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Abstract. We introduce a sound and complete coinductive proof system
for reachability properties in transition systems generated by logically
constrained term rewriting rules over an order-sorted signature modulo
builtins. A key feature of the calculus is a circularity proof rule, which
allows to obtain finite representations of the infinite coinductive proofs.

1 Introduction

We propose a framework for specifying and proving reachability properties of
systems whose behaviour is modelled using transition systems described by log-
ically constrained term rewriting systems (LCTRSs). By reachability properties
we mean that a set of target states are reached in all terminating system compu-
tations starting from a given set of initial states. We assume transition systems
are generated by constrained term rewriting rules of the form

l↠ r if ϕ,
where l and r are terms and ϕ is a logical constraint. The terms l, r may con-
tain both uninterpreted function symbols and function symbols interpreted in
a builtin model, e.g., the model of booleans and integers. The constraint ϕ is a
first-order formula that limits the application of the rule and which may contain
predicate symbols interpreted in the builtin model. The intuitive meaning of a
constrained rule l ↠ r if ϕ is that any instance of l that satisfies ϕ transitions
in one step into a corresponding instance of r.

Example 1. The following set of constrained rewrite rules specifies a procedure
for compositeness:

init(n)↠ loop(n, 2) if ⊤,
loop(i× k, i)↠ comp if k > 1,
loop(n, i)↠ loop(n, i+ 1) if ¬(∃k.k > 1 ∧ n = i× k).

If n is not composite, the computation of the procedure is infinite.

Given a LCTRS, which serves as a specification for a transition system, it is
natural to define the notion of constrained term ⟨t |ϕ⟩, where t is an ordinary
term (with variables) and ϕ is a logical constraint. The intuitive meaning of such
a term is the set of ground instances of t that satisfy ϕ.



Example 2. The constrained term ⟨init(n) | ∃u.1 < u < n ∧ n mod u = 0⟩ defines
exactly the instances of init(n) where n is composite.

A reachability formula is a pair of constrained terms ⟨t |ϕ⟩ ⇒ ⟨t′ |ϕ′⟩. The
intuitive meaning of a reachability formula is that any instance of ⟨t |ϕ⟩ reaches,
along all terminating paths of the transition system, an instance of ⟨t′ |ϕ′⟩ that
agrees with ⟨t |ϕ⟩ on the set of shared variables.

Example 3. The reachability formula
⟨init(n) | ∃u.1 < u < n ∧ n mod u = 0⟩ ⇒ ⟨comp | ⊤⟩

captures a functional specification for the algorithm described in Example 1: each
terminating computation starting from a state in which n is composite reaches
the state comp. Computations that start with a negative number (composite or
not) are infinite and therefore vacuously covered by the specification above.

We propose an effective proof system that, given a LCTRS, proves valid
reachability formulas such as the one above, assuming an oracle that solves
logical constraints. In practice, we use an SMT solver instead of the oracle.

Contributions 1. As computations can be finite or infinite, an inductive ap-
proach for reachability is not practically possible. In Section 2, we propose a
coinductive approach for specifying transition systems, which is an elegant way
to look at reachability, but also essential in handling both finite and infinite
executions. 2. We formalize the semantics of LCTRSs as a reduction relation
over a particular model that combines order-sorted terms with builtin elements
such as integers, booleans, arrays, etc. The new approach, introduced in Sec-
tion 3, is simpler than the usual semantics for constrained term rewriting sys-
tems [18,20,19,14], but it also lifts several technical restrictions that are impor-
tant for our case studies. 3. We introduce a sound and complete coinductive
proof system for deriving valid reachability formulas for transition systems spec-
ified by a LCTRS. We present our proof system in two steps: in the first step,
we provide a three-rule proof system (Figure 1) for symbolic execution of con-
strained terms. When interpreting the proof system coinductively, its proof trees
can be finite or infinite. The finite proof trees correspond to reachability formu-
las ⟨t |ϕ⟩ ⇒ ⟨t′ |ϕ′⟩ where there is a bounded number of symbolic steps between
⟨t |ϕ⟩ and ⟨t′ |ϕ′⟩. The infinite proof trees correspond to proofs of reachabil-
ity formulas ⟨t |ϕ⟩ ⇒ ⟨t′ |ϕ′⟩ that hold for an unbounded number of symbolic
steps between ⟨t |ϕ⟩ and ⟨t′ |ϕ′⟩ (obtained, e.g., by unrolling loops). Symbolic
execution has similarities to narrowing, but unlike narrowing, where each step
computes a possible successor, symbolic execution must consider all successors
of a state at the same time. 4. The infinite proof trees above cannot be obtained
in finite time in practice. In order to derive reachability formulas that require an
unbounded number of symbolic steps in finite time, we introduce a fourth proof
rule to the system that we call circularity. The circularity proof rule can be used
to compress infinite proof trees into finite proof trees. The intuition is to use as
axioms the goals that are to be proven, when they satisfy a guardedness con-
dition. This compression of infinite coinductive trees into finite proof trees via



the guardedness condition nicely complements our coinductive approach. This
separation between symbolic execution and circularity answers an open question
in [21]. 5. We introduce the RMT tool, an implementation of the proof system that
validates our approach on a number of examples. RMT uses an SMT solver to dis-
charge logical constraints. The tool is expressive enough for specifying various
transition systems, including operational semantics of programming languages,
and proving reachability properties of practical interest and is intended to be
the starting point of a library for rewriting modulo builtins, which could have
more applications.

