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Abstract. Existing techniques for Craig interpolation for the quantifier-
free fragment of the theory of arrays are inefficient for computing se-
quence and tree interpolants: the solver needs to run for every parti-
tioning (A,B) of the interpolation problem to avoid creating AB-mixed
terms. We present a new approach using Proof Tree Preserving Interpo-
lation and an array solver based on Weak Equivalence on Arrays. We
give an interpolation algorithm for the lemmas produced by the array
solver. The computed interpolants have worst-case exponential size for
extensionality lemmas and worst-case quadratic size otherwise. We show
that these bounds are strict in the sense that there are lemmas with no
smaller interpolants. We implemented the algorithm and show that the
produced interpolants are useful to prove memory safety for C programs.

1 Introduction

Several model-checkers [1,2,8,14,16,17,20,25,26] use interpolants to find candi-
date invariants to prove the correctness of software. They require efficient tools to
check satisfiability of a formula in a decidable theory and to compute interpolants
(usually sequence or tree interpolants) for unsatisfiable formulas. Moreover, they
often need to combine several theories, e.g., integer or bitvector theory for rea-
soning about numeric variables and array theory for reasoning about pointers. In
this paper we present an interpolation procedure for the quantifier-free fragment
of the theory of arrays that allows for the combination with other theories and
that reuses an existing unsatisfiability proof to compute interpolants efficiently.

Our method is based on the array solver presented in [10], which fits well into
existing Nelson-Oppen frameworks. The solver generates lemmas, valid in the
theory of arrays, that explain equalities between terms shared between different
theories. The terms do not necessarily belong to the same formula in the inter-
polation problem and the solver does not need to know the partitioning. Instead,
we use the technique of Proof Tree Preserving Interpolation [13], which produces
interpolants from existing proofs that can contain propagated equalities between
symbols from different parts of the interpolation problem.

The contribution of this paper is an algorithm to interpolate the lemmas
produced by the solver of the theory of arrays without introducing quantifiers.
The solver only generates two types of lemmas, namely a variant of the read-
over-write axiom and a variant of the extensionality axiom. However, the lemmas
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contain array store chains of arbitrary length which need to be handled by the
interpolation procedure. The interpolants our algorithm produces summarize
array store chains, e. g., they state that two shared arrays at the end of a sub-
chain differ at most at m indices, each satisfying a subformula. Bruttomesso
et al. [6] showed that adding a diff function to the theory of arrays makes the
quantifier-free fragment closed under interpolation, i.e. it ensures the existence of
quantifier-free interpolants for quantifier-free problems. We use the diff function
to obtain the indices for store chains and give a more efficient algorithm that
exploits the special shape of the lemmas provided by the solver.

Nevertheless, the lemma interpolants produced by our algorithm may be
exponential in size (with respect to the size of the input lemma). We show that
this is unavoidable as there are lemmas that have no small interpolants.

Related Work. The idea of computing interpolants from resolution proofs goes
back to Kraj́ıček and Pudlák [22,27]. McMillan [24] extended their work to SMT
with a single theory. The theory of arrays can be added by including quan-
tified axioms and can be interpolated using, e.g., the method by Christ and
Hoenicke [9] for quantifier instantiation, or the method of Bonacina and Johans-
son [4] for superposition calculus. Brillout et al [5] apply a similar algorithm to
compute interpolants from sequent calculus proofs. In contrast to our approach,
using such a procedure generates quantified interpolants.

Equality interpolating theories [30,7] allow for the generation of quantifier-
free interpolants in the combination of quantifier-free theories. A theory is equal-
ity interpolating if it can express an interpolating term for each equality using
only the symbols occurring in both parts of the interpolation problem. The al-
gorithm of Yorsh and Musuvathi [30] only supports convex theories and is not
applicable to the theory of arrays. Bruttomesso et al. [7] extended the framework
to non-convex theories. They also present a complete interpolation procedure
for the quantifier-free theory of arrays that works for theory combination in [6].
However, their solver depends on the partitioning of the interpolation problem.
This can lead to exponential blow-up of the solving procedure. Our interpola-
tion procedure works on a proof produced by a more efficient array solver that
is independent of the partitioning of the interpolation problem.

Totla and Wies [29] present an interpolation method for arrays based on com-
plete instantiations. It combines the idea of [7] with local theory extension [28].
Given an interpolation problem A and B, they define two sets, each using only
symbols from A resp. B, that contain the instantiations of the array axioms
needed to prove unsatisfiability. Then an existing solver and interpolation pro-
cedure for uninterpreted functions can be used to compute the interpolant. The
procedure causes a quadratic blow-up on the input formulas. We also found that
their procedure fails for some extensionality lemmas, when we used it to create
candidate interpolants. We give an example for this in Sect. 6.

The last two techniques require to know the partitioning at solving time.
Thus, when computing sequence [24] or tree interpolants [19], they would require
either an adapted interpolation procedure or the solver has to run multiple times.
In contrast, our method can easily be extended to tree interpolation [11].
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2 Basic Definitions

We assume standard first-order logic. A theory T is given by a signature Σ and
a set of axioms. The theory of arrays TA is parameterized by an index theory
and an element theory. Its signature ΣA contains the select (or read) function
·[·] and the store (or write) function ·〈· � ·〉. In the following, a, b, s, t denote
array terms, i, j, k index terms and v, w element terms. For array a, index i and
element v, a[i] returns the element stored in a at i, and a〈i�v〉 returns a copy of
a where the element at index i is replaced by the element v, leaving a unchanged.
The functions are defined by the following axioms proposed by McCarthy [23].

