
Investigating the Existence of Large Sets of
Idempotent Quasigroups via Satisfiability

Testing

Pei Huang1,3, Feifei Ma1,2,3(�), Cunjing Ge1,3, Jian Zhang1,3(�) and Hantao
Zhang4

1State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences, China

2Laboratory of Parallel Software and Computational Science
Institute of Software, Chinese Academy of Sciences, China

3University of Chinese Academy of Sciences, China
{huangpei, maff, gecj, zj}@ios.ac.cn

4Department of Computer Science, University of Iowa City, IA 52242, U.S.A.
hantao-zhang@uiowa.edu

Abstract. In this paper, we describe a method for solving some open
problems in design theory based on SAT solvers. Modern SAT solvers
are efficient and can produce unsatisfiability proofs. However, the state-
of-the-art SAT solvers cannot solve the so-called large set problem of
idempotent quasigroups. Two idempotent quasigroups over the same set
of elements are said to be disjoint if at any position other than the main
diagonal, the two elements from the two idempotent quasigroups at the
same position are different. A collection of n−2 idempotent quasigroups
of order n is called a large set if all idempotent quasigroups are mutually
disjoint, denoted by LIQ(n). The existence of LIQ(n) satisfying certain
identities has been a challenge for modern SAT solvers even if n = 9.
We will use a finite-model generator to help the SAT solver avoiding
symmetric search spaces, and take advantages of both first order logic
and the SAT techniques. Furthermore, we use an incremental search
strategy to find a maximum number of disjoint idempotent quasigroups,
thus deciding the non-existence of large sets. The experimental results
show that our method is highly efficient. The use of symmetry breaking
is crucial to allow us to solve some instances in reasonable time.

1 Introduction

In recent decades, automated reasoning tools have been applied to some com-
binatorial problems which are difficult for conventional mathematical methods.
For example, Marijin Heule et al. solved the boolean pythagorean triples prob-
lem via a parallelized SAT solver with 800 cores in about 2 days [10]. Gen-
erally, these combinatorial problems are hard to solve. The quasigroup prob-
lem is among these problems and it has attracted much focus by researchers in
the field of combinatorics and automated reasoning. The improvement of auto-
mated reasoning techniques made computer search play an important role in the

study of quasigroups [24]. For example, many open problems of the type from
QG2 to QG9 have been solved by some finite-model generators such as MGTP,
FINDER, SEM, MACE4 and propositional satisfiability provers SATO, DDPP,
respectively [6, 19, 27, 23, 25].

The large set problem, which seeks to find a set of combinatorial objects
rather than one, is a classic and challenging research topic in combinatorial
design theory. Sylvester first proposed the existence of large sets of Kirkman
triple systems in the 1850s [3]. In the late last century, the large set of idempotent
quasigroups were proposed. Due to its difficulty in construction, the research
progress is quite slow in the mathematics field. So, any progress of the large set
is something expected[2, 13, 22].

Investigating the existence of large sets of moderate order via computer can
provide support for mathematicians to further explore general issues. Sometimes
they can use mathematical construction to produce large objects from smaller
ones recursively. Besides, many hard combinatorial problems related to quasi-
groups also have potential value in the field of cryptography [7, 12].

A collection of n−2 idempotent quasigroups (IQs) of order n is called a large
set if any two of them are disjoint, denoted by LIQ(n). Feifei Ma et al. applied
SEM [27] to some open cases about large sets of idempotent quasigroups with
certain identities summarized by L.Zhu [29, 28], and solved LIQ(n) (n ≤ 8) [14].

In this paper, we attempt to further study the open cases of LIQ(n) for
n ≥ 9. Unlike LIQ(n) (n ≤ 8), it is difficult to solve these cases via encoding
them directly as SAT, SMT, CSP or first order logic formulae, even though
n = 9 is just one more than n = 8. We tested direct encoding ways and used
SAT solvers like MiniSat, Glucose, Treengeling (1st in SAT 2016 competition in
parallel track), SMT solver like Z3 [5], CSP solver like Minizinc [17] and finite-
model generators like SEM, SEMD, MACE4 [15] and they all failed to produce
a result in a week for many instances. However, LIQ(n) (n ≤ 8) can be solved
in seconds. These challenging problems, LIQ(n) (n ≥ 9), promote us to seek for
more powerful search strategies.

There have been much progress in SAT solving during the past 20 years;
and the state-of-the-art SAT solvers can make very efficient low-level inferences.
They have become the core search engine in many tools used for combinational
[8, 16] and sequential equivalence checking [1, 11]. Apart from high efficiency, the
state-of-the-art SAT solvers can make a claim that the formula is unsatisfiable
with a formal proof. One can verify the proof emitted by a SAT solver and ensure
the result is correct [9, 21]. Yet when other kinds of solvers claim that a formula
is unsatisfiable, one has to trust that the solver fully exhausted the search space
for the problem. However, SAT solvers are weak in dynamic symmetry breaking,
hence may revisit a lot of redundant search space. Usually, when a problem is
encoded as Boolean formulae, its structural characteristics may be hidden.

