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Abstract. The CSP of a first-order theory T is the problem of deciding
for a given finite set S of atomic formulas whether T ∪S is satisfiable. Let
T1 and T2 be two theories with countably infinite models and disjoint sig-
natures. Nelson and Oppen presented conditions that imply decidability
(or polynomial-time decidability) of CSP(T1 ∪T2) under the assumption
that CSP(T1) and CSP(T2) are decidable (or polynomial-time decid-
able). We show that for a large class of ω-categorical theories T1, T2 the
Nelson-Oppen conditions are not only sufficient, but also necessary for
polynomial-time tractability of CSP(T1 ∪ T2) (unless P=NP).

1 Introduction

Two independent proofs of the finite-domain constraint satisfaction tractability
conjecture have recently been published by Bulatov and Zhuk [20, 31], settling
the Feder-Vardi dichotomy conjecture. In contrast, the computational complex-
ity of constraint satisfaction problems over infinite domains cannot be classified
in general [8]. However, for a restricted class of constraint satisfaction problems
that strictly all finite-domain CSPs and captures the vast majority of the prob-
lems studied in qualitative reasoning (see the survey article [9]) there also is a
tractability conjecture (see [3–5,17]). The situation is similar to the situation for
finite-domain CSPs before Bulatov and Zhuk: there is a formal condition which
provably implies NP-hardness, and the conjecture is that every other CSP in the
class is in P.

For finite domain CSPs, it turned out that only few fundamentally different
algorithms were needed to complete the classification; the key in both the solu-
tion of Bulatov and the solution of Zhuk was a clever combination of the exist-
ing algorithmic ideas. An intensively studied method for obtaining (polynomial-
time) decision procedures for infinite-domain CSPs is the Nelson-Oppen com-
bination method; see, e.g., [2, 30]. The method did not play any role for the
classification of finite-domain CSPs, but is extremely powerful for combining
algorithms for infinite-domain CSPs.
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In order to conveniently state what type of combinations of CSPs can be
studied with the Nelson-Oppen method, we slightly generalise the notion of a
CSP. The classical definition is to fix an infinite structure B with finite relational
signature τ ; then CSP(B) is the computational problem of deciding whether a
given finite set of atomic τ -formulas (i.e., formulas of the form x1 = x2 or of the
form R(x1, . . . , xn) for R ∈ τ and variables x1, . . . , xn) is satisfiable in B. Instead
of fixing a τ -structure B, we fix a τ -theory T (i.e., a set of first-order τ -sentences).
Then CSP(T ) is the computational problem of deciding for a given finite set S of
atomic τ -formulas whether T ∪S has a model. Clearly, this is a generalisation of
the classical definition since CSP(B) is the same as CSP(Th(B)) where Th(B)
is the first-order theory of B, i.e., the set of all first-order sentences that hold in
B. The definition for theories is strictly more expressive (we give an example in
Section 2 that shows this).

Let T1 and T2 be two theories with disjoint finite relational signatures τ1
and τ2. We are interested in the question when CSP(T1 ∪ T2) can be solved in
polynomial time; we refer to this problem as the combined CSP for T1 and T2.
Clearly, if CSP(T1) or CSP(T2) is NP-hard, the CSP(T1 ∪ T2) is NP-hard, too.
Suppose now that CSP(T1) and CSP(T2) can be solved in polynomial-time. In
this case, there are examples where CSP(T1 ∪ T2) is in P, and examples where
CSP(T1 ∪ T2) is NP-hard. Even if we know the complexity of CSP(T1) and of
CSP(T2), a classification of the complexity of CSP(T1∪T2) for arbitrary theories
T1 and T2 is too ambitious (see Section 4 for a formal justification). But such a
classification should be feasible at least for the mentioned class of infinite-domain
CSPs for which the tractability conjecture applies.

1.1 Qualitative CSPs

The idea of qualitative formalisms is that reasoning tasks (e.g. about space and
time) is not performed with absolute numerical values, but rather with quali-
tative predicates (such as within, before, etc.). There is no universally accepted
definition in the literature that defines what a qualitative CSP is, but a proposal
has been made in [9]; the central mathematical property for this proposal is
ω-categoricity. A theory is called ω-categorical if it has up to isomorphism only
one countable model. A structure is called ω-categorical if and only if its first-
order theory is ω-categorical. Examples are (Q;<), Allen’s Interval Algebra, and
more generally all homogeneous structures with a finite relational signature (a
structure B is called homogeneous if all isomorphisms between finite substruc-
tures can be extended to an automorphism; see [6, 25]). The class of CSPs for
ω-categorical theories arguably coincides with the class of CSPs for qualitative
formalisms studied e.g. in temporal and spatial reasoning; see [9].

For an ω-categorical theory T , the complexity of CSP(T ) can be studied
using the universal-algebraic approach that led to the proof of the Feder-Vardi
dichotomy conjecture. One of the central concepts for this approach is the con-
cept of a polymorphism of a structure B, i.e., a homomorphism from Bk to B for
k ∈ N. It is known that the polymorphisms of a finite structure B fully capture
the complexity of CSP(B) up to P-time reductions (in fact, up to Log-space



reductions; see [24] for a collection of survey articles about the complexity of
CSPs), and the same is true for structures B with an ω-categorical theory. For
an ω-categorical relational structure Γ , the relations that are primitive positive
definable in Γ are uniquely determined by the polymorphisms of Γ and vice
versa [15]. The possibility to use relations and polymorphisms exchangeably,
to study their interplay and to combine known solutions with polymorphisms
make the universal algebraic approach a versatile tool. In order to understand
when we can apply the universal-algebraic approach to study the complexity of
CSP(T1 ∪ T2), we need to understand the following fundamental question.