Related Work A number of approaches [1,2,14,25,29] to combining rewriting
and SMT solving have appeared lately. The rewrite tool Maude [12] has been
extended with SMT solving in [25] in order to enable the analysis of open sys-
tems. A method for proving invariants based on an encoding into reachability
properties is presented in [29]. Both approaches above are restricted to topmost
rewrite theories. While almost any theory can be written as a topmost theory [22],
the encoding can significantly increase the number of transitions, which raises
performance concerns. Our definition for constrained term is a generalization
of that of constructor constrained pattern used in [29]. In particular [29] does
not allow for quantifiers in constraints, but quantifiers are critical to obtaining a
complete proof system, as witnessed by their use in the subsumption rule in our
proof system ([subs], Figure 1). The approach without quantifiers is therefore
not sufficient to prove reachabilities in a general setting.

A calculus for reachability properties in a formalism similar to LCTRSs is
given in [1]. However, the notion of reachability in [1] is different from ours: while
we show reachability along all terminating paths of the computation, [1] solves
reachability properties of the form ∃x̃.t(x̃) →∗ t′(x̃) (i.e. does there exists an
instance of t that reaches, along some path, an instance of t′).

Work on constrained term rewriting systems appeared in [20,19,18,14]. In
contrast to this approach to constrained rewriting, our semantics is simpler (it
does not require two reduction relations), it does not have restrictions on the
terms l, r in a rule l ↠ r if ϕ and the constraint is an arbitrary first-order for-
mula ϕ, possibly with quantifiers, which are crucial to obtain symbolic execution
in its full generality. Constrained terms are generalized to guarded terms in [2],
in order to reduce the state space.

Reachability in rewriting is explored in depth in [13]. The work by Kirch-
ner and others [17] is the first to propose the use of rewriting with symbolic
constraints for deduction. Subsequent work [25,20,14] extends and unifies pre-
vious approaches to rewriting with constraints. The related work section in [25]
includes a comprehensive account of literature related to rewriting modulo con-
straints.

Our previous work [10,21] on proving program correctness was in the con-
text of the K framework [27]. K, developed by Roşu and others, implements
semantics-based program verifiers [11] for any language that can be specified by a
rewriting-based operational semantics, such as C [15], Java [4] and JavaScript [23].
Our formalism is not more expressive than that of reachability logic [10] for



proving partial correctness of programs in a language-independent manner, but
it does have several advantages. Firstly, we make a clear separation between
rewrite rules (used to define transition systems), for which it makes no sense to
have constraints on both the lhs and the rhs, and reachability formulas (used
to specify reachability properties), for which there can be constraints on both
the lhs and the rhs. We provide clear semantics of both syntactic constructs
above, which makes it unnecessary to check well-definedness of the underlying
rewrite system, as required in [10]. Additionally, this separation, which we see
as a contribution, makes it easy to get rid of the top-most restriction in previ-
ous approaches. Another advantage is that the proposed proof system is very
easy to automate, while being sufficiently expressive to specify real-world ap-
plications. Additionally, we work in the more general setting of LCTRSs, not
just language semantics, which enlarges the possible set of applications of the
technique. We also have several major technical improvements compared to [21],
where the proof system is restricted to the cases where unification can be reduced
to matching and topmost rewriting. The totality property required for languages
specifications, which was quite restrictive, was replaced by a local property in
proof rules and all restrictions needed to reduce unification to matching were
removed.

In contrast to the work on partial correctness in [11], the approach on reach-
ability discussed here is meant for any LCTRS, not just operational semantics.
The algorithm in [11] contains a small source of incompleteness, as when prov-
ing a reachability property it is either discharged completely through implica-
tion or through circularities/rewrite rules. We allow a reachability rule to be
discharged partially by subsumption and partially by other means. Constrained
terms are a fragment of Matching Logic (see [26]), where no distinction is made
between terms and constraints. Coinduction and circular or cyclic proofs have
been proposed in other contexts. For example, circular proof systems have been
proposed for first-order logic with inductive predicates in [6] and for separation
logic in [5]. In the context of interactive theorem provers, circular coinduction
has been proposed as an incremental proof method for bisimulation in process
calculi (see [24]). A compositional and incremental approach to coinduction that
uses a semantic guardedness check instead of a syntactic check is given in [16].

Paper Structure We present coinductive definitions for execution paths and
reachability predicates in Section 2. In Section 3, we introduce logically con-
strained term rewriting with builtins in an order-sorted setting. In Section 4, we
propose a sound and complete coinductive calculus for reachability and a circu-
larity rule for compressing infinite proof trees into finite proof trees. Section 6
discusses the implementation before concluding. The proofs can be found in [8].

2 Reachability Properties: Coinductive Definition

In this section we introduce a class of reachability properties, defined coinduc-
tively. A state predicate is a subset of states. A reachability property is a pair



P ⇒ Q of state predicates. Such a reachability property is demonically valid iff
each execution path starting from a state in P eventually reaches a state in Q,
or if it is infinite. Since the set of finite and infinite executions is coinductively
defined, the set of valid predicates can be defined coinductively as well. Formally,
consider a transition system (M,⇝), with ⇝ ⊆ M ×M . We write γ ⇝ γ′ for
(γ, γ′) ∈⇝. An element γ ∈M is irreducible if γ ̸⇝ γ′ for any γ′ ∈M .