On the other hand, when a problem is encoded as first order logic formu-
lae, the structural information and some properties are well preserved. The
finite-model generator can make use of this information to break symmetries.
Finite-model generators such as SEM,SEMD and MACE4 are good at dynamic

symmetry breaking and enumerating all solutions. A benefit of using SEM-style
finite-model generators is that the search process can exploit high-level struc-
tural information in the formulas (e.g., symmetries) to reduce the search space.
The core dynamic symmetry breaking method is a heuristic called least number
heuristic (LNH) [27]. The basic idea is that many element names, which have
not yet been used in the search, are essentially the same. Furthermore, MACE4
can eliminate isomorphic solutions statically.

A question naturally arises: would it be helpful to combine these two paradig-
ms? In 2001, J. Zhang proposed to combine automatic symmetry breaking with
SAT [26]. The experimental results in [26] showed the advantage of this method.
We employ a similar search strategy in solving the LIQ problem: Use the first
order model generator to generate some asymmetric partial potential solutions;
with the help of these partial solutions as candidates, a SAT solver can avoid
a lot of symmetric search spaces. This simple combination can take advantages
of their respective strengths. In addition to that, we also statically add some
symmetry breaking constraints. Adding constraints to the basic model has been
most used historically by constraint programmers [18]. The experimental results
show that this combination can greatly improve the solving efficiency. We found
some instances, which cannot be solved with a single solver in a week before,
can be solved in minutes now. Due to these strategies, a number of open cases
of LIQ(n) have been solved. We not only establish the non-existence of these
cases, but also find the maximum number of disjoint IQ(n)s, and some other
interesting mathematical results.

This paper is organized as follows: in Sect. 2, we introduce some preliminaries
about LIQ; In Sect. 3 and 4, we present the encoding method and how to break
symmetry and speed up the search process; In Sect. 5 and 6, we present the
results about LIQ and the experiments. Furthermore, we evaluate and discuss
the experimental results; In the final section, conclusions are drawn.

2 Preliminaries

2.1 Definitions

Let us recall some notations.
A quasigroup is denoted as an ordered pair (Q,⊕), where Q is a set and ⊕

is a binary operation on Q. For all constants a, b ∈ Q and variables x, y ∈ Q
equations a⊕ x = b and y⊕ a = b are uniquely solvable. |Q| is said be the order
of (Q,⊕).

It is well-known that the multiplication table of quasigroup (Q,⊕) is a Latin
square. Thus, Latin square and quasigroup are often treated as synonyms. Figure
1 shows the multiplication table of a quasigroup (Q,⊕) where Q = {0, 1, 2, 3}.

For all x ∈ Q, if x ⊕ x = x (briefly x2 = x), the quasigroup (Q,⊕) is
idempotent. We denote an idempotent quasigroup of order n as IQ(n).

Two quasigroups (Q,⊕) and (Q, ·) are said to be disjoint if for all x, y ∈ Q,
x⊕ y ̸= x · y whenever x ̸= y.

L | 0 1 2 3
----+-------------

0 | 0 2 3 1
1 | 3 1 0 2
2 | 1 3 2 0
3 | 2 0 1 3

Fig. 1. A quasigroup of order 4

Definition 1 (Large Set). A collection of idempotent quasigroups (Q,⊕1),
(Q,⊕2), . . ., (Q,⊕n−2), where n = |Q|, is called a large set, if any two of the
idempotent quasigroups are disjoint.

A large set of idempotent quasigroups of order n is denoted by LIQ(n). Figure
2 shows a large set of idempotent quasigroups of order 4, i.e., LIQ(4), which
consists of two disjoint IQ(4)s.

L1 | 0 1 2 3 L2 | 0 1 2 3
----+------------- ----+-------------

0 | 0 2 3 1 0 | 0 3 1 2
1 | 3 1 0 2 1 | 2 1 3 0
2 | 1 3 2 0 2 | 3 0 2 1
3 | 2 0 1 3 3 | 1 2 0 3

Fig. 2. Two disjoint IQ(4)s in LIQ(4)

Besides the existence of LIQ(n), the maximum number of disjoint IQ(n)s
for non-existent instances is also concerned.

Definition 2 (Orthogonal). Two quasigroups (Q,⊕) and (Q, ·) are said to
be orthogonal, if for all x1, x2, y1, y2 ∈ Q, the ordered pair (x1 ⊕ x2, y1 · y2) is
unique.

L1 and L2 in Figure 2 are also orthogonal. Ordered pairs are shown in Figure
3 and every ordered pair appears only once.

A LIQ is said to have orthogonality, if any two quasigroups in the LIQ
are orthogonal. In general, for idempotent quasigroups, orthogonality implies
disjointness, but the reverse does not hold.