∀a i v. a〈i� v〉[i] = v (idx)

∀a i j v. i 6= j → a〈i� v〉[j] = a[j] (read-over-write)

We consider the variant of the extensional theory of arrays proposed by Brut-
tomesso et al. [6] where the signature is extended by the function diff(·, ·). For
distinct arrays a and b, it returns an index where a and b differ, and an arbitrary
index otherwise. The extensionality axiom then becomes

∀a b. a[diff(a, b)] = b[diff(a, b)]→ a = b . (ext-diff)

The authors of [6] have shown that the quantifier-free fragment of the theory
of arrays with diff, TAxDiff , is closed under interpolation. To express the in-
terpolants conveniently, we use the notation from [29] for rewriting arrays. For
m ≥ 0, we define a

m
 b for two arrays a and b inductively as

a
0
 b := a a

m+1
 b := a〈diff(a, b) � b[diff(a, b)]〉 m b .

Thus, a
m
 b changes the values in a at m indices to the values stored in b. The

equality a
m
 b = b holds if and only if a and b differ at up to m indices. The

indices where they differ are the diff terms occurring in a
m
 b.

An interpolation problem (A,B) is a pair of formulas where A∧B is unsatis-
fiable. A Craig interpolant for (A,B) is a formula I such that (i) A implies I in
the theory T , (ii) I and B are T -unsatisfiable and (iii) all non-theory symbols
occurring in I are shared between A and B. Given an interpolation problem
(A,B), the symbols shared between A and B are called shared, symbols only
occurring in A are called A-local and symbols only occurring in B, B-local. A
literal, e.g. a = b, that contains A-local and B-local symbols is called mixed.

3 Preliminaries

Our interpolation procedure operates on theory lemmas instantiated from par-
ticular variants of the read-over-write and extensionality axioms, and is designed
to be used within the proof tree preserving interpolation framework. In the fol-
lowing, we give a short overview of this method and revisit the definitions and
results about weakly equivalent arrays.
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3.1 Proof Tree Preserving Interpolation

The proof tree preserving interpolation scheme presented by Christ et al. [13]
allows to compute interpolants for an unsatisfiable formula using a resolution
proof that is unaware of the interpolation problem.

For a partitioning (A,B) of the interpolation problem, two projections · �A
and ·�B project a literal to its A-part resp. B-part. For a literal ` occurring in A,
we define ` �A ≡ `. If ` is A-local, ` �B ≡ true. For ` in B, the projections are
defined analogously. These projections are canonically extended to conjunctions
of literals. A partial interpolant of a clause C occurring in the proof tree is defined
as the interpolant of A∧ (¬C)�A and B ∧ (¬C)�B. Partial interpolants can be
computed inductively over the proof tree and the partial interpolant of the root
is the interpolant of A and B. For a theory lemma C, a partial interpolant is
computed for the interpolation problem ((¬C)�A, (¬C)�B).

The core idea of proof tree preserving interpolation is a scheme to handle
mixed equalities. For each a = b where a is A-local and b is B-local, a fresh
variable xab is introduced. This allows to define the projections as follows.

(a = b)�A ≡ (a = xab) (a = b)�B ≡ (xab = b)

Thus, a = b is equivalent to ∃xab.(a = b)�A∧ (a = b)�B and xab is a new shared
variable that may occur in partial interpolants. For disequalities we introduce
an uninterpreted predicate EQ and define the projections for a 6= b as

(a 6= b)�A ≡ EQ(xab, a) (a 6= b)�B ≡ ¬EQ(xab, b) .

For an interpolation problem (A ∧ (¬C) �A,B ∧ (¬C) �B) where ¬C contains
a 6= b, we require as additional symbol condition that xab only occurs as first
parameter of an EQ predicate which occurs positively in the interpolant, i.e.,
the interpolant has the form I[EQ(xab, s1)] . . . [EQ(xab, sn)]1. For a resolution
step on the mixed pivot literal a = b, the following rule combines the partial
interpolants of the input clauses to a partial interpolant of the resolvent.

C1 ∨ a = b : I1[EQ(xab, s1)] . . . [EQ(xab, sn)] C2 ∨ a 6= b : I2(xab)

C1 ∨ C2 : I1[I2(s1)] . . . [I2(sn)]

3.2 Weakly Equivalent Arrays

Proof tree preserving interpolation can handle mixed literals, but it cannot deal
with mixed terms which can be produced when instantiating (read-over-write) on
an A-local store term and a B-local index. The lemmas produced in the decision
procedure for the theory of arrays presented by Christ and Hoenicke [10] avoid
such mixed terms by exploiting weak equivalences between arrays.

For a formula F , let V be the set of terms that contains the array terms in
F and in addition the select terms a[i] and their indices i and for each store

1 One can show that such an interpolant exists for every equality interpolating theory
in the sense of Definition 4.1 in [7]. The terms si are the terms v in that definition.