Definition 1 (Execution Path). The set of (complete) execution paths is
coinductively defined by the following rules:

γ
γ ∈M,γ irreducible

τ

γ0 ◦ τ
γ0 ⇝ hd(τ)

where the function hd is defined by hd(γ) = γ and hd(γ0 ◦ τ) = γ0.

The above definition includes both the finite execution paths ending in a
irreducible state and the infinite execution paths, defined as the greatest fixed
point of the associated functional (see [8]).

Definition 2 (State and Reachability Predicates). A state predicate is a
subset P ⊆M . A reachability predicate is a pair of state predicates P ⇒ Q. The
predicate P is runnable if P ̸= ∅ and for all γ ∈ P there is γ′ ∈M s.t. γ ⇝ γ′.

A derivative measures the sensitivity to change of a quantity. For the case of
transition systems, the change of states is determined by the transition relation.

Definition 3 (Derivative of a State Predicate). The derivative of a state
predicate P is the state predicate ∂(P ) = {γ′ | γ ⇝ γ′ for some γ ∈ P}.

As a reachability predicate specifies reachability property of execution paths, we
define when a particular execution path satisfies a reachability predicate.

Definition 4 (Satisfaction of a Reachability Predicate). An execution
path τ satisfies a reachability predicate P ⇒ Q, written τ ⊨∀ P ⇒ Q, iff

⟨τ, P ⇒ Q⟩ ∈ ν ÊPSRP, where EPSRP consists of the following rules:

⟨τ, P ⇒ Q⟩
hd(τ) ∈ P ∩Q ⟨τ, ∂(P ) ⇒ Q⟩

⟨γ0 ◦ τ, P ⇒ Q⟩
γ0 ∈ P, γ0 ⇝ hd(τ).

The notation ÊPSRP stands for the functional of EPSRP and νÊPSRP stands for
its greatest fixed point (see [8]). We coinductively define the set of demonically
valid reachability predicates over (M,⇝). This allows to use coinductive proof
techniques to prove validity of reachability predicates.

Definition 5 (Valid Reachability Predicates, Coinductively). We say
that P ⇒ Q is demonically valid, and we write

(M,⇝) ⊨∀ P ⇒ Q,

iff P ⇒ Q ∈ ν D̂VP, where DVP consists of the following rules:JSubsumptionK
P ⇒ Q

P ⊆ Q JStepK ∂(P \Q) ⇒ Q

P ⇒ Q
P \Q runnable.



The condition P \ Q runnable in the second rule is essential to avoid the cases
where execution is stuck. These blocking states have no successor in ∂(P \ Q)
and, in the absense of the condition, we would wrongly conclude that they satisfy
P ⇒ Q. The terminating executions are captured by JSubsumptionK.

The following proposition justifies our definition of demonically valid reach-
ability predicates.

Proposition 1. Let P ⇒ Q be a reachability predicate. We have (M,⇝) ⊨∀
P ⇒ Q iff any execution path τ starting from P (hd(τ) ∈ P ) satisfies P ⇒ Q.

3 Logically Constrained Term Rewriting Systems

In this section we introduce our formalism for LCTRSs. We interpret LCTRSs in
a model combining order-sorted terms with builtins such as integers, booleans,
etc. Logical constraints are first-order formulas interpreted over the fixed model.

We assume a builtin model Mb for a many-sorted builtin signature Σb =
(Sb, F b), where Sb is a set of builtin sorts that includes at least the sort Bool
and F b is the Sb-sorted set of builtin function symbols. We assume that the
set interpreting the sort Bool in the model Mb is Mb

Bool = {⊤,⊥}. We use
the standard notation Mo for the interpretation of the sort/symbol o in the
model M . The set CFb, defined as the set of (many-sorted) first-order formulas
with equality over the signature Σb, is the set of builtin constraint formulas.
Functions returning Bool play the role of predicates and terms of sort Bool are
atomic formulas. We will assume that the builtin constraint formulas can be
decided by an oracle (implemented as an SMT solver).

A signature modulo builtins is an order-sorted signature Σ = (S,≤, F ) that
includes Σb as a subsignature and such that the only builtin constants in Σ
are elements of the builtin model ({c | c ∈ Fε,s, s ∈ Sb} = Mb

s ) – therefore
the signature might be infinite. By Fw,s we denoted the set of function symbols
of arity w and result sort s. Σb is called the builtin subsignature of Σ and
Σc = (S,≤, (F \ F b) ∪

∪
s∈Sb Fε,s) the constructor subsignature of Σ. We let X

be an S-sorted set of variables.
We extend the builtin modelMb to an (S,≤, F )-modelMΣ defined as follows:

• MΣ
s = TΣc,s, for each s ∈ S \ Sb (MΣ

s is the set of ground constructor
terms of sort s, i.e. terms built from constructors applied to builtin elements); •
MΣ

f =Mb
f for each builtin function symbol f ∈ F b; •MΣ

f is the term constructor

MΣ
f (t1, . . . , tn) = f(t1, . . . , tn), for each non-builtin function symbol f ∈ F \F b.

By fixing the interpretation of the non-builtin function symbols, we can reduce
constraint formulas to built-in constraint formulas by relying on an unification
algorithm described in detail in [7]. We also make the standard assumption that
Ms ̸= ∅ for any s ∈ S.

Example 4. Let Σb = (Sb, F b), where Sb = {Int ,Bool} and F b include the
usual operators over Booleans (∨,∧, . . .) and over the Integers (+,−,×, . . .).
The builtin model Mb interprets the above sorts and operations as expected.