2.2 The Problems

Teirlinck and Lindner [20], and Chang [4] have already established the
existence of LIQ(n). In [4], Chang concluded that there exists an LIQ(n) for
any n ≥ 3 with the exception n = 6. The spectrums of some large sets in which

(L1,L2)| 0 1 2 3
----+--------------------------

0 | (0,0) (2,3) (3,1) (1,2)
1 | (3,2) (1,1) (0,3) (2,0)
2 | (1,3) (3,0) (2,2) (0,1)
3 | (2,1) (0,2) (1,0) (3,3)

Fig. 3. The ordered pair of L1 and L2

the IQs satisfy certain identities have not been explored extensively up to now.
The existence of idempotent quasigroups satisfying the seven “short identities”
has been studied systematically. These identities are:

1. xy ⊕ yx = x Schröder quasigroup
2. yx⊕ xy = x Stein’s third law
3. (xy ⊕ y)y = x C3-quasigroup
4. x⊕ xy = yx Stein’s first law; Stein quasigroup
5. (yx⊕ y)y = x
6. yx⊕ y = x⊕ yx Stein’s second law
7. xy ⊕ y = x⊕ xy Schröder’s first law

In the above equations, xy is an abbreviation of (x⊕ y). That means xy has
higher precedence than x⊕ y. Let LIQ(i)(n) denote the large set of idempotent
quasigroups of order n satisfying identity (i). The existence of LIQ(i)(n) is still
an open problem. In [28], L. Zhu listed several open cases. Since the search spaces
of the problem grow exponentially with order n, we pick out some open cases of
moderate orders which may be suitable for computer search. In Table 1, we list
these open cases where n ≤ 13.

1. LIQ(1)(12) LIQ(1)(13) 2. LIQ(2)(9) LIQ(2)(12)

3. LIQ(3)(10) LIQ(3)(13) 4. LIQ(4)(9) LIQ(4)(11)

5. LIQ(5)(11) 6. LIQ(6)(9) LIQ(6)(13)

7. LIQ(7)(9) LIQ(7)(13)

Table 1. Open cases for LIQ of moderate sizes

In [14], Feifei Ma et al. studied LIQ(i)(n)s with n no more than 8 in table
1. They modeled LIQ(i)(n) via first order formulae and used the finite-model
generator SEM. However, using the direct method is impracticable for LIQ(i)(n)s
where n is more than 8. So LIQ(i)(n)s, where n ≥ 9, are still open cases.

The search space grows exponentially with the size of the problem. In prac-
tice, we encoded LIQ(i)(n)s, where n ≥ 9, as a SAT instance, using uninterpreted
functions and first order formulae in a naive way. However, we could not get any
result via SAT solvers like MiniSat, glucose, Treengeling, the SMT solver like

Z3, the CSP solver like Minizinc and finite-model generators like SEM, MACE4
in a week for some instances with n = 9. However, for LIQ(n)s (n ≤ 8), results
could be obtained in a few seconds to minutes.

3 Encoding

In the introduction we have expounded the reason why we choose SAT
as core engine. First, a notation ExactOne(x1, x2, ..., xn) will be introduced.
x1, x2, ..., xn are Boolean variables and ExactOne(x1, x2, ..., xn) is a formula
composed of x1, x2, ..., xn. ExactOne(x1, x2, ..., xn) expresses the fact that ex-
actly one of these Boolean variables is true for any satisfying assignment to this
formula.

ExactOne(x1, x2, ..., xn) = (x1 ∨ x2∨, ...,∨xn) ∧
(x1 ∨ x2) ∧ (x1 ∨ x3), ...,∧(xn−1 ∨ xn)︸ ︷︷ ︸

(n2)

Without loss of generality, we assume the domainQ to be the set {0, 1, . . . , n−
1}. ⊕f is actually a function Lf : Q × Q 7→ Q satisfying the constraints of
idempotent quasigroup and identity (i). LIQ(n) = {L1, L2, . . . , Ln−2}, where
n = |Q|, denotes a large set. Lf (x, y) denotes x ⊕f y in quasigroup Lf . In
Section 2, we mentioned that a quasigroup can be seen as a multiplication table
(or a matrix called Latin square). Then we can use Boolean variable Pf,x,y,v

to denote that the position(x, y) of fth IQ in the large set is v.
According to the definition of quasigroup, it is easy to know that each

element in Q occurs exactly once in each row and exactly once in each column
in the matrix. So for each row x of fth IQ, we add formula:∧

0≤v≤n−1

ExactOne(Pf,x,0,v, Pf,x,1,v, ..., Pf,x,n−1,v)

For each column y of fth IQ, we add formula:

∧
0≤v≤n−1

ExactOne(Pf,0,y,v, Pf,1,y,v, ..., Pf,n−1,y,v)

For each cell (x, y) of fth IQ, we add formula:

Pf,x,y,1 ∨ Pf,x,y,2∨, ...,∨Pf,x,y,n−1

For fth IQ in the large set, The idempotent property (x2 = x) can be encoded
as: ∧

