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Abstract. Separation logic has become a stock formalism for reasoning
about programs with dynamic memory allocation. We introduce a variant
of separation logic that supports lists and trees as well as inductive
constraints on the data stored in these structures. We prove that this
logic has the small model property, meaning that for each satisfiable
formula there is a small domain in which the formula is satisfiable. As a
consequence, the satisfiability and entailment problems for our fragment
are in NP and coNP, respectively. Leveraging this result, we describe
a polynomial SMT encoding that allows us to decide satisfiability and
entailment for our separation logic.

1 Introduction

Separation logic is a popular formalism to describe the state and shape of
dynamically allocated data structures and is used for the verification of programs
that manipulate the heap. The formalism prominently features in Facebook’s
static analyzer Infer [6], which is successfully deployed on an industrial scale
to analyze the memory safety of millions of lines of imperative code. This
impressive scalability is facilitated by the logic’s separating conjunction operator
(∗), which allows the decomposition of the program heap into disjoint regions
and thus enables compositional reasoning by isolating data structures modified
by a given code fragment from unaffected portions of the memory (the frame).
Moreover, separation logic provides recursive predicates which describe the shape
of dynamically allocated data structures such as linked lists and trees and thus
enable reasoning about programs with unbounded heap.

The high expressiveness of separation logic, however, comes at the cost
of undecidability [7]. Consequently, the use of separation logic in deductive
verification [19,20] and symbolic execution [4] is often restricted to decidable
fragments. To obtain decidability, most of these fragments adhere to at least one
of the following restrictions: they only support lists [3,12,1,8,18]; they can only
express structural constraints but not constraints on data stored in structures
[3,10,11,5]; or they are not closed under Boolean operators, but only under
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separating conjunction [3,10,5,13]. Yet, the computational complexity is still
daunting in many cases: deciding satisfiability is ExpTime-hard for the fragments
in [5,13], for instance, and [10] and the Strand logic [14] rely on a reduction of
structural constraints to monadic second-order logic. Other separation logics and
related formalisms are undecidable altogether [22].

We present a decidable separation logic that aims to strike a balance between
expressiveness and computational complexity. Our logic supports list and tree
segments as well as arbitrary data constraints, allowing us to describe common
data structures such as binary search trees and max-heaps. Notably, the spatial
formulas of our fragment are closed under classical Boolean operators including
negation, allowing us to decide satisfiability and entailment.

This decidability result is established by showing that the structural part of
our separation logic has the small-model property. In particular, we provide a
bound that is linear in the number of variables in the formula. As a consequence,
the satisfiability problem of our fragment is in NP and entailment in coNP
(exploiting closure under negation). Moreover, the explicit bound provided by our
small-model theorem enables a range of SAT/SMT-encodings of our separation
logic. We characterize the properties that such encodings must satisfy and provide
a complete polynomial-size encoding of our logic.

While we are not the first to propose an encoding of separation logic into
SMT ([12] implements a reachability theory in SMT, lists with length constraints
are encoded in [18], and an encoding supporting the magic wand operator but
not recursive predicates is described in [23]), our approach lifts a number of
requirements of encodings of comparable expressiveness and complexity [19,20].

First, the encodings in [19,20] are based on theories for reachability in function
graphs [12,25] as well as a theory of finite sets, whereas we rely only on theories
supported by off-the-shelf SMT solvers. Second, in [20], reasoning about trees
relies on ghost variables representing pointers to parent nodes. Reachability
predicates are restricted to these parent fields. In our approach, we support
reasoning about left and right descendants. Third, our encoding can be easily
combined with arbitrary data theories, whereas the data constraints in [19,20]
are harder to generalize, since they depend on local theory extensions. Fourth,
our logic supports reasoning about tree segments via a notion of stop points,
thus generalizing the structural properties about tree-like structures that can be
expressed in the logic compared to [20].

The paper is structured as follows. In Section 2, we introduce SLdata, a
separation logic with support for lists, trees, and data, but without constraints
on the data stored inside the lists and trees. We prove the small-model property
for SLdata in Section 3. In Section 4, we introduce SL∗data, an extension of SLdata

in which the data inside of list and tree structures can be constrained by formulas
from the data theory. We show how to lift the small-model property to this
extended setting. In Section 5, we present a polynomial encoding of SL∗data into
SMT. We conclude in Section 6. 3

3 Due to lack of space some proofs and additional material are omitted and can be
found in the extended version.



t := null | x ∈ X
ASpatial ::= t→f t | list(t, s) | tree(t, s) | Floc | Fdata Spatial atoms
FSpatial ::= ASpatial | FSpatial ∗ FSpatial Spatial formulas

F ::= FSpatial | ¬F | F ∨ F | F ∧ F SLdata formulas

Fig. 1: Syntax of the core separation logic SLdata with lists, trees, and data.

2 Separation Logic with Lists, Trees, and Data

In this section we introduce the core fragment of our separation logic of lists,
trees, and data. Our approach is parametric with respect to a background theory
Tdata of the data domain, and a background theory Tloc of the location domain.
We denote with Fdata and Floc the sets of all quantifier-free Tdata-formulas and
Tloc-formulas, respectively. The background theories can be instantiated with any
first-order theory with equality, as usual in satisfiability modulo theories (see,
e.g., [2]). We denote this logic with SLdata.