We consider the signature modulo builtins Σ = (S,≤, F ), where the set of
sorts S = {Cfg , Int ,Bool} consists of the builtin sorts and an additional sort
Cfg , where the subsorting relation ≤ ⊆ S × S = ∅ is empty, and where the set
of function symbols F includes, in addition to the builtin symbols in F b, the
following function symbols: init : Int → Cfg , loop : Int × Int → Cfg , comp : Cfg .
We have that MΣ

Cfg = {init(i) | i ∈ Z} ∪ {loop(i, j) | i, j ∈ Z} ∪ {comp}.

The set CF of constraint formulas is the set of first-order formulas with
equality over the signature Σ. The subset of the builtin constraint formulas is
denoted by CFb. Let var(ϕ) denote the set of variables freely occurring in ϕ.
We write MΣ , α ⊨ ϕ when the formula ϕ is satisfied by the model MΣ with a
valuation α : X →MΣ .

Example 5. The constraint formula ϕ ≜ ∃u.1 < u < n ∧ n mod u = 0 is satisfied
by the model MΣ defined in Example 4 and any valuation α such that α(n) is
a composite number.

Definition 6 (Constrained Terms). A constrained term φ of sort s ∈ S is a
pair ⟨t |ϕ⟩, where t ∈ TΣ,s(X ) and ϕ ∈ CF.

Example 6. Continuing the previous example, the following is a constrained
term: ⟨init(n) | ∃u.1 < u < n ∧ n mod u = 0⟩ .

We consistently use φ for constrained terms and ϕ for constraint formulas.

Definition 7 (Valuation Semantics of Constraints). The valuation seman-
tics of a constraint ϕ is the set ⌊⌊ϕ⌋⌋ ≜ {α : X →MΣ |MΣ , α ⊨ ϕ}.

Example 7. Continuing the previous example, we have that
⌊⌊∃u.1 < u < n ∧ n mod u = 0⌋⌋ = {α : X →MΣ | α(n) is composite}.

Definition 8 (State Predicate Semantics of Constrained Terms). The
state predicate semantics of a constrained term ⟨t |ϕ⟩ is the set

[[⟨t |ϕ⟩]] ≜ {α(t) | α ∈ ⌊⌊ϕ⌋⌋}.

Example 8. Continuing the previous example, we have that
[[⟨init(n) | ∃u.1 < u < n ∧ n mod u = 0⟩]] = {init(n) | n is composite}.

We now introduce our formalism for logically constrained term rewriting sys-
tems. Syntactically, a rewrite rule consists of two terms (the left hand side and
respectively the right hand side), together with a constraint formula. As the two
terms could share some variables, these shared variables should be instantiated
consistently in the semantics:

Definition 9 (LCTRS). A logically constrained rewrite rule is a tuple (l, r, ϕ),
often written as l↠ r if ϕ, where l, r are terms in TΣ(X ) having the same sort,
and ϕ ∈ CF. A logically constrained term rewriting system R is a set of logically
constrained rewrite rules. R defines an order-sorted transition relation ⇝R on
MΣ as follows: t⇝R t′ iff there exist a rule l↠ r if ϕ in R, a context c[·], and
a valuation α : X →MΣ such that t = α(c[l]), t′ = α(c[r]) and MΣ , α ⊨ ϕ.



Example 9. We recall the LCTRS given in the introduction:

R =

 init(n)↠ loop(n, 2) if ⊤,
loop(i× k, i)↠ comp if k > 1,
loop(n, i)↠ loop(n, i+ 1) if ¬(∃k.k > 1 ∧ n = i× k)

 .

A LCTRS R defines a sort-indexed transition system (MΣ ,⇝R). As each
constrained term φ defines a state predicate [[φ]], it is natural to specify reacha-
bility predicates as pairs of constrained terms sharing a subset of variables. The
shared variables must be instantiated in the same way by the execution paths
connecting states specified by the two constrained terms.

Definition 10 (Reachability Properties of LCTRSs). A reachability for-
mula φ⇒ φ′ is a pair of constrained terms, which may share variables. We say
that a LCTRS R demonically satisfies φ⇒ φ′, written

R ⊨∀ φ⇒ φ′,
iff (MΣ ,⇝R) ⊨∀ [[σ(φ)]] ⇒ [[σ(φ′)]] for each σ : var(φ) ∩ var(φ′) →MΣ.

Since the carriers sets ofMΣ consist of ground terms, σ is both a substitution
and a valuation in the definition above. Its role is critical: to ensure that the
shared variables of φ and φ′ are instantiated by the same values.

Example 10. Continuing the previous example, we have that the reachability
formula ⟨init(n) | ∃u.1 < u < n ∧ n mod u = 0⟩ ⇒ ⟨comp | ⊤⟩ is demonically sat-
isfied by the constrained rule system R defined in Example 9:

R ⊨∀ ⟨init(n) | ∃u.1 < u < n ∧ n mod u = 0⟩ ⇒ ⟨comp | ⊤⟩.
We have checked the above reachability formula against R mechanically, using
an implementation of the approach described in this paper.

4 Proving Reachability Properties of LCTRSs

We introduce two proof systems for proving reachability properties in transition
systems specified by LCTRSs. The first proof system formalizes symbolic exe-
cution in a LCTRS, in the following sense: a reachability formula φ ⇒ φ′ can
be proven if any execution path starting with φ either reaches a state that is
an instance of φ′, or is divergent. Note that this intuition holds when the proof
system is interpreted coinductively, where infinite proof trees are allowed. Un-
fortunately, these infinite proof trees have a limited practical use because they
cannot be obtained in finite time.