Efficient Interpolation for the Theory of Arrays 5

term a〈i� v〉 in F the terms i, v, a[i] and a〈i� v〉[i]. Let ∼ be the equivalence
relation on V representing equality. The weak equivalence graph GW is defined
by its vertices, the array-valued terms in V , and its undirected edges of the form
(i) s1 ↔ s2 if s1 ∼ s2 and (ii) s1

i↔ s2 if s1 has the form s2〈i� ·〉 or vice versa.
If two arrays a and b are connected in GW by a path P , they are called weakly

equivalent. This is denoted by a
P⇔ b. Weakly equivalent arrays can differ only

at finitely many positions given by Stores (P ) := {i | ∃s1 s2. s1
i↔ s2 ∈ P}. Two

arrays a and b are called weakly equivalent on i, denoted by a ≈i b, if they are
connected by a path P such that k 6∼ i holds for each k ∈ Stores (P ). Two arrays
a and b are called weakly congruent on i, a ∼i b, if they are weakly equivalent
on i, or if there exist a′[j], b′[k] ∈ V with a′[j] ∼ b′[k] and j ∼ k ∼ i and a′ ≈i a,
b′ ≈i b. If a and b are weakly congruent on i, they must store the same value
at i. For example, if a〈i + 1 � v〉 ∼ b and b[i] ∼ c[i], arrays a and b are weakly
equivalent on i while a and c are only weakly congruent on i.

We use Cond(a
P⇔ b),Cond(a ≈i b),Cond(a ∼i b) to denote the conjunction

of the literals v = v′ (resp. v 6= v′), v, v′ ∈ V , such that v ∼ v′ (resp. v 6∼ v′)
is necessary to show the corresponding property. Instances of array lemmas are
generated according to the following rules:

a ≈i b i ∼ j a[i], b[j] ∈ V
Cond(a ≈i b) ∧ i = j → a[i] = b[j]

(roweq)

a
P⇔ b ∀i ∈ Stores (P ) . a ∼i b a, b ∈ V

Cond(a
P⇔ b) ∧

∧
i∈Stores(P )

Cond(a ∼i b)→ a = b
(weq-ext)

The first rule, based on (read-over-write), propagates equalities between select
terms and the second, based on extensionality, propagates equalities on array
terms. These rules are complete for the quantifier-free theory of arrays [10]. In
the following, we describe how to derive partial interpolants for these lemmas.

4 Interpolants for Read-Over-Weakeq Lemmas

A lemma generated by (roweq) explains the conflict (negation of the lemma)

Cond(a ≈i b) ∧ i = j ∧ a[i] 6= b[j] .

The weak equivalence a ≈i b ensures that a and b are equal at i = j which
contradicts a[i] 6= b[j] (see Fig. 1).

The general idea for computing an interpolant for this conflict, similar to [15],
is to summarize maximal paths induced by literals of the same part (A or B),
relying on the fact that the terms at the ends of these paths are shared. If a
shared term is equal to the index i, we can express that the shared arrays at the
path ends coincide or must differ at the index. There is a shared term for i = j
if i or j are shared or if i = j is mixed. If there is no shared term for i = j, the
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a[i] b[j]

a · · · b

i j
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Fig. 1. A read-over-weakeq conflict. Solid lines represent strong (dis-)equalities, dotted
lines function-argument relations, and zigzag lines represent weak paths consisting of
store steps and array equalities.

interpolant can be expressed using diff chains to capture the index. We identify
four basic cases: (i) there is a shared term for i = j and a[i] = b[j] is in B or
mixed, (ii) there is a shared term for i = j and a[i] = b[j] is A-local, (iii) both i
and j are B-local, and (iv) both i and j are A-local.

4.1 Shared Term for i = j and a[i] = b[j] is in B or mixed

If there exists a shared term x for the index equality i = j, the interpolant can
contain terms s[x] for shared array terms s occurring on the weak path between
a and b. The basic idea is to summarize the weak A-paths by applying rule
(roweq) on their end terms.

Example 1. Consider the following read-over-weakeq conflict:

a = s1 ∧ s1〈k1 � v1〉 = s2 ∧ s2〈k2 � v2〉 = s3 ∧ s3 = b

∧ i 6= k1 ∧ i 6= k2 ∧ i = j ∧ a[i] 6= b[j]

where a, k2, v2, i are A-local, b, k1, v1, j are B-local, and s1, s2, s3 are shared.
Projecting the mixed literals on A and B as described in Sect. 3.1 yields the
interpolation problem

A : a = s1 ∧ s2〈k2 � v2〉 = s3 ∧ EQ(xik1 , i) ∧ i 6= k2 ∧ i = xij ∧ EQ(xa[i]b[j], a[i])

B : s1〈k1 � v1〉 = s2 ∧ s3 = b ∧ ¬EQ(xik1 , k1) ∧ xij = j ∧ ¬EQ(xa[i]b[j], b[j]) .

An interpolant is I ≡ EQ(xa[i]b[j], s1[xij ]) ∧ s2[xij ] = s3[xij ] ∧ EQ(xik1 , xij).

Algorithm. The first step is to subdivide the weak path P : a ≈i b into A- and
B-paths. An equality edge ↔ is assigned to either an A- or B-path depending
on whether the corresponding equality is in A or B. A mixed equality a′ = b′

is split into the A-local equality a′ = xa′b′ and the B-local equality xa′b′ = b′.