Syntax. We work in a many-sorted logic with equality. The signature of SLdata

contains the sorts S = {loc, data}, representing locations and data, respectively.
We assume a countable infinite set of (sorted) variables X and a dedicated
constant null of sort loc. We denote with s a vector 〈s1, . . . , sn〉 of variables from
X , and write ε for an empty vector, and s1 · s2 for the concatenation of two
vectors.

Let Fld = {n, l, r, d} be the set of field identifiers corresponding to the next
element of a list node, the left and the right child of a binary tree node, and the
data field. To each field f ∈ Fld we associate a binary points-to predicate →f

with the following signatures:

→n : loc× loc 7→ Bool , →l : loc× loc 7→ Bool ,

→r : loc× loc 7→ Bool , →d : loc× data 7→ Bool .

The logic includes two inductive predicates list and tree with signatures

list : loc× loc∗ 7→ Bool , tree : loc× loc∗ 7→ Bool .

The syntax of SLdata is presented in Figure 1. A formula in SLdata is a well-
sorted Boolean combination of spatial formulas (FSpatial). Spatial formulas are
constructed by applying the separating conjunction ∗ to the spatial atoms. The
spatial atoms are Tloc and Tdata formulas, the points-to predicate x→f y, the list
predicate list(x, s) and the tree predicate tree(x, s). To ease notation, we denote
a separating conjunction of several points-to predicates over the same variable x
with x →p1,...,pn (y1, . . . , yn). The vector s is a vector of structural stop points
delineating the data structure. By abuse of notation, we omit s when it is empty.

Our logic departs from standard presentations of separation logic (see, e.g.,
[24]) in several details. First, we do not have emp, the empty heap. It can be



introduced as syntactic sugar, e.g. emp := (null = null). Second, we include
an independent points-to predicate for each field of lists and trees to facilitate
extensions of the logic to doubly-linked and/or overlaid data structures, see
e.g. [9]. Third, our lists and tree fragments represent data structures that start
from x and end in stop points s in an ordered fashion. Additionally—unlike in
many decidable separation logics [3,10]—we allow arbitrary Boolean structure
outside of the spatial conjunction.

Example 1 (Syntax). Let x, y, z be variables of sort loc, and w be of sort data.

– list(x, 〈y〉) ∗ list(y) are disjoint list segments from x to y and from y to null.
– tree(x, 〈y, z〉) ∗ tree(y) ∗ tree(z) represents a binary tree rooted in x that

contains two subtrees y and z ordered from left to right, as specified by 〈y, z〉.
– (x→n,d (y, w)) ∗ list(y) ∗ (w > 0) (where Tdata is an arithmetic theory) states

that x is a list node with data w > 0 pointing to a list with head y.

Semantics. We denote with f = {x1, . . . , xn 7→ y1, . . . , yn} a partial function
that maps xi to yi and is otherwise undefined, and write f = ∅ if f is undefined
everywhere. We write dom(f) and img(f) for the domain and image of f .

The semantics of SLdata formulas are defined in terms of heap interpretations.
Let X ⊆ X be a set of variables. A heap interpretation M over X is a map that
interprets each sort σ ∈ S as a non-empty domain σM, each x ∈ X ∪ {null}
of sort σ as an element xM ∈ σM, and each points-to predicate →f of sort
σ1 × σ2 7→ Bool is interpreted as a partial function fM : σ1 ⇀ σ2 with finite
domain such that fM(null) is undefined (i.e., null may never be allocated) and
such that dom(n) ∩ (dom(l) ∪ dom(r)) = ∅, i.e., a location cannot be both a list
and a tree location.

We denote with M[x1, . . . , xn 7→ v1, . . . , vn] a heap interpretation over X ∪
{x1, . . . , xn} that differs from M only by interpreting the variables xi as values
vi. Let `1, `2 ∈ locM. We write `1 →M `2 if `2 = fM(`1) for some f ∈ Fld. We
extend this notation to variables and write x→M y if for two variables x, y ∈ X
it holds that xM →M yM. We denote with →∗M and →+

M the usual Kleene
closures of →M and say that `2 is reachable from `1 if `1 →∗M `2.

A location ` ∈ locM is an allocated location in M if there exists an f ∈
{n, l, r} such that ` ∈ dom(fM). We define locMlist :=

{
` ∈ locM | ` ∈ dom(n)

}
and locMtree :=

{
` ∈ locM | ` ∈ dom(l) ∪ dom(r)

}
. Location ` is fully allocated in

M if it allocates data and either the next pointer or both the left and right
pointer, i.e., if ` ∈ (dom(nM) ∪ (dom(lM) ∩ dom(rM))) ∩ dom(dM). Location `
is labeled in M if there exists an x ∈ X ∪ {null} with xM = `. Otherwise, ` is
unlabeled.

The size of M, denoted |M |, is the number of allocated locations in M.4

The size of a formula F , denoted |F |, is defined as the numbers of terms, atomic
formulas, and operators in F (including symbols from Tloc and Tdata).
4 This size notion captures the amount of allocated memory rather than the amount

of addressable memory (which is determined by the interpretation of the location
domains).