In order to solve this limitation, we introduce a second proof system, which
contains an additional inference rule, called circularity. The circularity rule al-
lows to use the reachability formula to be proved as an axiom. This allows to
fold infinite proof trees into finite proof trees, which can be obtained in finite
time. Adding the reachability formulas that are to be proved as axioms seems
at first to be unsound, but it corresponds to a natural intuition: when reach-
ing a proof obligation that we have handled before, there is no need to prove
it again, because the previous reasoning can be reused (possibly leading to an



infinite proof branch). However, the circularity rule must be used in a guarded
fashion in order to preserve soundness. We introduce a simple criterion to select
the sound proof trees.

4.1 Derivatives of Constrained Terms

Our proof system relies on the notion of derivative at the syntactic level:

Definition 11 (Derivatives of Constrained Terms). The set of derivatives
of a constrained term φ ≜ ⟨t |ϕ⟩ w.r.t. a rule l↠ r if ϕlr is

∆l,r,ϕlr
(φ) ≜ {⟨c[r] |ϕ′⟩ | ϕ′ ≜ ϕ ∧ t = c[l] ∧ ϕlr ,

c[·] an appropriate context and ϕ′ is satisfiable}, (1)

where the variables in l ↠ r if ϕlr are renamed such that var(l, r, ϕlr ) and
var(φ) are disjoint. If R is a set of rules, then ∆R(φ) =

∪
(l,r,ϕlr )∈R∆l,r,ϕlr

(φ).

A constrained term φ is R-derivable if ∆R(φ) ̸= ∅.

Example 11. Continuing the previous examples, we have that
∆R(⟨init(n) | ∃u.1 < u < n ∧ n mod u = 0⟩) =

{⟨loop(n, 2) | ∃u.1 < u < n ∧ n mod u = 0⟩}.
In the above case, ∆R includes only the derivative computed w.r.t. the first
rule in R, because the constraints of the ones computed w.r.t. the other rules
are unsatisfiable. Intuitively, the derivatives of a constrained term denote all its
possible successor configurations in the transition system generated by R.

The symbolic derivatives and the concrete ones are related as expected:

Theorem 1. Let φ ≜ ⟨t |ϕ⟩ be a constrained term, R a constrained rule system,
and (MΣ ,⇝R) the transition system defined by R. Then [[∆R(φ)]] = ∂([[φ]]).

Our proof systems allow to replace any reachability formula by an equivalent
one. Two reachability formulas, φ1 ⇒ φ′

1 and φ2 ⇒ φ′
2, are equivalent, written

φ1 ⇒ φ′
1 ≡ φ2 ⇒ φ′

2, if, for all LCTRSs R,
R ⊨∀ φ1 ⇒ φ′

1 iff R ⊨∀ φ2 ⇒ φ′
2.

We write [[φ]] ⊆shared [[φ′]] iff for each σ : var(φ) ∩ var(φ′) → MΣ , we have
[[σ(φ)]] ⊆ [[σ(φ′)]]. The next result, used in our proof system, shows that inclusion
of the state predicate semantics of two constrained terms can be expressed as a
constraint formula, when the shared variables are instantiated consistently.

Proposition 2. The inclusion [[⟨t |ϕ⟩]] ⊆shared [[⟨t′ |ϕ′⟩]] holds if and only if
MΣ ⊨ ϕ→ (∃x̃)(t = t′ ∧ ϕ′), where x̃ ≜ var(t′, ϕ′) \ var(t, ϕ).

4.2 Proof System for Symbolic Execution

The first proof system, DSTEP, derives sequents of the form ⟨tl |ϕl⟩ ⇒ ⟨tr |ϕr⟩.
The proof system consists of three proof rules presented in Figure 1 and an im-
plicit structural rule that allows to replace reachability formulas by equivalent



[axiom] ⟨tl | ⊥⟩ ⇒ ⟨tr |ϕr⟩

[subs]
⟨tl |ϕl ∧ ¬(∃x̃.tl = tr ∧ ϕr)⟩ ⇒ ⟨tr |ϕr⟩

⟨tl |ϕl⟩ ⇒ ⟨tr |ϕr⟩
x̃ ≜ var(tr, ϕr) \ var(tl, ϕl)
∃x̃.tl = tr ∧ ϕr satisfiable

[der∀]

⟨
tj
∣∣ϕj

⟩
⇒ ⟨tr |ϕr⟩, j ∈ {1, . . . , n}
⟨tl |ϕl⟩ ⇒ ⟨tr |ϕr⟩

⟨tl |ϕl⟩ is R−derivable and
ϕl →

∨
j∈{1,...,n} ∃ỹ

j .ϕj is valid

where ∆R(⟨tl |ϕl⟩) = {
⟨
t1

∣∣ϕ1
⟩
, . . . , ⟨tn |ϕn⟩} and

ỹj = var(tj , ϕj) \ var(tl, ϕl)

Fig. 1. The DSTEP(R) Proof System

reachability formulas. The instances of this implicit structural rule are not in-
cluded in the proof trees. We explain the three rules in the proof system.
• The [axiom] rule discharges goals where the left hand side of the goal does
not match any state. As our structural rule identifies equivalent reachability
formulas, this rule can be applied to any left-hand side where the constraint is
unsatisfiable (equivalent to ⊥). This rule discharges reachability formulas where
there are no execution paths starting from the left-hand side, and therefore there
is no need to continue the proof process along this branch.
• The [subs] rule discharges the cases where the left-hand side is an instance
of the right-hand side. The constraint ∃x̃.tl = tr ∧ ϕr is true exactly when the
left-hand side is an instance of the right-hand side, which is ensured by Propo-
sition 2. The proof of the current goal continues only for the cases where the
negation of this constraint holds (i.e., the cases where the left-hand side is not
included in the right-hand side).
• The [der∀] rule allows to take a symbolic step in the left-hand side of the
current goal. It computes all derivatives of the left-hand side; the proof process
must continue with each such derivative. Let ψ ≜ ϕl →