Store edges
i↔ are assigned depending on which part contains the store term. If

an equality or store term is shared between both parts, the algorithm can assign
it to A or B arbitrarily. The whole path from a to b is then an alternation of A-
and B-paths, which meet at shared boundary terms.
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Let x be the shared term for i = j, i.e. x stands for i if i is shared, for j if i
is not shared but j is, and for the auxiliary variable xij if i = j is mixed.
(i) An inner A-path π : s1 ≈i s2 of P starts and ends with a shared term.
The summary is s1[x] = s2[x]. For a store edge on π with index k, add the
disjunct x = k if the corresponding disequality i 6= k is B-local, and the disjunct
EQ(xik, x) if the disequality is mixed. The interpolant of the subpath is

Iπ ≡ s1[x] = s2[x]∨FAπ (x) where FAπ (x) ≡
∨

k∈Stores(π)
i 6=k B-local

x = k ∨
∨

k∈Stores(π)
i 6=k mixed

EQ(xik, x) .

(ii) If a[i] 6= b[j] is mixed and a[i] is A-local, the first A-path on P starts with
a or a is shared, i.e. π : a ≈i s1 (where s1 can be a). For the path π, build the
term EQ(xa[i]b[j], s1[x]) and add FAπ (x) as in case (i).

Iπ ≡ EQ(xa[i]b[j], s1[x]) ∨ FAπ (x)

(iii) Similarly in the case where a[i] 6= b[j] is mixed and b[j] is A-local, the last
A-path on P ends with b or b is shared, π : sn ≈i b. In this case the disjunct
i 6= j needs to be added if i = j is B-local and i, j are both shared.

Iπ ≡ EQ(xa[i]b[j], sn[x]) ∨ FAπ (x) [ ∨ i 6= j]

(iv) For every B-path π, add the conjunct x 6= k for each A-local index disequal-
ity i 6= k, and the conjunct EQ(xik, x) for each mixed index disequality i 6= k on
π. We define

FBπ (x) ≡
∧

k∈Stores(π)
i 6=k A-local

x 6= k ∧
∧

k∈Stores(π)
i 6=k mixed

EQ(xik, x) .

The lemma interpolant is the conjunction of the above path interpolants. If
i, j are shared, b[j] is in B, and i = j is A-local, add the conjunct i = j.

Lemma 1. If x is a shared term for i = j and a[i] = b[j] is in B or mixed, a
partial interpolant of the lemma Cond(a ≈i b) ∧ i = j → a[i] = b[j] is

I ≡
∧

π∈A-paths

Iπ ∧
∧

π∈B-paths

FBπ (x) [ ∧ i = j] .

Proof. The interpolant only contains the shared boundary arrays, the shared
term x for i = j, auxiliary variables for mixed disequalities under an EQ predi-
cate, and shared store indices k where the store term is in a different part than
the corresponding index disequality.
¬C � A implies I: For a B-path π, we show that FBπ (x) follows from the

A-part. If i is B-local, there are no A-local or mixed index disequalities and
FBπ (x) holds trivially. Otherwise i = x follows from A, since either i is shared
and x is i, i = j is A-local and x is j, or i = x is the A-projection of the mixed
equality i = j. Then FBπ (x) follows by replacing i by x in A-local disequalities
and A-projections of mixed disequalities on π. For an A-path π, if FAπ (x) does
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not hold, we get s1[x] = s2[x] by applying rule (roweq). Note that x 6= k follows
from i = x if i 6= k is A-local, and from EQ(xik, k) and ¬FAπ (x) in the mixed
case. For the outer A-path in case (ii), a[x] = s1[x] is combined with the A-
projection of the mixed disequality a[i] 6= b[j] using i = x, which yields the EQ
term. Analogously we get the EQ term for (iii), but to derive j = x in the case
where both i and j are shared but i = j is B-local, we need to exclude i 6= j.
¬C �B∧ I is unsat: Again if i is in B then i = x follows from B by the choice

of x. For a B-path π, we can conclude s1[x] = s2[x] by applying rule (roweq) and
using the index disequalities in ¬C �B and FBπ (x). For an A-path π, s1[x] = s2[x]
(or, in cases (ii) and (iii), EQ(xa[i]b[j], s[x])) follows from Iπ using the B-local
index disequalities and i = x to show that FAπ (x) cannot hold. Transitivity and
the B-projection of a[i] 6= b[j] lead to a contradiction. If i = j is A-local, i is the
shared term, and b[j] is in B, the conjunct i = j in I is needed here. ut

4.2 Shared Term for i = j and a[i] = b[j] is A-local

If there exists a shared index for i = j and a[i] = b[j] is A-local, we build
disequalities for the B-paths instead of equalities for the A-paths. This corre-
sponds to obtaining the interpolant of the inverse problem (B,A) by Sect. 4.1
and negating the resulting formula. Only the EQ terms are not negated because
of the asymmetry of the projection of mixed disequalities.

Lemma 2. Using the definitions of FAπ and FBπ from the previous section, if x
is a shared term for i = j and a[i] = b[j] is A-local, then a partial interpolant of
the lemma Cond(a ≈i b) ∧ i = j → a[i] = b[j] is

I ≡
∨

(π:s1≈is2)∈B-paths

(s1[x] 6= s2[x] ∧ FBπ (x)) ∨
∨

π∈A-paths

FAπ (x) [ ∨ i 6= j] .

4.3 Both i and j are B-local

When both i and j are B-local (or both A-local), we may not find a shared term
for the index where a and b should be equal. Instead we use the diff function to
express all indices where a and b differ. For instance, if a = b〈i � v〉〈j � w〉 for
arrays a, b with a[j] 6= b[j], then diff(a, b) = j or diff(a

1
 b, b) = j hold.