M |= x→f y iff fM =
{
xM 7→ yM

}
∧ ∀h ∈ Fld . h 6= f =⇒ h = ∅

M |= Floc iff (M |=loc Floc) ∧ ∀h ∈ Fld . h = ∅
M |= Fdata iff (M |=data Floc) ∧ ∀h ∈ Fld . h = ∅
M |= F ∗G iffM =M1 ⊕M2 ∧M1 |= F ∧M2 |= G
M |= F ∧G iffM |= F ∧M |= G
M |= F ∨G iffM |= F ∨M |= G
M |= ¬F iff not M |= F
M |= x /∈ s iff

∧
y∈sM |= x 6= y

M |= pred(x, s) iff ∃i .M |= predis(x, s) ∧
∧

y1 6=y2∈sM |= y1 6= y2
M |= pred0t(x, ε) iffM |= x = null
M |= pred0t(x, 〈y〉) iffM |= x = y
M |= listit(x, s) iff ∃` ∈ locM, d ∈ dataM .

M[z, w 7→ `, d] |= x /∈ t ∗ x→n,d (z, w) ∗ listi−1
t (z, s)

M |= treeit(x, s) iff s = s1 · s2 ∧ i = i1 + i2 + 1
∧ ∃`1, `2 ∈ locM, d ∈ dataM .M′ =M[z1, z2, w 7→ `1, `2, d]

∧ M′ |= x 6∈ t ∗ x→l,r,d (z1, z2, w) ∗ treei1t (z1, s1) ∗ treei2t (z2, s2)

Fig. 2: Semantics of the core separation logic SLdata. Variable z is a fresh variable
of sort loclist, z1 and z2 are fresh variables of sort loctree, and w is a fresh variable
of sort data. For brevity we denote with pred either list or tree.

LetM1 andM2 be heap interpretations over X that agree on the interpreta-
tion of all sorts, variables, and constants. We say thatM1 is a sub-interpretation
of M2, written M1 ⊆ M2, if fM1 ⊆ fM2 for all fields f ∈ Fld. M1 and M2

are disjoint interpretations if for all f ∈ Fld, dom(fM1) ∩ dom(fM2) = ∅. If M1

and M2 are disjoint, we denote with M1 ⊕M2 the composition of M1 and M2

defined by taking the point-wise union of the functions f for each field f ∈ Fld.
The semantics of a formula F ∈ SLdata with respect to a heap interpretation

M is defined inductively over the structure of F , as presented in Figure 2.
The semantics of location and data formulas Floc ∈ Floc and Fdata ∈ Fdata is
defined by their interpretation in Tloc and Tdata (denoted with M |=loc Floc and
M |=data Fdata), respectively. Our semantics is precise in the usual separation-
logic sense (see e.g. [3]), meaning M |= x1 →f x2 implies that x1 →f x2 is the
only pointer that is defined in M.

Example 2 (Semantics). Consider the following graphical representations of three
heap interpretations.
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Each field interpretation corresponds directly to the edges of the graph labeled
with that field. For example, in M2, the next fields of lists are interpreted as



nM2 =
{
xM2 , yM2 7→ yM2 , yM2

}
. In these interpretations we have that

M1 |= list(x, 〈y〉), M2 6|= list(x, 〈y〉), M2 6|= list(x, 〈y〉) ∗ list(y, 〈y〉),
M2 |= list(x, 〈y〉) ∗ (y →n,d (y, z)), M3 |= tree(x, 〈y〉) ∗ (x 6= y).

3 A Small Model Property for SLdata

In this section, we show that every satisfiable SLdata formula F is satisfiable by a
model with a small interpretation of the loc domain. More precisely, we will derive
a size bound that is linear in the number of variables in F . This result has two
implications. First, the satisfiability problem for SLdata is in NP if satisfiability
for Tloc and Tdata is in NP, as we can guess and check a polynomially-sized model.5

Second, as we will argue in Section 5, the size bound enables encodings of SLdata

into SMT without the need to reason about unbounded reachability.
To derive a tight bound, we distinguish between the list variables and the

tree variables in F . A variable is a list variable if it appears in at least one atom
of the form x1 →n x2 or list(x1, 〈x2, . . . , xk〉); a variable is a tree variable if it
appears in an atom of the form x1 →l x2, x1 →r x2 or tree(x1, 〈x2, . . . , xk〉). The
main result in the current section is the following:

Theorem 1 (Small-model property for SLdata). Let F be a satisfiable SLdata

formula with nlist list variables, ntree tree variables, and at most k ≥ 1 stop
locations per tree predicate. Then there is a heap interpretation M that satisfies
F such that |M| ≤ max(4, 2nlist + (2 + k)ntree).

Example 3. To illustrate the bound of Theorem 1, let x1, . . . , xn be tree variables,
s = 〈s1, . . . , sn〉, for n = 2k. Consider the formula tree(x1, s) ∗ · · · ∗ tree(xn, s). A
heap that satisfies this formula needs to accommodate n separate trees that all
end in n stop points. The smallest such heap M would therefore include n full
binary trees with n leaves and have the allocated size |M| = n(n− 1). Although
this size is quadratic in n, this is only because we are using n stop points. In
practice, the number of (program) variables pointing into a tree structure will be
an upper bound for the number of stop points. This number is generally low—for
example at most 2 for many typical tree traversal and tree update algorithms. ut

To prove Theorem 1, we take an arbitrary model M |= F and transform it
into a small model M′ such that M′ |= F . We define separate transformations
for positive and negative heap interpretations. A positive heap interpretation is
one that satisfies a positive spatial formula. More precisely, a heap interpretation
M over X is positive if there exists a formula F = A1 ∗ · · ·∗Ak such thatM |= F .
A heap interpretation that is not positive is negative.