0≤x≤n−1

Pf,x,x,x

The disjoint property depicts that for any two latin squares Lj and Lk (1 ≤
j, k ≤ n−2), Lj(x, y) ̸= Lk(x, y) except for x = y. So the encoding for m disjoint
latin squares is: ∧

1≤j<k≤m

∧
x ̸=y

∧
0≤v≤n−1

Pj,x,y,v ∨ Pk,x,y,v

The encoding for the seven identities:

1).For (xy ⊕ yx = x):
∧

0≤x,y,v1,v2≤n−1

Pf,x,y,v1
∨ Pf,y,x,v2

∨ Pf,v1,v2,x

2).For (yx⊕ xy = x):
∧

0≤x,y,v1,v2≤n−1

Pf,y,x,v1 ∨ Pf,x,y,v2 ∨ Pf,v1,v2,x

3).For (xy ⊕ y)y = x:
∧

0≤x,y,v1,v2≤n−1

Pf,x,y,v1
∨ Pf,v1,y,v2

∨ Pf,v2,y,x

4).For (x⊕ xy = yx):
∧

0≤x,y,v1,v2≤n−1

Pf,x,y,v1 ∨ Pf,y,x,v2 ∨ Pf,x,v1,v2

5).For (yx⊕ y)y = x:
∧

0≤x,y,v1,v2≤n−1

Pf,y,x,v1
∨ Pf,v1,y,v2

∨ Pf,v2,y,x

6).For yx⊕ y = x⊕ yx:
∧

0≤x,y,v1,v2≤n−1

Pf,y,x,v1 ∨ Pf,v1,y,v2 ∨ Pf,x,v1,v2

7).For xy ⊕ y = x⊕ xy:
∧

0≤x,y,v1,v2≤n−1

Pf,x,y,v1
∨ Pf,v1,y,v2

∨ Pf,x,v1,v2

Actually, there is a lot of redundancy in the encoding. For example, Pf,x,x,x

must be assigned true and Pf,x,x,v(v ̸= x) must be assigned false. So there are
many redundant clauses like Pf,1,1,2 ∨ Pf,1,1,3 ∨ Pf,2,3,1. These clauses can be
eliminated in the encoding phase. Besides redundant clauses, many clauses can
be simplified. For instance, known Pf,0,1,2(we will explain it in the next section),
Pf,0,1,2∨Pf,1,0,v2 ∨Pf,2,v2,0 can be simplified as Pf,1,0,v2 ∨Pf,2,v2,0. Although the
state-of-the-art SAT solvers can simplify these during the preprocessing phase,
it is better to remove them in the encoding phase.

4 Search Strategies

Arguably, many hard combinatorial problems allow isomorphic solutions,
and we say these problems have symmetries. The search may revisit equivalent
states over and over again. Exploiting symmetry can reduce the search time to
solve the problem. It is common to identify three main approaches to break
symmetry. The first method is to reformulate the problem so it has a reduced
number of symmetries. The second is to add symmetry breaking constraints
before search starts, thereby making some symmetric solutions unacceptable
while leaving at least one solution in each symmetric equivalence class. The final
approach is to break symmetry dynamically during search, adapting the search

procedure appropriately. Although symmetry breaking technique and automatic
identification of the symmetry have been concerned by researchers in the past,
state-of-the-art SAT solvers do not have the ability to identify and break symme-
try automatically. So, it is vital for us to handle the symmetries of the problem
at hand.

4.1 Symmetry Breaking via Adding Constraints

First, we examine the structure of the problem to identify symmetries.

Lemma 1. If there is a large set LIQ(n) = {L1, L2, . . . , Ln−2}, then there exists
a large set such that Lj(0, 1) = j + 1.

Proof. According to x2 = x, we know that Lj(0, 0) = 0 and Lj(1, 1) = 1. Since
a⊕j x = b and y ⊕j a = b are uniquely solvable, Li(0, 1) can not be 0 or 1. All
candidates for it include 2, 3, ..., n − 1(n − 2 elements). Due to the property of
disjoint, for any 1 ≤ j1, j2 ≤ n − 2, Lj1(0, 1) ̸= Lj2(0, 1) but the cardinality of
collection of Lj(0, 1) is n− 2. So they must be exactly {2, 3, ...n− 1}. ⊓⊔

Obviously, if {L1, L2, . . . , Ln−2} is a large set then any permutation of L1,
L2, . . ., Ln−2 is also a large set. The permutation may not affect search time
when a large set exists. However, when the large set does not exist, the solver
will nearly enumerate all permutations and conclude that it is unsatisfiable. In
other words, ∀f1, f2 ∈ {1, 2, ...n − 2} there is no essential difference between
Boolean variable Pf1,x,y,v and Pf2,x,y,v.

We can take advantage of lemma 1 to fix the order of {L1, L2, . . . , Ln−2}.
Since Lj(0, 1) must be exactly {2, 3, ...n− 1}, we specify its order by assigning

L1(0, 1) = 2 < L2(0, 1) = 3 < ... < Ln−2(0, 1) = n− 1

So, by lemma 1, we can add the following unit clauses:∧
1≤f≤n−2

Pf,0,1,f+1

then Boolean variable Pf1,x,y,v and Pf2,x,y,v are different in a way and (n−3)!−1
isomorphic cases eliminated.