Example 2. Consider the following conflict:

a = s1 ∧ s1〈k � v〉 = s2 ∧ s2 = b ∧ i 6= k ∧ i = j ∧ a[i] 6= b[j]

where a, b, i, j are B-local, k, v are A-local, and s1, s2 are shared. Splitting the
mixed disequality i 6= k as described in Sect. 3.1 yields the interpolation problem

A : s1〈k � v〉 = s2 ∧ EQ(xik, k)

B : a = s1 ∧ s2 = b ∧ ¬EQ(xik, i) ∧ i = j ∧ a[i] 6= b[j] .

An interpolant should reflect the information that s1 and s2 can differ at most
at one index satisfying the EQ term. Using diff, we can express the interpolant

I ≡ (s1 = s2 ∨ EQ(xik,diff(s1, s2))) ∧ s1
1
 s2 = s2 .
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To generalize this idea, we define inductively over m ≥ 0 for the arrays a and
b, and a formula F (·) with one free parameter:

weq(a, b, 0, F (·)) ≡ a = b

weq(a, b,m+ 1, F (·)) ≡ (a = b ∨ F (diff(a, b))) ∧ weq(a
1
 b, b,m, F (·)) .

The formula weq(a, b,m, F (·)) states that arrays a and b differ at most at m
indices and that each index i where they differ satisfies the formula F (i).

Algorithm. For an A-path π : s1 ≈i s2, we count the number of stores |π| :=
|Stores (π) |. Each index i where s1 and s2 differ must satisfy FAπ (i) as defined
in Sect. 4.1. There is nothing to do for B-paths.

Lemma 3. A partial interpolant of the lemma Cond(a ≈i b)∧i = j → a[i] = b[j]
with B-local i and j is

I ≡
∧

(π:s1≈is2)∈A-paths

weq
(
s1, s2, |π|, FAπ (·)

)
.

Proof. The symbol condition holds by the same argument as in Lemma 1.
¬C � A implies I: Let π : s1 ≈i s2 be an A-path on P . The path π shows

that s1 and s2 can differ at most at |π| indices, hence s1
|π|
 s2 = s2 follows from

¬C �A. If s1
m
 s2 6= s2 holds for m < |π|, then diff(s1

m
 s2, s2) = k for some

k ∈ Stores (π). If i 6= k is A-local, then k = k holds trivially, if i 6= k is mixed,

then EQ(xik, k) is part of ¬C �A. Hence, s1
m
 s2 = s2 ∨ FAπ (diff(s1

m
 s2, s2))

holds for all m < |π|. This shows weq(s1, s2, |π|, FAπ (·)).
¬C �B ∧ I is unsat: For every B-path π : s1 ≈i s2 on P , we get s1[i] = s2[i]

with (roweq). For every A-path π : s1 ≈i s2, I implies that s1 and s2 differ at
finitely many indices which all satisfy FAπ (·). The disequalities and B-projections
in B imply that i does not satisfy FAπ (i), and therefore s1[i] = s2[i]. Then
a[i] = b[i] holds by transitivity, in contradiction to a[i] 6= b[j] and i = j in B. ut

4.4 Both i and j are A-local

The interpolant is dual to the previous case and we define the dual of weq for
arrays a, b, a number m ≥ 0 and a formula F :

nweq(a, b, 0, F (·)) ≡ a 6= b

nweq(a, b,m+ 1, F (·)) ≡ (a 6= b ∧ F (diff(a, b))) ∨ nweq(a
1
 b, b,m, F (·)) .

The formula nweq(a, b,m, F (·)) expresses that either one of the first m indices
i found by stepwise rewriting a to b satisfies the formula F (i), or a and b differ
at more than m indices. Like in Sect. 4.2, the lemma interpolant is dual to the
one computed in Sect. 4.3.

Lemma 4. A partial interpolant of the lemma Cond(a ≈i b)∧i = j → a[i] = b[j]
with A-local i and j is I ≡

∨
(π:s1≈is2)∈B-paths nweq(s1, s2, |π|, FBπ (·)).

Theorem 1. For all instantiations of the rule (roweq), quantifier-free inter-
polants can be computed as described in Sects. 4.1–4.4.



10 Hoenicke and Schindler

5 Interpolants for Weakeq-Ext Lemmas

A conflict corresponding to a lemma of type (weq-ext) is of the form

Cond(a
P⇔ b) ∧

∧
i∈Stores(P )

Cond(a ∼i b) ∧ a 6= b .

The main path P shows that a and b differ at most at the indices in Stores (P ),
and a ∼i b (called i-path as of now) shows that a and b do not differ at index i.

To compute an interpolant, we summarize the main path by weq (or nweq)
terms to capture the indices where a and b can differ, and include summaries
for the i-paths that are similar to the interpolants in Sect. 4. The i-paths can
contain a select edge a′ k1, k2 b′ where a′[k1] ∼ b′[k2], i ∼ k1, and i ∼ k2. In the
B-local case 4.3, B-local select edges make no difference for the construction, as
the weq formulas are built over A-paths, and analogously for the A-local case 4.4.
However, if there are A-local select terms a′[k] in the B-local case or vice versa,
then k is shared or the index equality i = k is mixed and we can use k or the
auxiliary variable xik and proceed as in the cases where there is a shared term.