Positive heap interpretations are well behaved. In particular, every unlabeled
location in a positive interpretation M is contained in exactly one list or tree
in M, as the separating conjunction precludes sharing of unlabeled allocated

5 This is the case, e.g., in the common case when Tloc is the theory of equality and
Tdata is the theory of linear arithmetic.



locations between multiple data structures. The semantics of the list and tree
predicates additionally enforce acyclicity within each data structure and full
allocation of all unlabeled locations. We formalize these and related observations
in the following lemma.

Lemma 1. In a positive heap interpretation M the following holds:

1. Every unlabeled allocated location is fully allocated.
2. If M =M1 ⊕M2, with both M1 and M2 positive, then every unlabeled and

allocated location of M is allocated in exactly one of M1 and M2.
3. For every unlabeled allocated location `, there is at exactly one x such that

` is reachable from xM without going through another labeled location, i.e.,
such that x→+

M `′ →∗M ` implies that `′ is unlabeled.
4. Every loop in M must contain a labeled location: if `1 →+

M `1, then every
such closed path can be split into `1 →∗M xM →∗M `1 for some x ∈ X.

Note that by definition, all negative heap interpretations falsify all spatial
formulas. So if M is negative and M |= F , we know that M falsifies all spatial
subformulas of F , as would any negative heap interpretation. For example, we
can replace M by a small model that contains a loop, because such a model is
negative by Lemma 1. Intuitively, this is why all formulas that are satisfied by
negative heap interpretations have the small model property.

Lemma 2. There exists a heap interpretation M0, with |M0| = 4, that falsifies
all spatial formulas A1 ∗ · · · ∗An. Moreover, for any negative heap interpretation
M and formula F , if M |= F then M0 |= F .

For the remainder of this section, we assume that F is a formula that is
satisfiable in a positive interpretation M over variables X. First, we define
a transformation of heap interpretations that removes a single location from
the field interpretations. We then show that, using this transformation, we can
minimize M to a model that is still positive and satisfies F . Finally, we show
that the size of this positive minimal model is bounded as in Theorem 1.

Location removal. Let ` ∈ locM be an allocated location, i.e., there is at least one
field f ∈ {n, l, r} with ` ∈ dom(fM). We say that such a location `0 is removable
through its field f if the field f is defined (allocated) at `0 and for all other fields
g 6= d, gM(`) is either null or undefined. (Note that this does not preclude that
also fM(`) = null.) If ` is a location removable through its field f , we write
M′ = M\ {`} for the interpretation that mimics M apart from avoiding the
location `, i.e., for all g ∈ {n, l, r} and for all locations `′, we define

gM
′
(`′) =


gM(`′) if `′ 6= ` and gM(`′) 6= ` ,

gM(`) if `′ 6= ` and gM(`′) = `

⊥ if `′ = `

In addition, location ` is removed from the data interpretation, i.e., we set
dM

′
= dM \ {` 7→ d}. Figure 3 illustrates location removal for lists and trees.



xM0 : `1 `2 `3 null
n n n n

xM1 : `1 `2 null
n n n

xM2 : `1 null
n n

xM3 :

`1y0

`2y1

y2 null

xM4 :

`1y0

y1 y2

Fig. 3: Subsequent removal of removable non-essential list locations `3 and `2 and
tree location `2, transforming M0 via M1 into M2 and M3 into M4. Essential
locations are displayed in green.

Essential locations. Location removal reduces the allocated size of M. We now
characterize the locations that can safely be removed from M without falsifying
the formula F . Assume two distinct labeled locations `1 and `2 from locM. We
call a location ` ∈ locM an induction indicator for (`1, `2) if `1 →M ` →+

M `2.
Intuitively, a location is an induction indicator if it is a potential witness of a first
step of a longer unrolling of an inductive predicate. An induction indicator cannot
be removed as such a removal might change the interpretation of a predicate
x→f y from false to true. An allocated location ` is an essential location iff ` is
a labeled location or ` is an induction indicator.

Model minimization. We now proceed to show that if M′ = M \ {`} for a
non-essential, removable location `, then M |= F if and only if M′ |= F .

Lemma 3. LetM be a positive heap interpretation over X and let A be a spatial
atom. Let ` be a non-essential, removable location and let M′ =M\ {`}. Then
A |=M if and only if M′ |= A.

If F = A1∗· · ·∗An is a separating conjunction, we use thatM =M1⊕· · ·⊕Mk

for some Mi such that Mi |= Ai. By Lemma 1, ` is fully allocated in exactly
one Mi, has no direct predecessors outside of Mi, and is removable in Mi. This
lets us reduce the case for the separating conjunction to Lemma 3 and conclude:

Lemma 4. Let F = A1 ∗ · · · ∗An be a conjunction of spatial atoms Ai, and let
M be a positive heap interpretation. Let ` be a non-essential removable location
of M, and let M′ =M\ {`}. Then M |= F if and only if M′ |= F .

Finally, by a simple induction proof over the Boolean structure of F that relies
on Lemma 4, we conclude:

Lemma 5. Let M be a positive heap interpretation over X, ` be a non-essential
removable location, and let M′ =M\{`}. Then M |= F if and only if M′ |= F .

It remains to be shown that by iterating location removal, we eventually
terminate with a model of a size that satisfies the bound in Theorem 1.