∨
{∃ỹj .ϕj} be the logi-

cal constraint that occurs in the condition of [der∀]. The formula ψ is valid iff,
for any instance of ⟨tl |ϕl⟩, there is at least one rule of R that can be applied
to it, meaning that R is total for ⟨tl |ϕl⟩. Summarising, the condition of [der∀]
says that [[⟨tl |ϕl⟩]] must have at least one successor and furthermore that any
instance γ ∈ [[⟨tl |ϕl⟩]] has a ⇝R-successor.

The following result shows that DSTEP(R) is sound and complete, modulo
an oracle for solving logical constraints.

Theorem 2. Let R be a LCTRS. For any reachability formula φ⇒ φ′, we have

R ⊨∀ φ⇒ φ′ iff φ⇒ φ′ ∈ ν D̂STEP(R).

Example 12. Consider the LCTRS R defined in Example 9. The proof tree for
the reachability formula ⟨init(n) |ψ⟩ ⇒ φr, where ψ ≜ ∃u.1 < u < n ∧ n mod
u = 0 denotes the fact that n is composite and φr ≜ ⟨comp | ⊤⟩, is infinite:



[axiom]
⟨comp | ⊥⟩ ⇒ φr

[subs]
⟨comp |ψ ∧ ϕa⟩ ⇒ φr

[axiom]
⟨comp | ⊥⟩ ⇒ φr

[subs]
⟨comp |ψ ∧ ϕ2 ∧ ϕb⟩ ⇒ φr

...
[der∀]⟨loop(n, 3) |ψ ∧ ϕ2⟩ ⇒ φr

[der∀]⟨loop(n, 2) |ψ⟩ ⇒ φr
[der∀]⟨init(n) |ψ⟩ ⇒ φr

The right branch of the above proof tree is infinite, and:
ϕ2 ≜ ¬∃k.k > 1 ∧ n = 2× k ϕa ≜ loop(n, 2) = loop(i′ × k′, i′) ∧ k′ > 1

ϕ3 ≜ ¬∃k.k > 1 ∧ n = 3× k ϕb ≜ loop(n, 3) = loop(i′ × k′, i′) ∧ k′ > 1

. . .

Note that in the presentation of the tree above, we used the structural rule
to replace reachability formulas by equivalent reachability formulas as follows:
⟨comp |ψ ∧ ϕa ∧ ¬(comp = comp ∧ ⊤)⟩ ⇒ φr ≡ ⟨comp | ⊥⟩ ⇒ φr,

⟨comp |ψ ∧ ϕ2 ∧ ϕb ∧ ¬(comp = comp ∧ ⊤)⟩ ⇒ φr ≡ ⟨comp | ⊥⟩ ⇒ φr,

⟨loop(n′, 2) | ⊤ ∧ init(n′) = init(n) ∧ ψ⟩ ⇒ φr ≡ ⟨loop(n, 2) |ψ⟩ ⇒ φr,

⟨loop(n′, i′ + 1) |ψ ∧ ϕ′2⟩ ⇒ φr ≡ ⟨loop(n, 3) |ψ ∧ ϕ2⟩ ⇒ φr,

where ϕ′2 ≜ loop(n, 2) = loop(n′, i′)∧¬∃k.k > 1∧n′ = i′×k. The ticks appear in
the formulas above because, to compute derivatives, we used the following fresh
instance of R:

R =

 init(n′)↠ loop(n′, 2) if ⊤,
loop(i′ × k′, i′)↠ comp if k′ > 1,
loop(n′, i′)↠ loop(n′, i′ + 1) if ¬(∃k.k > 1 ∧ n′ = i′ × k)

 .

4.3 Extending the Proof System with a Circularity Rule

As we said at the beginning of the section, the use of DSTEP is limited because
of the infinite proof trees. The next inference rule is intended to use the initial
goals as axioms to fold infinite DSTEP-proof trees into sound finite proof trees.

Definition 12 (Demonic circular coinduction). Let G be a finite set reacha-
bility formulas. Then the set of rules DCC(R, G) consists of DSTEP(R), together
with

[circ]

⟨tcr |ϕl ∧ ϕ ∧ ϕcr⟩ ⇒ φr,
⟨tl |ϕl ∧ ¬ϕ⟩ ⇒ φr

⟨tl |ϕl⟩ ⇒ φr

ϕ is ∃var(tcl , ϕcl ).tl = tcl ∧ ϕcl ,
⟨tcl |ϕcl ⟩ ⇒ ⟨tcr |ϕcr⟩ ∈ G

where ⟨tcl |ϕcl ⟩ ⇒ ⟨tcr |ϕcr⟩ is a rule in G whose variables have been renamed with
fresh names.

