to Q (line 13) (for otherwise, c - c′ ≺ d). This, in particular, implies that each clause
in S is always minimal w.r.t. Q and, consequently, if c1 was added to S before c2 then
c1 - c2 (for otherwise c2 ≺ c1 and c1 would not be minimal w.r.t. Q when c2 ∈ Q).
Hence, there cannot be two clauses c1 and c2 in S that contain only answer literals such
that c1 is a proper sub-clause of c2 since in this case c1 ≺ c2, thus c2 must have been
added to S after c1, but then c2 would be subsumed by c1 (see line 7). Hence each result
returned in line 10 is a (new) justification.

Since clauses are added to S in the order defined by -, the justifications are also
returned according to this order. Hence Algorithm 1 can return justifications in any



user-defined order - on subsets of axioms as long as s1 ( s2 implies s1 ≺ s2. Indeed,
any such an order - can be lifted to an admissible order on clauses by comparing the
sets of answer literals of clauses like the corresponding sets of axioms. For example,
one can define s1 - s2 by ||s1|| ≤ ||s2|| where ||s|| is the cardinality of s. Instead of ||s||
one can use any other measure m(s) that is monotonic over the proper subset relation
(i.e., s1 ( s2 implies m(s1) < m(s2)), for example, the length of s—the total number
of symbols needed to write down all axioms in s.

5 Implementation and Evaluation

We have implemented Algorithm 1 as a part of the new Java-based Proof Utility Library
(PULi).6 In our implementation, we used the standard Java priority queue for Q, and
employed a few optimisations to improve the performance of the algorithm.

First, we have noticed that our implementation spends over 95% of time on checking
subsumptions in line 7. To improve subsumption checks, we developed a new datastruc-
ture for storing sets of elements and checking if a given set is a superset of some stored
set. In a nutshell, we index the sets by 128 bit vectors, represented as a pair of 64 bit
integers, where each set element assigns 1 to one position of the bit vector based on its
hash value. This idea is reminiscent of Bloom filters7 and can be also seen as a simple
version of a feature vector indexing [24]. We store the sets in a trie8 with the bit vector
as the key, and use bitwise operations to determine if one vector has all bits of the other
vector, which gives us a necessary condition for set inclusion. Using this datastructure,
we were able to significantly improve the subsumption tests.

We have also noticed that the queue Q often contains about 10 times more elements
than the closure S. To improve the memory consumption, we do not create the resolvents
c′ immediately (see line 12), but instead store in the queue Q the pairs of clauses (from
S) from which these resolvents were obtained. This does not reduce the number of
elements in the queue, but reduces the memory consumed by each element to essentially
a few pointers plus an integer for determining the priority of the element.

We have evaluated our implementation on inferences computed for entailed axioms
in some large EL ontologies, and compared performance with SAT-based tools for enu-
meration of justifications EL2MUS [3], EL2MCS [2] and SATPin [8]. The inferences
were extracted using EL+SAT [11] (in the following called sat inferences) and ELK
reasoner [25] (in the following called elk inferences). Both are capable of computing
small inference sets that derive particular entailed axioms and are complete for these
entailments (see Section 3.2).

For our evaluation, we chose ontologies GO-PLUS, GALEN and SNOMED, which
contain (mostly) EL axioms. GO-PLUS is a recent version of Gene Ontology,9 which
imports a number of other ontologies. The provided distribution included subsumption
axioms that were inferred (annotated with is_inferred), which we have removed.

6https://github.com/liveontologies/puli
7https://en.wikipedia.org/wiki/Bloom_filter
8https://en.wikipedia.org/wiki/Trie
9http://geneontology.org/page/download-ontology



Table 2. Summary of the input ontologies

GO-PLUS GALEN SNOMED
# axioms 105557 44475 315521
# concepts 57173 28482 315510
# roles 157 964 77
# queries 90443 91332 468478

Table 3. Summary of sizes of inference sets

GO-PLUS GALEN SNOMED
average 470.3 59140.0 997.8

sat median 39.0 110290.0 1.0
max 15915.0 152802.0 39381.0
average 166.9 3602.0 110.3