Proof (of Theorem 1). Let M |= F . If F is also satisfied in the small model
M0 from Lemma 2, we are done. Otherwise, consider the DNF form of F . Since



M |= F , there is at least one conjunct L1∧. . .∧Lm of the DNF such thatM |= Li,
for all i. If all Li are negated, then M0 satisfies them, and therefore M0 |= F ,
contrary to assumption. Therefore, there is at least one positive Li = A1 ∗· · ·∗An,
with M |= A1 ∗ · · · ∗An. We iterate location removal until we end in a positive
modelM′ |= F andM′ |= A1 ∗· · ·∗An, that has no more removable non-essential
locations. We estimate the size of M′. An allocated location from M′ is either
essential or non-essential.

There are at most N1 = 2nlist + 3ntree allocated essential locations in M′: In
M′, every list location has at most one successor location, and every tree location
has at most two direct successors (with respect to →M). These are potential
induction indicators which, taken together with labeled locations, give a total of
at most N1 essential locations.

Now, let ` be an allocated but non-essential location in M′. Since M′ |=
A1 ∗ · · · ∗ An. Location ` must be allocated by one of the Ai atoms. Ai cannot
be a →f predicate as ` would otherwise be labeled and therefore essential. Ai

cannot be a list predicate either, as ` would be removable. Ai must therefore be a
tree(x, s) predicate. We claim that both left and right subtree of ` must contain
(distinct) stop variables s1 and s2. If not, then one of the descendants of ` would
be removable. The location ` is therefore the lowest common ancestor of s1 and
s2. Assuming that the number of stop points in s is at most k, for a tree starting
at x, there are at most k− 1 such common ancestors. Since there can be at most
ntree non-empty tree predicates among Ai, there are at most N2 = ntree(k − 1)
allocated non-essential locations in M′. We can thus bound the size of M′ with
N1 +N2 = 2nlist + (2 + k)ntree. ut

4 Extending SLdata with Data Constraints

In this section we add to SLdata the possibility to constrain the data values in
lists and trees by means of passing Tdata formulas as additional parameter to the
list and tree predicates. We call the extended logic SL∗data. Our goal is to reason
about data properties of inductive structures that appear frequently in practice,
e.g., a list being sorted, or a tree being a binary search tree.

We assume two dedicated fresh variables α and β from X of sort data to
be used exclusively in data predicates. We call a formula P (α) a unary data
predicate, and a pair (f, P (α, β)), for f ∈ {n, l, r}, a binary data predicate. Both
types of predicates may also contain other variables from X \ {α, β}. We pass
a set of data predicates P as additional parameter to the predicates, obtaining
ternary predicates list(x, s,P) and tree(x, s,P). As before, for brevity, if either
of s or P is empty, we omit them. Semantics of an inductive data predicate
pred(x, s,P), in a heap interpretation M, are as follows:

1. The predicate holds in M only if it holds without the data constraints, i.e.,
pred(x, s) must be true in M and therefore M describes a pred structure.

2. For each unary data predicate P (α) ∈ P , all allocated data inM must satisfy
P . More precisely, for all (`, d) ∈ dM, we have that M[α 7→ d] |=data P holds.



3. For each binary predicate (f, P (α, β)) ∈ P, all allocated data must be
related with all of its f -descendants through P . More precisely, for all
(`1, d1), (`2, d2) ∈ dM such that fM(`1) →∗M `2, M[α, β 7→ d1, d2] |=data P
holds.

Example 4 (Data Predicates). We illustrate the inductive predicates through
representative examples of data predicates over lists and trees. The predicates

list(x, {(α = 0)}) , list(x, {(n, α 6= β)}) , list(x, {(n, α < β)}) ,

describe a list with all data values equal to 0, a list with all data values distinct,
and a list with data values increasing. The predicates

tree(x, {(l, β < α), (r, β > α)}) , tree(x, {(l, β < α), (r, β < α)}) ,

describe a binary search tree, and a max-heap. Formula list(x, 〈m〉, {(α < M)}) ∗
m →n,d (y,M) ∗ list(y, {(α > M)}) describes a partitioned list where the left
partition contains elements smaller than the pivot m, and the right partition
contains elements larger than the pivot m. Formula list(x) ∗ list(y, {(α 6= a)}) ∧
¬(list(x, {(α 6= a)}) ∗ list(y)) describes a list x that contains a data value a, and
a list y that does not contain a, meaning that the sets of values in the lists x
and y are different. ut

We now lift the small-model property to full SL∗data.

Theorem 2 (Small-model property for SL∗data). Let F be a satisfiable SL∗data
formula with nlist list variables, ntree tree variables, mlist list predicates with data
constraints, mtree tree predicates with data constraints, and at most k ≥ 1 stop
locations per tree predicate. Then there is a heap interpretation M that satisfies
F such that |M| ≤ max(4, 2nlist + (3 + k)ntree + 2mlist + 2mtree).

Intuitively, the changes to the reasoning are minimal since the data predicates
are universal, and the location removal does not invalidate predicates that are
true. We only must be careful to ensure that location removal does not change
the value of a data predicate from false to true.

Example 5. Let F = list(x1, 〈x2〉, {(n, P1)}) ∧ ¬list(x1, 〈x2〉 , {(n, P2)}), where
P1 = (α < β) and P2 = (2α ≤ β), and consider the following model M0.