The idea is that G should be chosen conveniently so that DCC(R, G) proves
G itself. We call such goals G (that are used to prove themselves) circularities.
The intuition behind the rule is that the formula ϕ defined in the rule holds when
a circularity can be applied. In that case, it is sufficient to continue the current
proof obligation from the rhs of the circularity ⟨tcr |ϕcr ∧ ϕl ∧ ϕ⟩. The cases when
ϕ does not hold (the circularity cannot be applied) are captured by the proof
obligation ⟨tl |ϕl ∧ ¬ϕ⟩ ⇒ φr.



Of course, not all proof trees under DCC(R, G) are sound. The next two
definitions identify a class of sound proof trees (cf. Theorem 3).

Definition 13. Let PT be a proof tree of φ ⇒ φ′ under DCC(R, G). A [circ]
node in PT is guarded iff it has as ancestor a [der∀] node. PT is guarded iff all
its [circ] nodes are guarded.

Definition 14. We write (R, G) ⊢∀ φ ⇒ φ′ iff there is a proof tree of φ ⇒ φ′

under DCC(R, G) that is guarded. If F is a set of reachability formulas, we write
(R, G) ⊢∀ F iff (R, G) ⊢∀ φ⇒ φ′ for all φ⇒ φ′ ∈ F .

The criterion stated by Definition 13 can be easily checked in practice. The
following theorem states that the guarded proof trees under DCC are sound.

Theorem 3 (Circularity Principle). Let R be a constrained rule system and
G a set of goals. If (R, G) ⊢∀ G then R ⊨∀ G.

Theorem 3 can be used by finding a set of circularities and using them in a
guarded fashion to prove themselves. Then the circularity principle states that
such circularities hold.

Example 13. In order to prove ⟨init(n) |ψ⟩ ⇒ ⟨comp | ⊤⟩, we choose the following
set of circularities

G =

{
⟨init(n) |ψ⟩ ⇒ ⟨comp | ⊤⟩,
⟨loop(n, i) | 2 ≤ i ∧ ∃u.i ≤ u < n ∧ n mod u = 0⟩ ⇒ ⟨comp | ⊤⟩

}
.

The second circularity is inspired by the infinite branch of the proof tree
under DSTEP. We will show that (R, G) ⊢∀ G, and by Theorem 3, it follows
that all reachability formulas in G hold in R.

First circularity. To obtain a proof of the circularity ⟨init(n) |ψ⟩ ⇒ ⟨comp | ⊤⟩,
we replace the infinite subtree rooted at ⟨loop(n, 2) |ψ⟩ ⇒ φr in Example 12 by
the following finite proof tree (that uses [circ]):

[axiom]
⟨comp | ⊥⟩ ⇒ φr

[subs]
⟨comp |ψ ∧ ϕ ∧ ⊤⟩ ⇒ φr

[axiom]
⟨loop(n, 2) |ψ ∧ ¬ϕ⟩ ⇒ φr

[circ]
⟨loop(n, 2) |ψ⟩ ⇒ φr

where ϕ ≜ ∃n′, i′.loop(n, 2) = loop(n′, i′)∧2 ≤ i′∧∃u.i′ ≤ u < n′∧n′ mod u = 0.

Second circularity. To complete the proof of G, we have to find a finite proof
tree for

⟨loop(n, i) | 2 ≤ i ∧ ∃u.i ≤ u < n ∧ n mod u = 0⟩ ⇒ ⟨comp | ⊤⟩
as well. This is also obtained using [circ] as follows:

[axiom]
⟨comp | ⊥⟩ ⇒ φr

[subs]
⟨comp |ψi ∧ ψa⟩ ⇒ φr

T1 T2 [circ]
⟨loop(n, i+ 1) |ψi ∧ ψb⟩ ⇒ φr

[der∀]⟨loop(n, i) |ψi⟩ ⇒ ⟨comp | ⊤⟩



where
ψa ≜ k′ > 1 ∧ loop(n, i) = loop(i′ × k′, i′),

ψb ≜ ¬∃k.k > 1 ∧ n = i× k,

ψi ≜ 2 ≤ i ∧ ∃u.i ≤ u < n ∧ n mod u = 0.
The subtree

T1 T2 [circ]
⟨loop(n, i+ 1) |ψi ∧ ψb⟩ ⇒ φr

is:

[axiom]
⟨comp | ⊥⟩ ⇒ φr

[subs]
⟨comp |ψi ∧ ψb ∧ ψc⟩ ⇒ φr

[axiom]
⟨loop(n, i+ 1) |ψi ∧ ψb ∧ ¬ψc⟩ ⇒ φr

[circ]
⟨loop(n, i+ 1) |ψi ∧ ψb⟩ ⇒ φr,

where
ψc ≜ ∃n′, i′.loop(n, i+ 1) = loop(n′, i′) ∧ 2 ≤ i′ ∧ ∃u.i′ ≤ u < n′ ∧ n′ mod u = 0.
The constraint ψc holds when the circularity can be applied and therefore this
branch is discharged immediately by [subs] and [axiom]. The other branch, when
the circularity cannot be applied, is discharged directly by [axiom], as ψi∧ψb∧¬ψc

is unsatisfiable (ψi says that n has a divisor between i and n, ψb says that i is
not a divisor of n, and ψc that n has a divisor between i+ 1 and n).
Note that in both proof trees of the two circularities in G, in order to apply the
[circ] rule, we used the following fresh instance of the second circularity:

⟨loop(n′, i′) | 2 ≤ i′ ∧ ∃u.i′ ≤ u < n′ ∧ n′ mod u = 0⟩ ⇒ ⟨comp | ⊤⟩.
The proof trees for both goals (circularities) in G are guarded. We have shown

therefore that (R, G) ⊢∀ G. By the Circularity Principle (Theorem 3), we obtain
that R ⊨∀ G and therefore

R ⊨∀
{
⟨init(n) | ∃u.1 < u < n ∧ n mod u = 0)⟩ ⇒ ⟨comp | ⊤⟩,
⟨loop(n, i) | 2 ≤ i ∧ ∃u.i ≤ u < n ∧ n mod u = 0⟩ ⇒ ⟨comp | ⊤⟩

}
which includes what we wanted to show of our transition system defined R in
the running example.