elk median 43.0 3648.0 8.0
max 7919.0 81501.0 1958.0

GALEN is the version 7 of OpenGALEN.10 We did not use the more recent version
8, because the other tools were running out of memory. SNOMED is the 2015-01-31
version of Snomed CT.11 From the first two ontologies we removed non-EL axioms,
such as functional property axioms, and axioms that contain inverse property expres-
sions and disjunctions. We have also adapted the input ontologies, so that they could
be processed by (the reasoner of) EL+SAT. We removed disjointness axioms and re-
placed property equivalences with pairs of property inclusions. Duplicate axioms were
removed by loading and saving the ontologies with OWL API.12 With these ontologies,
we have computed justifications for the entailed direct subsumptions between atomic
concepts (in the following called the queries) using various tools. Table 2 shows the
numbers of axioms, atomic concepts, atomic roles, and queries of each input ontology,
and Table 3 the statistics about the sizes of inference sets obtained for these queries. All
queries were processed by tools in a fixed random order to achieve a fair distribution
of easy and hard problems. We used a global timeout of one hour for each tool and a
local timeout of one minute per query.13 To run the experiments we used a PC with Intel
Core i5 2.5 GHz processor and 8 GiB RAM operated under 64-bit OS Ubuntu 16.04.
For Java tools, we used OpenJDK v. 1.80_151 with a 7.7 GiB heap space limit.

As an admissible order on clauses for our implementation of Algorithm 1, we chose
the relation - that compares the number of different answer literals in clauses. When
using this order, cardinality-minimal justifications are found first. To control resolution
inferences, we used three different selection strategies (for Horn clauses) that we detail
next. For a propositional atom p, let #(p) be the number of input clauses in which p
appears as a (positive) literal. Given a clause c, the BottomUp strategy, selects a nega-
tive literal ¬p of c whose value #(p) is minimal; if there are no negative literals, the
(only) positive literal of c is selected. The TopDown strategy selects a positive literal,
if there is one, and otherwise selects a negative literal like in BottomUp. Finally, the
Threshold strategy selects a negative literal ¬p with the minimal value #(p) if #(p)
does not exceed a given threshold value or there is no positive literal in c; otherwise
the positive literal is selected. In our experiments we used the threshold value of 2. In-

10http://www.opengalen.org/sources/sources.html
11http://www.snomed.org/
12http://owlcs.github.io/owlapi/
13The project for conducting the experiments can be found at https://github.

com/liveontologies/pinpointing-experiments; a docker image is available at
https://github.com/liveontologies/docker-pinpointing-experiments



Table 4. Number of queries attempted in 1h / number of 60s timeouts / % of attempted queries in
the number of all queries / % of 60s timeouts in the number of queries attempted in 1h

GO-PLUS GALEN SNOMED
BottomUp 2967 / 47 / 3.3 / 1.58 133 / 58 / 0.1 / 43.6 5630 / 26 / 1.2 / 0.46
TopDown 25025 / 46 / 27.2 / 0.18 5687 / 16 / 6.2 / 0.28 16541 / 28 / 3.5 / 0.17
Threshold 36236 / 43 / 40.1 / 0.12 3356 / 3 / 3.7 / 0.09 48994 / 16 / 10.5 / 0.03
EL2MUS 12760 / 48 / 14.1 / 0.38 5077 / 34 / 5.6 / 0.67 14076 / 39 / 3.0 / 0.28
EL2MCS 6758 / 47 / 7.5 / 0.70 3194 / 27 / 3.5 / 0.85 6275 / 47 / 1.3 / 0.75

sa
t

SATPin 4390 / 53 / 4.9 / 1.21 1475 / 39 / 1.6 / 2.64 3490 / 46 / 0.7 / 1.32
BottomUp 3694 / 47 / 4.1 / 1.27 10584 / 28 / 11.6 / 0.26 159820 / 22 / 34.1 / 0.01
TopDown 20249 / 44 / 22.4 / 0.22 7016 / 35 / 7.7 / 0.50 158992 / 12 / 33.9 / 0.01
Threshold 35622 / 52 / 39.4 / 0.15 35462 / 16 / 38.8 / 0.05 468478 / 0 / 100 / 0.00
EL2MUS 13554 / 47 / 15.0 / 0.35 13024 / 38 / 14.3 / 0.29 15708 / 42 / 3.4 / 0.27
EL2MCS 6758 / 47 / 7.5 / 0.70 8725 / 47 / 9.6 / 0.54 6466 / 48 / 1.4 / 0.74

el
k

SATPin 4625 / 54 / 5.1 / 1.17 3037 / 49 / 3.3 / 1.61 4144 / 50 / 0.9 / 1.21

tuitively, the BottomUp strategy simulates the Unit resolution, the TopDown simulates
the SLD resolution, and Threshold is some combination thereof.