2

x1M0 :

4

`1

5

`2

8

`3 x2
n n n nd d d d

We have thatM0 |= F . In addition, locations `2 and `3 are not essential and can
be removed. But, in models M1 = M0 \ {`2} and M2 = M0 \ {`3}, we have
that M1 6|= F but M2 |= F . ut

To avoid the situation described above, we must ensure that for each data
predicate pred(x, s,P) that is falsified due to some P ∈ P being false, we have a
designated pair of locations that witness the reason why P is false.



Proof (of Theorem 2). As in the proof of Theorem 1, assume that F has a positive
model M, i.e., M |= A1 ∗ · · · ∗An for some Ai from F . In this model, for each
falsified data predicate, we designate at most 2 additional locations as essential and
proceed with reducingM toM′ by removing all removable non-essential locations.
The model M′ therefore contains at most N1 = 2nlist + 3ntree + 2mlist + 2mlist

locations marked as essential. We now count the number of allocated non-essential
locations ` in M′. As in the proof of Theorem 1, location ` must be allocated as
part of a predicate pred(x, s), whose interpretation can also contain two associated
witness locations w1 and w2 with w1 →+

M′ w2. Location ` is then either the lowest

common ancestor of two stop location sM
′

i and sM
′

j , or a lowest common ancestor

of some stop locations sM
′

i and w2. Assuming that the number of stop points in s
is at most k, for a tree starting at x there are at most k such common ancestors.
Since there can be at most ntree non-empty tree predicates among Ai, there are
at most N2 = kntree allocated non-essential locations in M′. We can thus bound
the size of M′ with |M′| ≤ N1 +N2 = 2nlist + (3 + k)ntree + 2mlist + 2mtree. ut

As opposed to the symbolic-heap family of separation logics (e.g. [3,5]), the
logic SL∗data is closed under negation, and we can solve the entailment problem
F |= G by checking whether F ∧ ¬G is unsatisfiable.

Corollary 1. If the satisfiability problem for Tdata is in NP then the satisfiability
problem for SL∗data is in NP, and the entailment problem for SL∗data is in coNP.

5 Encoding SL∗
data into SMT

We now present an encoding of SL∗data formulas into SMT. We show that every
formula F ∈ SL∗data can be encoded in polynomial time (and size) as a formula in
the SMT theory of arrays that is satisfiable iff F is satisfiable. Our approach relies
on the theory of arrays extended with combinators that can express constant
arrays and express point-wise array operations [16]. We denote this theory by
Tarray. In Tarray, it is possible to express universal statements about array elements
without relying on quantifiers. Moreover, the satisfiability of generalized array
formulas is decidable in NP with effective decision procedures implemented in
popular SMT solvers such as Z3 [17] and Boolector [21].

The basic theory of arrays defines functions store and ·[·], as usual (see, e.g.
[15]). The generalized theory adds a constant combinator K and a map combi-
nator map such that K(c)[i] = c, for a constant c, and mapf (A1, . . . , An)[i] =
f(A1[i], . . . , An[i]), for a function f . The array combinators are expressive enough
to express basic set-theoretic operations. For example, we can view a set of loca-
tions as an array mapping loc to Bool and define set operations as follows

{x} = store(K(⊥), x,>) x ∈ X = X[x] empty(X) = (X = K(⊥))

X ⊆ Y = map⇒(X,Y ) X ∪ Y = map∨(X,Y ) X ∩ Y = map∧(X,Y )

In the following, we use the set notation as a shorthand for the equivalent array
encoding. We denote array variables that represent sets in capital letters (e.g.,



X), and vectors of array variables in boldface (e.g., X = 〈X1, . . . Xn〉). To ease
notation we overload predicates over sets to predicates over vectors of sets in a
point-wise manner and write, e.g., empty(X) for

∧
empty(Xi), and X = Y ∪ Z

for
∧
Xi = Yi ∪ Zi.

To each SL∗data interpretationMsl, of size N , we associate an equivalent first-
order model Msmt in the theory Tarray ⊕ Tdata ⊕ Tloc as follows. Msmt interprets
each sort from Msl as the same sort; each partial function f ∈ Fld in Msl as
an array f of the same sort; and the domain of each partial function f ∈ Fld in
Msl as a dedicated set variable Xf . The interpretation fMsmt of a field is an
array mapping each ` ∈ dom(fMsl) to fMsl(`), and to an arbitrary well-sorted
value otherwise. The interpretation of XMsmt

f is an array representing the set

dom(fMsl). The interpretationMsmt also includes N dedicated location variables
x1, . . . , xN , and a set of locations X interpreted so that X = Xn ∪Xl ∪Xr and
X ⊆ {x1, . . . , xN} holds. Other variables and constants are interpreted in Msmt

as they are in Msl.
The following SMT formula ∆N

SL defines SL∗data heap interpretations of size
at most N .

∆N
SL

def
= X =

⋃
f∈Fld

Xf ∧X ⊆ {x1, . . . , xN} ∧ null 6∈ X ∧ empty(Xn ∩ (Xl ∪Xr))

Formula ∆N
SL makes sure that the allocated heap size is at most N , that null is

not allocated, and that no variable is treated as both a list and a tree location. In
the following we always denote with X = 〈Xn, Xl, Xr, Xd〉 the vector of dedicated
set variables denoting field footprints.