We have to adapt the interpolation procedures in Sects. 4.1 and 4.2 by adding
the index equalities that pertain to a select edge, analogously to the index dise-
quality for a store edge. More specifically, we add to FAπ (x) a disjunct x 6= k for
each B-local i = k on an A-path, and x 6= xik for each mixed i = k. Here, x is
the shared term for the i-path index i. For B-paths we add to FBπ (x) a conjunct
x = k for each A-local i = k and x = xik for each mixed i = k. Moreover, if
there is a mixed select equality a′[k1] = b′[k2] on the i-path, the auxiliary vari-
able xa′[k1]b′[k2] is used in the summary for the subpath instead of s[x], i.e., we
get a term of the form s1[x] = xa′[k1]b′[k2] in 4.1, and analogously for 4.2.

For (weq-ext) lemmas, we distinguish three cases: (i) a = b is in B, (ii) a = b
is A-local, or (iii) a = b is mixed.

5.1 a = b is in B

If the literal a = b is in B, the A-paths both on the main store path and on the
weak paths have only shared path ends. Hence, we summarize A-paths similarly
to Sects. 4.1 and 4.3.

Algorithm. Divide the main path a
P⇔ b into A-paths and B-paths. For each

i ∈ Stores (P ) on a B-path, summarize the corresponding i-path as in Sects. 4.1

or 4.3. The resulting formula is denoted by Ii. For an A-path s1
π⇔ s2 use a weq

formula to state that each index where s1 and s2 differ satisfies Ii(·) for some
i ∈ Stores (π) where Ii is computed as in 4.1 with the shared term · for i = j. If
i is also shared we add i = · to the interpolant.

Lemma 5. The lemma Cond(a
P⇔ b)∧

∧
i∈Stores(P ) Cond(a ∼i b)→ a = b where

a = b is in B has the partial interpolant

I ≡
∧

i∈Stores(π)
π∈B-paths

Ii ∧
∧

(s1
π⇔s2)∈A-paths

weq
(
s1, s2, |π|,

∨
i∈Stores(π)

(
Ii(·) [ ∧ i = ·]

))
.
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Proof. The path summaries Ii fulfill the symbol conditions, and the boundary
terms s1, s2 used in the weq formulas are guaranteed to be shared.
¬C � A implies I: By Sects. 4.1 and 4.3, Cond(a ∼i b) � A implies Ii for

i ∈ Stores (π) where π is a B-path on P . For an A-path s1
π⇔ s2 on P , we

know that s1 and s2 differ at most at |π| positions, namely at the indices
i ∈ Stores (π). Each index satisfies the corresponding Ii by Sect. 4.1. Hence,
weq(s1, s2, |π|,

∨
i∈Stores(π) Ii(·)[ ∧ i = ·]) holds.

¬C �B ∧ I is unsat: We first note that if a and b differ at some index i, there
must be an A-path or a B-path s1

π⇔ s2 on the main path, such that s1 and s2
also differ at index i. We show that no such index exists. For a B-path s1

π⇔ s2,
s1 and s2 can only differ at i ∈ Stores (π). But for every i ∈ Stores (π), we get

a[i] = b[i] from Ii as in Lemma 1 resp. 3. For an A-path s1
π⇔ s2, the interpolant

contains weq(s1, s2, |π|,
∨
i∈Stores(π)(Ii(·)[ ∧ i = ·])). Thus, if s1 and s2 differ at

some index i′, the interpolant implies Ii(i
′) for some index i ∈ Stores (π) and

additionally i = i′ if i is shared. Together with Cond(a ∼i b) � B this implies
a[i′] = b[i′] as in the proof of Lemma 1. This shows that there is no index where
a and b differ, but this contradicts a 6= b in ¬C �B. ut

5.2 a = b is A-local

The case where a = b is A-local is similar with the roles of A and B swapped. For
each i ∈ Stores (π) on an A-path π on P , interpolate the corresponding i-path
as in Sects. 4.2 or 4.4 and obtain Ii. For each i ∈ Stores (π) on a B-path π on P ,
interpolate the corresponding i-path as in Sect. 4.2 using · as shared term and
obtain Ii(·).

Lemma 6. The lemma Cond(a
P⇔ b)∧

∧
i∈Stores(P ) Cond(a ∼i b)→ a = b where

a = b is A-local has the partial interpolant

I ≡
∨

i∈Stores(π)
π∈A-paths

Ii ∨
∨

(s1
π⇔s2)∈B-paths

nweq
(
s1, s2, |π|,

∧
i∈Stores(π)

(
Ii(·) [ ∨ i 6= ·]

))
.

5.3 a = b is mixed

If a = b is mixed, where w.l.o.g. a is A-local, the outer A- and B-paths end with
A-local or B-local terms respectively. The auxiliary variable xab may not be used
in store or select terms, thus we first need to find a shared term representing a
before we can summarize A-paths.

Example 3. Consider the following conflict:

a = s〈i1 � v1〉 ∧ b = s〈i2 � v2〉 ∧ a 6= b (main path)

∧ a[i1] = s1[i1] ∧ b = s1〈k1 � w1〉 ∧ i1 6= k1 (i1-path)

∧ a = s2〈k2 � w2〉 ∧ i2 6= k2 ∧ b[i2] = s2[i2] (i2-path)

where a, i1, v1, k2, w2 are A-local, b, i2, v2, k1, w1 are B-local and s, s1, s2 are
shared.
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Our algorithm below computes the following interpolant for the conflict.