Table 4 shows for how many queries all justifications were computed within the
global and local timeouts.14 The first six rows correspond to experiments on sat infer-
ences and the other six rows to experiments on elk inferences. Note that, generally, the
tools processed more queries and had fewer percentage of timeouts for elk inferences.
Also, the Threshold strategy performed best in almost all cases. In particular, it could
process all queries of SNOMED without timeouts. None of the SAT-based tools was able
to find all justifications for all queries of SNOMED even after running for 24 hours. We
have then further verified (on a slightly faster PC with more memory) that Threshold
without timeouts could process all 5415670 (not necessarily direct) entailed subsump-
tions of SNOMED in about 21 hours using 10 GiB of java heap space. The hardest query
took about 17 minutes and returned 658932 justifications. The largest number of justi-
fications 942658 was returned by the third-hardest query in about 5 minutes.

To have an idea which strategy was best for which query, we have plotted in Figure 3
the distributions of the query times for all strategies. Each point 〈x, y〉 of a plot repre-
sents the proportion x of queries that were solved by the method in under the time y. For
instance, TopDown solved about 90% of the queries of GO-PLUS for sat inferences in
under 0.01 second. Each plot considers only queries attempted by all tools on that plot.
Since each plot represents the distribution of times and not a direct comparison of times
for each query, even if one line is completely below another one, this does not mean that
the corresponding method is faster for every query. To get a more detailed comparison,
we have also plotted the distribution of minimum query times with a thin black line.
For each query, the minimum time is the time spent by the tool that was the fastest on
that query (among the tools on the same plot). If a plot for some tool coincides with this
black line at point (x, y), then all queries solved within time y by some tool were also
solved within time y by this tool. In particular, this tool is the fastest for all queries with

14The raw experimental data is available at https://osf.io/4q6a9/
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Fig. 3. Distribution of query times for SAT tools and resolution strategies, on sat and elk inference
sets. The BottomUp strategy for sat is missing due too few processed queries.
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Fig. 4. Distribution of sizes (above) and computation times (below) for first and last justifications
computed by Threshold and first justifications computed by EL2MUS on elk inferences

the minimal time y. This analysis shows, for example, that TopDown was often the best
resolution tool for easy queries (solved under 0.1 seconds by some tool), and Threshold
was the best tool for hard queries (solved over 1 second by all tools) on all ontologies.
The sat-based tool EL2MUS was often the winner on medium-hard queries. Note that
the time scale is logarithmic, so the times below 1 millisecond are not displayed.

As mentioned before, one important difference between SAT tools and resolution-
based tools, is that the latter allow one to enumerate justifications in any admissible
order. In particular, it is possible to find cardinality-minimal justifications without com-
puting all justifications, which is useful, e.g., for ontology debugging. Since deciding
whether there exists a justification within a given size bound is an NP-complete problem
[4], finding a cardinality-minimal justification is not as easy as finding one (arbitrary)
justification. To determine whether the difference is significant in practice, we compare
computations of the first justification by EL2MUS, the first (cardinality-minimal) jus-
tification by Threshold, and the last (before timeout, cardinality-maximal) justification
by Threshold. In Figure 4, we plot distributions of the sizes for these justifications and
of times spent on computing them. Interestingly, the sizes of first justifications found
by EL2MUS are very close to the minimal sizes. This is probably because small justi-
fications are more likely to be obtained when minimizing sets of axioms for which the
entailment holds. Unsurprisingly, EL2MUS can consistently compute the fist justifica-
tions in a few milliseconds. Although the times for computing a cardinality-minimal



justification can be significantly higher (especially for GALEN, which has large infer-
ence sets), they can still be a few orders of magnitude smaller than for computing all (=
the last) justifications for the hard cases. In particular, Threshold was able to compute
a cardinality-minimal justification for all queries of GO-PLUS, GALEN and SNOMED
respectively in about 6 minutes, 1.5 hours, and 25 minutes.

6 Summary

We presented a new procedure that enumerates justifications using inferences that de-
rive the goal consequence from an ontology. The inferences are encoded as Horn clauses
and resolution with answer literals is applied. Our procedure can be parameterized by
an ordering in which the justifications should be enumerated (as long as it extends
the subset relation) and by a strategy that selects literals for resolution. The algorithm
is relatively easy to implement and can be also easily used with non-Horn and non-
propositional clauses. Our empirical evaluation shows that the procedure provides com-
parable, if not better performance than other tools that also use inferences as input. For
example, for Snomed CT we were able to compute all justifications for all direct sub-
sumptions in less than 1 hour, and for all (possibly indirect) subsumptions in less than
1 day. Currently, we cannot explain the difference in the performance of the evaluated
selection strategies. We hope to explore this question in the future.
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