SMT Translation. The encoding function TN that translates basic SL∗data formulas
to SMT is shown in Figure 4. We start without inductive predicates, following the
approach from [19]. The function TN takes an SL∗data formula F and translates
F into an SMT formula F ′ = TN (F ) so that F ′ is satisfiable if and only if F is
satisfiable in a model of size at most N . The translation relies on two auxiliary
functions: Tb

N (F ), that translates the Boolean structure of F recursively; and
Ts
N (F,Y), that translates spatial formulas. Both functions take as input a formula

(and a footprint Y to define) and return a triple 〈A,B,Z〉, where A and B together
define the semantics of F and Z is the set of all fresh variables introduced by
the translation. The encoding is straightforward, with the exception of negation.
Let Tb

N (F ) = 〈A,B,Z〉. In order for our encoding to be correct, we make sure
that the following properties hold.

Correctness: MN
sl |= F iff MN

smt |= ∃Z . A ∧B;
Z-Existence: ∃Z . B is valid; and
Z-Equivalence: B(Z1) ∧B(Z2)⇒ A(Z1) = A(Z2) is valid.

The correctness property ensures that the encoding correctly encodes the SL∗data
semantics: F is true in a heap interpretation of size N iff it is true in the
corresponding SMT model. Z-Existence and Z-Equivalence make sure that the
encoding can accommodate negation: the B part of the translation is a “definition”



Ts
N (Floc,Y) = 〈Floc, empty(Y), ∅〉

Ts
N (Fdata,Y) = 〈Fdata, empty(Y), ∅〉

Ts
N (x→f y,Y) = 〈f(x) = y, Yf = {x} ∧ empty(Y \ Yf ), ∅〉

Ts
N (F1 ∗ F2,Y) = let Y1,Y2 be fresh in

let 〈A1, B1, Z1〉 = Ts
N (F1,Y1), 〈A2, B2, Z2〉 = Ts

N (F2,Y2) in

let Z = Z1 ∪ Z2 ∪Y1 ∪Y2 in

〈A1 ∧A2 ∧ empty(Y1 ∩Y2), B1 ∧B2 ∧Y = Y1 ∪Y2, Z〉

Tb
N (F ) = let Y be fresh, 〈A,B,Z〉 = Ts

N (F,Y) in 〈A ∧X = Y, B, Z ∪Y〉

Tb
N (¬F ) = let 〈A,B,Z〉 = Tb

N (F ) in 〈¬A,B,Z〉

Tb
N (F1 ∧ F2) = let 〈A1, B1, Z1〉 = Tb

N (F1), 〈A2, B2, Z2〉 = Tb
N (F2) in

〈A1 ∧A2, B1 ∧B2, Z1 ∪ Z2〉

Tb
N (F1 ∨ F2) = let 〈A1, B1, Z1〉 = Tb

N (F1), 〈A2, B2, Z2〉 = Tb
N (F2) in

〈A1 ∨A2, B1 ∧B2, Z1 ∪ Z2〉

TN (F ) = let Tb
N (F ) = 〈A,B,Z〉 in A ∧B ∧∆N

SL

Fig. 4: SMT encoding for the core fragment of SLdata without inductive predicates.

of the fresh variables Z: variables Z can be assigned in each model to satisfy B,
in a way that the A part cannot distinguish. These properties allow us to ensure
correctness of the translation of negation ¬F . Assuming that Tb

N (F ) = 〈A,B,Z〉,
we can derive the encoding of negation as

MN
sl |= ¬F iff MN

sl 6|= F iff (1)

MN
smt 6|= ∃Z.A ∧B iff MN

smt |= ¬∃Z.A ∧B iff (2)

MN
smt |= ∀Z.B ⇒ ¬A iff MN

smt |= ∃Z.B ∧ ¬A , (3)

where the equivalence (3) follows from Z-existence and Z-equivalence.

Lists and Trees. The translation of an inductive predicate Ts
N (pred(x, s,P),Y),

with s = 〈s1, . . . , sk〉, for model sizes of at most N , introduces fresh binary
predicates rZ1 , . . . , rZN , and a fresh location set Z. These fresh predicates are
meant to represent reachability in up to N steps within the set Z. Location
set Z will represent all nodes reachable from x allocated within the predicate.
Throughout the remainder of the section, we assume that x, s, P , Y, Z, rZi and
N are fixed and in scope of all definitions. We also assume sets of fields Fpred and
F d
pred, defined as Flist = {n} and F d

list = {n, d}, or Ftree = {l, r} and F d
tree = {l, r, d}.

To fully define translation function Ts
N , we will define auxiliary helper formulas.

To start with, we define the following functions for convenience: isstop(x)
def
= x =

null ∨
∨

s∈s x = s, defining stop nodes; S(x, y)
def
=
∨

f∈Fpred
f [x] = y, defining a



successor node; and defineY
def
=
∧

f∈F d
pred
Yf = Z ∧

∧
f∈Fld\F d

pred
Yf = ∅, defining

pred-relevant elements of Y in terms of the footprint Z.
Although reachability is not expressible in first-order logic, since we are only

interested in finite reachability with respect to the model elements x1, . . . , xN ,
we can define the reachability predicates rZK , for 1 ≤ K ≤ N , as follows.