I ≡ I0(s) ∨ nweq
(
s, s1, 2, I0(s〈·� s1[·]〉) ∧ EQ(xi1k1 , ·)

)
where I0(s̃) = EQ(xab, s̃) ∧ weq(s̃, s2, 1,EQ(xi2k2 , ·))

Algorithm. Identify in the main path P the first A-path a
π0⇔ s1 and its store

indices Stores (π0) = {i1, . . . i|π0|}. To build an interpolant, we rewrite s1 by
storing at each index im the value a[im]. We use s̃ to denote the intermediate
arrays. We build a formula Im(s̃) inductively over m ≤ |π0|. This formula is an
interpolant if s̃ is a shared array that differs from a only at the indices i1, . . . , im.

For m = 0, i.e., a = s̃, we modify the lemma by adding the strong edge s̃↔ a
in front of all paths and summarize it using the algorithm in Sect. 5.1, but drop
the weq formula for the path s̃↔ a

π0⇔ s1. This yields I5.1(s̃). We define

I0(s̃) ≡ EQ(xab, s̃) ∧ I5.1(s̃) .

For the induction step we assume that s̃ only differs from a at i1, . . . , im, im+1.
Our goal is to find a shared index term x for im+1 and a shared value v for a[x].
We use the im+1-path to conclude that s̃〈x� v〉 is equal to a at im+1. Then we
can include Im(s̃〈x� v〉) computed using the induction hypothesis.

(i) If there is a select edge on a B-subpath of the im+1-path or if im+1 is itself
shared, we immediately get a shared term x for im+1. If the last B-path πm+1

on the im+1-path starts with a mixed select equality, then the corresponding
auxiliary variable is the shared value v. Otherwise, πm+1 starts with a shared
array sm+1 and v := sm+1[x]. We summarize the im+1-path from a to the start
of πm+1 as in Sect. 4.2 and get I4.2(x). Finally, we set

Im+1(s̃) ≡ I4.2(x) ∨ (Im(s̃〈x� v〉) ∧ FBπm+1(x)) .

(ii) Otherwise, we split the im+1-path into a ∼im+1 s
m+1 and sm+1 πm+1

⇔ b,
where πm+1 is the last B-subpath of the im+1-path. If s1 and a are equal at im+1

then also s̃ and a are equal and the interpolant is simply Im(s̃). If a and sm+1

differ at im+1, we build an interpolant from a ∼im+1
sm+1 as in 4.4 and obtain

I4.4. Otherwise, s1 and sm+1 differ at im+1. We build the store path s1
P ′

⇔ sm+1

by concatenating P and πm+1. Using nweq on the subpaths s
π⇔ s′ of P ′ we find

the shared term x for im+1. If π is in A we need to add the conjunct s
|π|
 s′ = s′

to obtain an interpolant. We get

Im+1(s̃) ≡ Im(s̃) ∨ I4.4 [for a ∼im+1 s
m+1] ∨∨

s
π⇔s′ in P ′

nweq
(
s, s′, |π|, Im(s̃〈·� sm+1[·]〉) ∧ FBπm+1(·)

)
[ ∧ s |π| s′ = s′] .

Lemma 7. The lemma Cond(a
P⇔ b)∧

∧
i∈Stores(P ) Cond(a ∼i b)→ a = b where

a = b is mixed has the partial interpolant I ≡ I|π0|(s1).

A proof by induction over the length of the path π0 can be found in [21].

Theorem 2. Sects. 5.1–5.3 give interpolants for all cases of the rule (weq-ext).
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6 Complexity

Expanding the definition of an array rewrite term a
k
 b näıvely already yields

a term exponential in k. This is avoided by using let expressions for common
subterms. With this optimization the interpolants for read-over-weakeq lemmas
are quadratic in the worst case. The interpolants of Sects. 4.1 and 4.2 contain
at most one literal for every literal in the lemma, so the interpolant is linear in
the size of the lemma. The interpolants of Sects. 4.3 and 4.4 are quadratic, since
expanding the definition of weq will copy the formula FAπ (·) resp. FBπ (·), for each
local store edge and instantiate it with a different shared term.

Example 4. The following interpolation problem has only quadratic interpolants.

A : b = a〈i1 � v1〉 · · · 〈in � vn〉 ∧ p1(i1) ∧ · · · ∧ pn(in)

B : a[j] 6= b[j] ∧ ¬p1(j) ∧ . . .¬pn(j)

I ≡ let a0 = a let d1 = diff(a0, b) let a1 = a0〈d1 � b[d1]〉
. . . let dn = diff(an−1, b) let an = an−1〈dn � b[dn]〉
(p1(d1) ∨ · · · ∨ pn(d1) ∨ a0 = b) ∧ · · ·
(p1(dn) ∨ · · · ∨ pn(dn) ∨ an−1 = b) ∧ an = b

There is no interpolant that is not quadratic in n. The interpolant has to imply
that pk(ik) is true for every k. There are no shared index-valued terms in the
lemma. Hence, the only way to express the ik values using shared terms is by
applying the diff operator on a and b and constructing diff chains as in the
interpolant I. The diff operator returns one of the i1, . . . , in in every step, but it
is not determined which one. Consequently, every combination pk(dl) is needed.

The algorithms in Sects. 5.1 and 5.2 produce a worst-case quadratic inter-
polant as they nest the linear interpolants of 4.1 and 4.2 in a weq resp. nweq
formula, which expands this term a linear number of times. However, the algo-
rithm in 5.3 is worst-case exponential in the size of the extensionality lemma.