Now that the sequence of IQ(n)s is fixed, we use DIQ
(i)
(n)(l) to denote the

first l disjoint IQ(s)s satisfying identity (i).

DIQ
(i)
(n)(l) = {L1, L2, ..., Ll | Lj(0, 1) = j + 1}(1 ≤ l ≤ n− 2)

Proposition 1. If DIQ
(i)
(n)(l) does not exist and DIQ

(i)
(n)(l − 1) exists, then the

maximum number of disjoint IQ(i)(n)s is l − 1.

Proof. Suppose there exist m (m ≥ l) disjoint IQs when DIQ
(i)
(n)(l) does not

exist and DIQ
(i)
(n)(l− 1) exists. Then we know that l disjoint IQs also exist. We

assume they are {Lj1 , Lj2 , ..., Ljl} where j1 < j2 <, ..., < jl. According to lemma
1 we know Lj1(0, 1) = j1 + 1, Lj2(0, 1) = j2 + 1,...,Ljl(0, 1) = jl + 1. We can
define a permutation in Cauchy form:

σ :

(
0 1 2 3 . . . l l + 1 . . . n− 1
0 1 j1 + 1 j2 + 1 . . . jl + 1 ∗ . . . ∗

)
The ’*’ can be any legitimate number. We can perform σ−1 on {Lj1 , Lj2 , ..., Ljl}.
It is easy to know that all constraints still hold under permutation σ−1 and
{Lj1 , Lj2 , ..., Ljl}σ

−1

= {L1, L2, ..., Ll} = DIQ
(i)
(n)(l). Thus DIQ

(i)
(n)(l) must exist

however it contradicts with the known conditions. So the assumptions can not
be true. ⊓⊔

Proposition 1 reveals that any l disjoint IQ(i)(n)s must be isomorphic to some
DIQ

(i)
(n)(l). When l = n − 2, DIQ

(i)
(n)(l) is exactly LIQ(i)(n). So we can search

for DIQ
(i)
(n)(l)s successively, increasing l step by step. Once for some l DIQ

(i)
(n)(l)

is unsatisfiable we can conclude that LIQ(i)(n) doesn’t exist and the maximum
number of disjoint IQs is l − 1. The reason why DIQ

(i)
(n)(l)s are searched by

increasing l instead of decreasing l is that it usually takes much more time to
solve an unsatisfiable case than a satisfiable one.

The framework of incremental search for LIQ(i)(n) is shown in Algorithm 1.
At each step, DIQ(i)(n)(l) is encoded as a set of Boolean formulas, denoted by
Encode(DIQ

(i)
(n)(l)), and solved by a SAT solver.

Algorithm 1: Incremental search for LIQ(i)(n)

Input: n is order, i is identity (i)
Output: The existence of LIQ and the maximum number of disjoint IQs

1 for l← 2 to n− 2 do
2 result ← Solve Encode(DIQ

(i)

(n)(l)) ;
3 if result is UNSAT then
4 return NONEXISTENT AND max = l − 1;
5 end
6 end
7 return EXISTENT

4.2 Combine Solvers to Break Symmetry

Due to adding constraints, some apparent symmetries have been eliminated
but there still remains a lot. Although the state-of-the-art SAT solvers are very

efficient for constraint propagation and conflict analysis, they are not good at
breaking symmetry dynamically during search. Thus, we can use other solvers,
which can break symmetry dynamically during search, to enumerate a small
subspace and then add these candidate partial solutions to the clauses set to
help a SAT solver to eliminate a lot of symmetric states.

It is easy to know that if there is a large set {L′
1, L

′
2, ..., L

′
n−2} then there exists

an isomorphic DIQ
(i)
(n)(n−2) = {L1, L2, ..., Ln−2} where L1(0, 1) = L′

1(0, 1) = 2.
In section 4.1, the search process can be seen as expanding L1 to Ln−2 step by
step. So, if we find all non-isomorphic L1s as a candidate set and test whether
they can be expanded to a large set, then a lot of isomorphic search spaces can
be avoided. In this case, all non-isomorphic L1s can be seen as candidate partial
solutions. So, we use the first order logic solver to generate all non-isomorphic
L1s. C(i)(n) is used to denote the candidate set formed by all non-isomorphic
L1s which satisfy identity (i) of order n. We use ΣC(i)(n) to denote the first order
logic formula encoding.

ΣC(i)(n) = {∀x∀y∀z(y = z
∨

P (x, y) ̸= P (x, z)),

∀x∀y∀z(x = z
∨

P (x, y) ̸= P (z, y)),

∀xP (x, x) = x,

Identity(i)

P (0, 1) = 2,

∀x∀y(x = y
∨

P (x, y) ̸= P (x, y))}

The (un)satisfiability of the problem is preserved. We summarize this process
as Algorithm 2.