R1
def
=

∧
1≤i,j≤N

rZ1 (xi, xj)⇔ (xi ∈ Z ∧ ¬isstop(xj) ∧ S(xi, xj))

RK
def
=

∧
1≤i,j≤N

rZK(xi, xj)⇔ (rZK−1(xi, xj) ∨
∨

1≤k≤n

(rZK−1(xi, xk) ∧ rZ1 (xk, xj))

reachability
def
= R1 ∧R2 ∧ · · · ∧RN

In addition, we define the function rZN (x, y, f)
def
= f [x] = y ∨ (f [x] ∈ Z ∧

rZN (f [xi], xj)) to denote that y is reachable from x through f as the first step.
We can now define the formula footprint that asserts that the set Z (the footprint
of pred) is defined as the set of locations reachable from x.

emptyZ
def
= isstop(x) ∨ (

∧
1≤i≤N x 6= xi)

footprint
def
= Z ⊆ {x1, . . . , xN} ∧ (emptyZ⇒ Z = ∅)∧
∧
(
¬emptyZ⇒

∧
1≤i≤N

(
(xi ∈ Z)⇔

(
(xi = x) ∨ rZN (x, xi)

)))
Next, the formula structure ensures that the elements of the pred are part of an
acyclic data structure, starting at x, with no sharing of non-null nodes.

oneparent
def
=

∧
1≤i≤N

xi ∈ Z ⇒
∧

f 6=g∈Fpred

(f [xi] = g[xi]⇒ f [xi] = null)

∧
∧

1≤j≤N

xj ∈ Z ∧ xi 6= xj ⇒
∧

f,g∈Fpred

(f [xi] = g[xj ]⇒ f [xi] = null)

structure
def
= (¬isstop(x)⇒ x ∈ Z) ∧ oneparent ∧ ¬rZN (x, x)

For ensuring stop node properties, we assert that the stop nodes of pred are
pairwise different, occur exactly once, are the only leaves of the structure, and,
for trees, are ordered the same way as prescribed by the vector s = 〈s1, . . . , sk〉.

stopseq
def
= (isstop(x)⇒

∧
s∈s

x = s) ∧
∧

1≤i<j≤k

si 6= sj

stopsoccur
def
= ¬isstop(x) =⇒

∧
s∈s

∨
1≤p≤N

(xp ∈ Z ∧ S(xp, s))

stopleaves
def
=

∧
1≤i≤N

∧
f∈Fpred

(xi ∈ Z ∧ f [xi] /∈ Z)⇒ isstop(f [xi])

fstop(xp, f, s)
def
= f [xp] = s ∨

∨
1≤c≤N

rZN (xp, xc, f) ∧ xc ∈ Z ∧ S(xc, s)

ordered
def
=

∧
1≤i<k

∨
1≤p≤N

xp ∈ Z ∧ fstop(xp, l, si) ∧ fstop(xp, r, si+1)



We combine the above constraints into stopslist
def
= stopsoccur∧stopseq∧stopleaves

and stopstree
def
= stopsoccur ∧ stopseq ∧ stopleaves ∧ ordered. Finally, we define the

data formula that ensures that the data allocated in the predicate respects the
given (unary and binary) data predicates.

udata(P )
def
= map⇒(Z,mapP (d)) = K(>)

bdata(f, P )
def
=

∧
1≤i,j≤N

xi, xj ∈ Z ∧ rZN (xi, xj , f)⇒ P (xi, xj)

data
def
=
∧
P∈P

udata(P ) ∧
∧

(f,P )∈P

bdataN (f, P )

Putting all the auxiliary formulas together, we define the translation of
inductive predicates pred ∈ {list, tree} to SMT as follows.

Ts
N (pred(x, s,P),Y) = let rZ1 , . . . , r

Z
N , Z be fresh

let A = structure ∧ stopspred ∧ data

let B = reachability ∧ footprint ∧ defineY in

〈A,B,
{
rZ1 , . . . , r

Z
N , Z

}
〉

It is important to note that the formulas RK only ensure that the predicates
rZK are fully defined on the set {x1, . . . , xN} and can be interpreted arbitrarily
elsewhere. Nevertheless, this is sufficient for the translation to be correct. By
inspection, it can be seen that the A part of the translation cannot distinguish
two interpretations of rZK that differ only outside of {x1, . . . , xN}. This is crucial
for the correctness of the encoding as it supports the Z-Equivalence property of
the translation.

Theorem 3. Let F be a SL∗data formula and N be the bound given by Theorem
2. Then F is SL∗data-satisfiable if and only if the SMT translation F ′ = TN (F ) is
satisfiable. Moreover, the translation F ′ is polynomial in the size of F .

As Tarray is in NP, this yields an NP decision procedure for SL∗data if Tdata is in
NP, matching the complexity result from Section 4.

6 Conclusion

We defined a new fragment of separation logic, SL∗data, which supports lists, trees,
and data constraints. SL∗data allows us to formalize common data structures such
as max-heaps and binary search trees. Despite this expressiveness, satisfiability
and entailment of SL∗data formulas are decidable in NP and coNP, respectively.
This follows from the logic’s small-model property: Every model of an SL∗data
formula can be converted into a small model by removing unnecessary locations.
We derived a bound that is linear in the number of variables and thus enables a
polynomial encoding into SMT. An implementation, which remains future work,
can be based on off-the-shelf SMT solvers. In addition, we plan to extend our
approach to doubly-linked and nested data structures, as well as to abduction.
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