The following example explains why this bound is strict. This example also
shows that the method of Totla and Wies [29] is not complete. In particular,
for n = 1 their preprocessing algorithm produces a satisfiable formula from the
original interpolation problem.

Example 5. The following interpolation problem of size O(n2) has only inter-
polants of exponential size in n.

A : a = s〈iA1 � vA1 〉 · · · 〈iAn � vAn 〉 ∧ p(a) ∧
n∧
j=1

pj(i
A
j ) ∧

n∧
j=1

a[iAj ] = sj [i
A
j ] ∧

n∧
j=1

n∧
l=0,l 6=j

qj(i
A
l ) ∧

n∧
j=1

tj = a〈iA0 � wAj0〉 . . .���
��XXXXX〈iAj � wAjj〉 . . . 〈iAn � wAjn〉
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B : b = s〈iB1 � vB1 〉 · · · 〈iBn � vBn 〉 ∧ ¬p(b) ∧
n∧
j=1

n∧
l=0,l 6=j

¬pj(iBl ) ∧
n∧
j=1

sj = b〈iB0 � wBj0〉 . . .���
��XXXXX〈iBj � wBjj〉 . . . 〈iBn � wBjn〉 ∧

n∧
j=1

¬qj(iBj ) ∧
n∧
j=1

b[iBj ] = tj [i
B
j ]

The first line of A and the first line of B ensure that there is a store-chain from a
over s to b of length 2n and p(a) and ¬p(b) are used to derive the contradiction
from the extensionality axiom. To prove that a and b are equal, the formulas
show that they are equal at the indices iAj , j = 1, . . . , n (second line of A and B).

Here pj is used to ensure that iAj is distinct from all iBl , l 6= j. Analogously the

last line of A and B shows that a and b are equal at the indices iBj , j = 1, . . . , n.
Since p(a) ∧ ¬p(b) is essential to prove unsatisfiability, the interpolant needs

to contain the term p(·) for some shared array term that is equal to a and b.
This can only be expressed by store terms of size n, e. g., p(s〈i1 � ·〉 · · · 〈in � ·〉)
(alternatively some store term starting on sj or tj can be used). As in the
previous example, the store indices ij can only be expressed using diff chains
between shared arrays. For each index there is only one shared array that is
guaranteed to contain the right value. The diff function returns the indices in
arbitrary order. Therefore, the interpolant needs a case for every combination
of diff term and value, as it is done by the interpolant computed in Section 5.3.
This means the interpolant contains exponentially many p(·) terms.

7 Evaluation

We implemented the presented algorithms into SMTInterpol [12], an SMT
solver computing sequence and tree interpolants. Our implementation verifies at
run-time that the returned interpolants are correct. To evaluate the interpola-
tion algorithm we used the Ultimate Automizer software model-checker [17]
on the memory safety track of the SV-COMP 2018 2 benchmarks. This track
was chosen because Ultimate uses arrays to model memory access. We ran our
experiments using the open-source benchmarking software benchexec [3] on a
machine with a 3.4 GHz Intel i7-4770 CPU and set a 900 s time and a 6 GB mem-
ory limit. As comparison, we ran Ultimate with Z3 3 and SMTInterpol without
array interpolation using Ultimate’s built-in theory-independent interpolation
scheme based on unsatisfiable cores and predicate transformers [18].

Table 1 shows the result. From the 326 benchmarks we removed 50 bench-
marks which Ultimate could not parse. The unknown results come from non-
linear arithmetic (SMTInterpol), quantifiers (due to incomplete elimination
in the setting SMTInterpol-NoArrayInterpol), or incomplete interpolation en-
gine (Z3). Our new algorithm solves 12.6 % more problems, and both helps to
verify safety and guide the counterexample generation for unsafe benchmarks.

2 https://sv-comp.sosy-lab.org/2018/
3 https://github.com/Z3Prover/z3 in version 4.6.0 (2abc759d0)

https://sv-comp.sosy-lab.org/2018/
https://github.com/Z3Prover/z3
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Table 1. Evaluation of Ultimate Automizer on the SV-COMP benchmarks for mem-
safety running with our new interpolation engine, without array interpolation, and Z3.

Setting Tasks Safe Unsafe Timeout Unknown

SMTInterpol-ArrayInterpol 276 101 96 66 13
SMTInterpol-NoArrayInterpol 276 92 83 75 26
Z3 276 32 44 13 187

8 Conclusion

We presented an interpolation algorithm for the quantifier-free fragment of the
theory of arrays. Due to the technique of proof tree preserving interpolation,
our algorithm also works for the combination with other theories. Our algorithm
operates on lemmas produced by an efficient array solver based on weak equiv-
alence on arrays. The interpolants are built by simply iterating over the weak
equivalence and weak congruence paths found by the solver. We showed that the
complexity bound on the size of the produced interpolants is optimal.

In contrast to most existing interpolation algorithms for arrays, the solver
does not depend on the partitioning of the interpolation problem. Thus, our
technique allows for efficient interpolation especially when several interpolants
for different partitionings of the same unsatisfiable formula need to be com-
puted. Although it remains to prove formally that the algorithm produces tree
interpolants, during the evaluation all returned tree interpolants were correct.

Acknowledgement. We would like to thank Daniel Dietsch for running the ex-
periments.
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