We only implemented the sequential version of Algorithm 2; it is easy to
implement a parallel version. This also can be seen as an example of the divide
and conquer method with symmetry breaking.

The search framework of Algorithm 2 can help us get the result about a
LIQ(n) quickly but it may fail in getting the maximum number of disjoint IQs.
A small modification can make it capable of getting the maximum number of
disjoint IQs. One just needs to delete the symmetry breaking constraints which
are introduced in section 4.1. However, this will be slower than the original
version. In addition, C(i)(n) can also be extended to denote more non-isomorphic
disjoint IQs. We use Hybrid search to denote the original version, Hybrid search1
to denote the version without symmetry breaking constraints and Hybrid search2
to denote the version extending the concept of C(i)(n).

5 New Results

Table 2 lists the results about investigating the existence of large sets of idempo-
tent quasigroups. The column of ‘Maximum’ presents the maximum number of

Algorithm 2: Hybrid search for LIQ(i)(n)

Input: n is order, i is identity (i)
Output: The existence of LIQ and the maximum number of disjoint IQs

1 max← 1;
2 Generate C(i)(n) by ΣC(i)(n) with a finite model generator which can break

symmetry.;
3 for all L1 ∈ C(i)(n) do
4 for l← 2 to n− 2 do
5 result ← Solve {Encode(DIQ

(i)

(n)(l)) + Encode(L1)} with SAT solver ;
6 if result is UNSAT then Break ;
7 else if l > max then max← l ;
8 end
9 if max == n− 2 then return EXISTENT ;

10 end
11 if max < n− 3 then max = unknown ;
12 return NONEXISTENT AND max

disjoint IQ(n)s for a non-existent instance. And the fifth column marks whether
the second strategy, hybrid search, was used. The maximum number of dis-
joint IQ(n)s for LIQ(2)(9), LIQ(4)(11) and LIQ(5)(11) are obtained by Hybrid
search1 which is a modified version of Algorithm 2 without symmetry breaking
constraints.

Order n Identity i Existence of LIQ Maximum Hybrid
2 NO 6 ✓

9 4 NO 6 -
6 NO 6 -
7 NO 6 -

11 4 NO 4 ✓
5 NO 2 ✓

Table 2. The result about LIQ

The current generation of SAT solvers support emission of unsatisfiability
proofs. And standards for such proofs exist, as well as checkers. When the hybrid
method was applied we should check the proof file and C(i)(n), although C(i)(n)
may be hard to be verified by a formal method. C(i)(n) is a small fraction of the
whole problem which can be double checked by different solvers. If one wants to
verify the result, one just need to check DIQ

(i)
(n)(max+ 1), where max denotes

the maximum number of disjoint IQs.
In addition to investigating the existence of large sets, we also check the

orthogonality of some LIQs. The definition of the orthogonality (Definition 2)

of LIQs has been introduced in section 2.1. While LIQ cannot imply orthog-
onality, all small order LIQs we found so far do have the orthogonality. This
is also true for all LIQ(i)(n), where n ≤ 8, found by Feifei Ma et al. Only
LIQ(1)(8), LIQ(3)(4), LIQ(4)(4), LIQ(7)(8) exist according to [14]. LIQ(3)(4)
and LIQ(4)(4) can be constructed simply by hand, and they have been checked
by mathematicians. Our work is to check LIQ(1)(8) and LIQ(7)(8). We enumer-
ate all large sets of LIQ(1)(8) and LIQ(7)(8). The number of LIQ(1)(8)s and
LIQ(7)(8)s are 240 (some isomorphic solutions are eliminated). We examined all
the LIQ(1)(8)s and LIQ(7)(8)s and concluded that all large sets of LIQ(1)(8)s
and LIQ(7)(8)s have orthogonality.

6 Experimental Evaluation

In this section, we will use some experimental data to show the efficiency
of our method. The experiment is performed on a Dell laptop with Intel(R)
Core(TM) i7-6500U CPU(2.50GHz), operating system Ubuntu 16.04 and 16G
memory.

The first strategy of adding symmetry breaking constraints will not be dis-
cussed in this section, because it is a universal method to save search time. The
search framework also can help us avoid some isomorphic search spaces when
getting the maximum number of disjoint IQs for nonexistent instance according
to Proposition 1. It may prove that the large set does not exist when l is small.
Due to the first search strategy, we can use the SAT solver Glucose 4.1 to prove
that LIQ(4)(9), LIQ(6)(9) and LIQ(7)(9) do not exist.

However, LIQ(2)(9), LIQ(3)(10), LIQ(4)(11) and LIQ(5)(11) are still hard for
the first search strategy. We used Treengeling and parallel version of Glucose 4.1
to solve these hard instances on a computer server with 100 cores (Intel Xeon
CPU E7-8870 @ 2.40GHz 32M Cache). However, these instances exhausted a
week without any results. Owing to the hybrid method we prove that they do
not exist within several minutes except for LIQ(3)(10).