5 Implementation

We have implemented the proof system for reachability in a tool called RMT (for
rewriting modulo theories). RMT is open source and can be obtained from

http://github.com/ciobaca/rmt/.

To prove a reachability property, the RMT tool performs a bounded search
in the proof system given above. The bounds can be set by the user. We have
also tested the tool on reachability problems where we do not use strong enough
circularities. In these cases, the tool will not find proofs. A difficulty that appears
when a proof fails, difficulty shared by all deductive approaches to correctness,
is that it is not known is the specification is wrong or if the circularities are not
strong enough. Often, by analyzing the failed proof attempt, the user may have



the chance to find a hint for the missing circularities, if any. In addition, proofs
might also fail because of the incompleteness of the SMT solver. In addition to
the running example, we have used RMT on a number of examples, summarized
in the table below:

LCTRS Reachability Property

Computation of 1 + . . .+ n Result is n ∗ (n+ 1)/2

Comp. of gcd(u, v) by rptd. subtractions Result matches builtin gcd function

Comp. of gcd(u, v) by rptd. divisions Result matches builtin gcd function

Mult. of two naturals by rptd. additions Result matches builtin × function

Comp. of 12 + . . .+ n2 Result is n(n+ 1)(2n+ 1)/6

Comp. of 12 + . . .+ n2 w/out multiplications Result is n(n+ 1)(2n+ 1)/6

Semantics of an IMPerative language Program computing 1 + . . .+ n is correct

Semantics of a FUNctional language Program computing 1 + . . .+ n is correct

Semantics of a FUNctional language Program computing 12 + . . .+ n2 is correct

Implementation details. RMT contains roughly 5000 lines of code, including com-
ments and blank lines. RMT depends only on the standard C++ libraries and it
can be compiled by any relatively modern C++ compiler out of the box. At
the heart of RMT is a hierarchy of classes for representing variables, function
symbols and terms. Terms are stored in DAG format, with maximum structure
sharing. The RMT tool relies on an external SMT solver to check satisfiability
of constraints. By default, the only dependency is the Z3 SMT solver, which
should be installed and its binary should be in the system path. A compile time
switch allows to use any other SMT solver that supports the SMTLIB inter-
face, such as CVC4 [3]. In order to reduce constraints over the full signature
to constraints over the builtin signature, RMT uses a unification modulo builtins
algorithm (see [7]), which transforms any predicate t1 = t2 (where the terms
t1, t2 can possibly contain constructor symbols) into a set of builtin constraints.

6 Conclusion and Future Work

We introduced a coinduction based method for proving reachability properties
of logically constrained term rewriting systems. We use a coinductive definition
of transition systems that unifies the handling of finite and infinite executions.
We propose two proof systems for the problem above. The first one formalizes
symbolic execution in LCTRSs coinductively, with possibly infinite proof trees.
This proof system is complete, but its infinite proof trees cannot be used in
practice as proofs. In the second proof system we add to symbolic execution a
circularity proof rule, which allows to transform infinite proof trees into finite
trees. It is not always possible to find finite proof trees, and we conjecture that
establishing a given reachability property is higher up in the arithmetic hierarchy.

We also proposed a semantics for logically constrained term rewriting systems
as transition systems over a model combining order-sorted terms with builtin ele-
ments such as booleans, integers, etc. The proposed semantics has the advantage
of being simpler than the usual semantics of LCTRSs defined in [20], which re-
quires two reduction relations (one for rewriting and one for computing). The



approach proposed here also removes some technical constraints such as variable
inclusion of the rhs in the lhs, which is important in modelling open systems,
where the result of a transition is non-deterministically chosen by the environ-
ment. In addition, working in an order-sorted setting is indispensable in order
to model easily the semantics of programming languages.

In fact, proving program properties, like correctness and equiva-
lence, is one application of our method. A tool such as C2LCTRS
(http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/) can be used to convert
the semantics of a C program into a LCTRS and then RMT can prove reach-
ability properties of the C program. Additionally, the operational semantics of
any language can be encoded as a LCTRS [28] and then program correctness is
reducible to a particular reachability formula. But our approach is not limited to
programs, as any system that can be modelled as a LCTRS is also amenable to
our approach. We define reachability in the sense of partial correctness (i.e., non-
terminating executions vacuously satisfy any reachability property). Termination
should be established in some other way [18], as it is an orthogonal concern. Our
approach to reachability and LCTRSs extends to working modulo AC (or more
generally, modulo any set of equations E), but we have not formally presented
this to preserve brevity and simplicity. For future work, we would like to test our
approach on other interesting problems that arrise in various domains. In partic-
ular, it would be interesting to extend our approach to reachability in the context
of program equivalence [9]. An interesting challenge is to add defined operations
to the algebra underlying the constrained term rewriting systems, which would
allow a user to define their own functions, which are not necessarily builtin.
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9. Ştefan Ciobâcă, Dorel Lucanu, Vlad Rusu, and Grigore Roşu. A language-
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