In order to evaluate the efficiency of the hybrid method, we compared the
running times of using the hybrid method against just using a single SAT solver
or a finite-model generator. The results are shown in Table 3. The first three
columns show the search time of only using Algorithm 1 and the fourth column
shows search time of using the hybrid method. SEM and MACE4 did almost the
same in our experiment. We used Glucose 4.1 and MACE4 in Hybrid search. All
the implementations are in github 1.

From Table 3, we know that combining SAT and first order logic can sig-
nificantly improve the efficiency of search for LIQ. In particular, for some hard
instances that finite-model generators and SAT solvers cannot solve in a week,
the hybrid method can solve it in minutes.

Table 4 shows the results of different versions of the hybrid method which
have been introduced in section 4.2. Hybrid search is the original version and
1 https://github.com/huangdiudiu/LIQ-search

Instance Glucose 4.1 Glucose(Parallel) MACE 4 Hybrid search

Time Result Time Result Time Result Time Result

LIQ(2)(9) >1 week - >1 week - >1 week - 51.88s UNSAT
LIQ(4)(9) 14.372s UNSAT 10.60s UNSAT >24h - 0.25s UNSAT
LIQ(6)(9) 889.23s UNSAT 616.735s UNSAT >24h - 0.94s UNSAT
LIQ(7)(9) 1020.74s UNSAT 560.07s UNSAT >24h - 0.32s UNSAT
LIQ(4)(11)>1 week - >1 week - >1 week - 8.19s UNSAT
LIQ(5)(11)>1 week - >1 week - >1 week - 12.88s UNSAT

Table 3. The running times of different methods in solving LIQ(i)(n)

Hybrid search1 is the version that can find the maximum number of disjoint
IQ(n)s. Hybrid search2 extends the concept of C(i)(n), which is trying to find
all non-isomorphic {L1, L2} by the finite-model generator.

Instance Hybrid search Hybrid search1 Hybrid search2

MACE SAT Total(s) MACE SAT Total(s) MACE SAT Total(s)

LIQ(2)(9) 4.79 12.18 16.97 4.79 282.52 241.46 921.33 21.00 942.33
LIQ(4)(9) 0.01 0.28 0.29 0.01 1.06 0.39 1.45 1.19 2.03
LIQ(6)(9) 0.08 0.55 0.63 0.08 20.78 20.86 >3000 - >3000
LIQ(7)(9) 0.03 0.50 0.53 0.03 2.15 2.18 32.84 1.97 34.81
LIQ(4)(11) 0.01 10.83 10.84 0.01 211.17 211.27 731.11 13.62 744.73
LIQ(5)(11) 1.01 23.06 24.07 1.01 95.84 96.85 >3000 - >3000

Table 4. Comparison of different versions of the hybrid method

It is easy to know that fixing the sequence of IQs can improve the search pro-
cess from the comparison between Hybrid search and Hybrid search1. However,
it will sacrifice the ability of getting the maximum number of disjoint IQ(n)s.
From the comparison of Hybrid search and Hybrid search2, we know that finding
all non-isomorphic L1s as candidate set C(i)(n) is more efficient than finding two
disjoint IQs as candidate set.

The hybrid method divides the problem into two parts. One part, C(i)(n),
is solved by a finite-model generator (first order logic) and the other part is
solved by a SAT solver. So the hybrid ratio of first order logic formulae and SAT
encoding will affect the performance. Actually, we observe that finding all non-
isomorphic L1s as candidate set C(i)(n) is the most efficient in our experiment.

We take LIQ(7)(9) and LIQ(4)(11) as examples to show that how the hybrid ratio
affects the performance. If m denotes the number of IQ(n)s that are encoded
as first order logic formulae, then we use m/(n − 2) to denote the hybrid ratio
of first order logic formulae. Fig 4 shows the relationship between the hybrid
ratio m/(n− 2) and search time. We find that m/(n− 2) = 1/(n− 2) is the best
hybrid ratio for almost all instances. When m/(n− 2) = 0, that means all of the
problems are solved by a SAT solver. When m/(n − 2) = 1, that means all of
the problems are solved by a finite-model generator.

(a) LIQ(7)(9) (b) LIQ(4)(11)

Fig. 4. The relationship between the hybrid ratio m/(n−2) and run time. The abscissa
axis displays the value of m/(n− 2).

7 Conclusion

This paper describes an application of automated reasoning techniques and
tools to an interesting problem in combinatorics: the large set of idempotent
quasigroups (LIQs) satisfying the short identities. The LIQs of moderate orders
which are difficult for mathematical methods can also be quite challenging for
computer search. We present some effective search strategies for this problem,
and the core idea is symmetry breaking. We find that combining the power of
SAT solving and finite model generation is far more efficient than using a single
solver. As a result, a number of open cases have been solved. Besides, we find
that all LIQ(1)(8)s and LIQ(7)(8)s have orthogonality.

Acknowledgements. This work has been supported by the National 973
Program of China under Grant 2014CB340701, the National Natural Science
Foundation of China under Grant 61100064, and the CAS/SAFEA International
Partnership Program for Creative Research Teams. Feifei Ma is also supported
by the Youth Innovation Promotion Association, CAS. We thank Lie Zhu and
Yanxun Chang for suggesting these open problems and help.

References
1. Jason Baumgartner, Hari Mony, Viresh Paruthi, Robert Kanzelman, and Geert

Janssen. Scalable sequential equivalence checking across arbitrary design transfor-
mations. In International Conference on Computer Design, pages 259–266, 2006.

2. H. Cao, L. Ji, and L. Zhu. Large sets of disjoint packings on 6k + 5 points. Journal
of Combinatorial Theory Series A, 108(2):169–183, 2004.

3. A. Cayley. On the triadic arrangements of seven and fifteen things. Philosophical
Magazine, pages 50–53, 1850.

4. Yanxun Chang. The spectrum for large sets of idempotent quasigroups. Journal
of Combinatorial Designs, 8(2):79–82, 2015.

5. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

6. Masayuki Fujita, John K. Slaney, and Frank Bennett. Automatic generation of
some results in finite algebra. In International Joint Conference on Artifical Intel-
ligence, pages 52–57. Morgan Kaufmann, 1993.

7. Danilo Gligoroski, Smile Markovski, and Svein J. Knapskog. A public key block
cipher based on multivariate quadratic quasigroups. CoRR, abs/0808.0247, 2008.

8. Evguenii I. Goldberg, Mukul R. Prasad, and Robert K. Brayton. Using sat for
combinational equivalence checking. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 114–121, 2001.

9. Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with
extended resolution. In International Conference on Automated Deduction, volume
7898, pages 345–359, 2013.

10. Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying
the boolean pythagorean triples problem via cube-and-conquer. In International
Conference on Theory and Applications of Satisfiability Testing, pages 228–245,
2016.

11. Daher Kaiss, Marcelo Skaba, Ziyad Hanna, and Zurab Khasidashvili. Industrial
strength sat-based alignability algorithm for hardware equivalence verification. In
Formal Methods in Computer-Aided Design, pages 20–26, 2007.

12. C. Koscielny. Generating quasigroups for cryptographic applications. International
Journal of Applied Mathematics and Computer Science, 12:559–569, 2002.

13. Jiaxi Lu. On large sets of disjoint steiner triple systems ii. Journal of Combinatorial
Theory, 37(2):147–155, 1983.

14. Feifei Ma and Jian Zhang. Computer search for large sets of idempotent quasi-
groups. In Asian Symposium on Computer Mathematics, volume 5081, pages 349–
358, 2008.

15. William McCune. Mace4 reference manual and guide. CoRR, cs.SC/0310055, 2003.
16. Alan Mishchenko, Satrajit Chatterjee, Robert K. Brayton, and Niklas Eén. Im-

provements to combinational equivalence checking. In International Conference
on Computer-Aided Design, pages 836–843, 2006.

17. Ralph Becket Nicholas Nethercote, Peter J. Stuckey, Sebastian Brand, Gregory J.
Duck, and Guido Tack. MiniZinc: towards a standard cp modelling language. In
International Conference on Principles and Practice of Constraint Programming,
volume 4741, pages 529–543. Springer, 2007.

18. Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming. Elsevier, 2006.

19. John K. Slaney, Masayuki Fujita, and M. Stickel. Automated reasoning and ex-
haustive search: Quasigroup existence problems. Computers & Mathematics with
Applications, 29(2):115–132, 1995.

20. Luc Teirlinck and C. C. Lindner. The construction of large sets of idempotent
quasigroups. European Journal of Combinatorics, 9(1):83–89, 1988.

21. Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. Drat-trim: Efficient check-
ing and trimming using expressive clausal proofs. In International Conference on
Theory and Applications of Satisfiability Testing, pages 422–429, 2014.

22. Landang Yuan and Qingde Kang. Some infinite families of large sets of kirkman
triple systems. Journal of Combinatorial Designs, 16(3):202–212, 2008.

23. Hantao Zhang. SATO: an efficient propositional prover. In International Confer-
ence on Automated Deduction, pages 272–275, 1997.

24. Hantao Zhang. Combinatorial designs by SAT solvers. In Handbook of Satisfiability,
pages 533–568. IOS Press, 2009.

25. Hantao Zhang and Mark Stickel. Implementing the davis–putnam method. Journal
of Automated Reasoning, 24(1-2):277–296, 2000.

26. Jian Zhang. Automatic symmetry breaking method combined with SAT. In ACM
Symposium on Applied Computing, pages 17–21, 2001.

27. Jian Zhang and Hantao Zhang. SEM: a system for enumerating models. In In-
ternational Joint Conference on Artificial Intelligence, volume 2, pages 298–303,
1995.

28. Lie Zhu. Personal communication, September 2007.
29. Lie Zhu. Large set problems for various idempotent quasigroups, 2014.