Question 1: Suppose that T1 and T2 are theories with disjoint finite rela-
tional signatures τ1 and τ2. When is there an ω-categorical (τ1 ∪ τ2)-theory T
such that CSP(T ) equals1 CSP(T1 ∪ T2)?

Note that ω-categorical theories are complete, i.e., for every first-order sen-
tence φ either T implies φ or T implies ¬φ. In general, it is not true that
CSP(T1 ∪ T2) equals CSP(T ) for a complete theory T (we present an exam-
ple in Section 2).

Question 1 appears to be very difficult. However, we present a broadly ap-
plicable condition for ω-categorical theories T1 and T2 with infinite models that
implies the existence of an ω-categorical theory T such that CSP(T1∪T2) equals
CSP(T ) (Proposition 1 below). The theory T that we construct has many utile
properties, in particular:

1. T1 ∪ T2 ⊆ T ;
2. if φ1(x̄) is a τ1-formula and φ2(x̄) is a τ2-formula, both with free variables
x̄ = (x1, . . . , xn), then T |= ∃x̄(φ1(x̄) ∧ φ2(x̄) ∧

∧
i<j xi 6= xj) if and only if

T1 |= ∃x̄(φ1(x̄) ∧
∧
i<j xi 6= xj) and T2 |= ∃x̄(φ2(x̄) ∧

∧
i<j xi 6= xj);

3. For every τ1 ∪ τ2 formula φ there exists a Boolean combination of τ1 and τ2
formulas that is equivalent to φ modulo T .

In fact, T is uniquely given by these three properties (up to equivalence of
theories; see Lemma 2) and again ω-categorical, and we call it the generic com-
bination of T1 and T2. Let B1 and B2 be two ω-categorical structures whose
first-order theories have a generic combination T ; then we call the (up to iso-
morphism unique) countably infinite model of T the generic combination of B1

and B2.

1.2 The Nelson-Oppen Criterion

Let T1, T2 be theories with disjoint finite relational signatures τ1, τ2 and suppose
that CSP(T1) is in P and CSP(T2) is in P. Nelson and Oppen gave sufficient con-
ditions for CSP(T1∪T2) to be solvable in polynomial time, too. Their conditions
are:

1 In other words: for all sets S of atomic (τ1 ∪ τ2)-formulas, we have that S ∪ T is
satisfiable if and only if S ∪ (T1 ∪ T2) is satisfiable.



1. Both T1 and T2 are stably infinite: a τ -theory T is called stably infinite if
for every quantifier-free τ -formula φ(x1, . . . , xn), if φ is satisfiable over T ,
then there also exists an infinite model A and elements a1, . . . , an such that
A |= φ(a1, . . . , an).

2. for i = 1 and i = 2, the signature τi contains a binary relation symbol 6=i

that denotes the inequality relation, i.e., Ti implies the sentence
∀x, y (x 6=i y ⇔ ¬(x = y));

3. Both T1 and T2 are convex (here we follow established terminology). A τ -
theory T is called convex if for every finite set S of atomic τ -formulas the
set T ∪S ∪{x1 6= y1, . . . , xm 6= ym} is satisfiable whenever T ∪S ∪{xj 6= yj}
is satisfiable for each j ≤ m.

The assumption that a relation symbol denoting the inequality relation is part
of the signatures τ1 and τ2 is often implicit in the literature treating the Nelson-
Oppen method. It would be interesting to explore when it can be dropped, but
we will not pursue this here. The central question of this article is the following.

Question 2. In which settings are the Nelson-Oppen conditions (and in
particular, the convexity condition) not only sufficient, but also necessary for
polynomial-time tractability of the combined CSP?

Again, for general theories T1 and T2, this is a too ambitious research goal;
but we will study it for generic combinations of ω-categorical theories T1, T2
with infinite models. In this setting, the first condition that both T1 and T2
are stably infinite is trivially satisfied. The third condition on Ti, convexity, is
equivalent to the existence of a binary injective polymorphism of the (up to
isomorphism unique) countably infinite model of Ti (see Section 5). We mention
that binary injective polymorphisms played an important role in several recent
infinite-domain complexity classifications [10,11,27].

1.3 Results

To state our results concerning Question 1 and Question 2 we need basic termi-
nology for permutation groups. A permutation group G on a set A is called

– n-transitive if for all tuples b̄, c̄ ∈ An having pairwise distinct entries there
exists a permutation g ∈ G such that g(b̄) = c̄ (where permutations are
applied to tuples componentwise). G is called transitive if it is 1-transitive.

– n-set-transitive if for all subsets B,C of A with |B| = |C| = n there exists a
permutation g ∈ G such that g(B) := {g(b) | b ∈ B} = C.

A structure is called n-transitive (or n-set-transitive) if its automorphism group
is. The existence of generic combinations can be characterised as follows (see
Section 3 for the proof).

Proposition 1. Let B1 and B2 be countably infinite ω-categorical structures
with disjoint relational signatures. Then B1 and B2 have a generic combination
if and only if both B1 and B2 do not have algebraicity (in the model-theoretic
sense; see Section 3) or at least one of B1 and B2 has an automorphism group
which is n-transitive for all n ∈ N.



Our main result concerns Question 2 for generic combinations B of count-
ably infinite ω-categorical structures B1 and B2; as we mentioned before, if
the generic combination exists, it is up to isomorphism unique, and again ω-
categorical. Note that a structure A that is 2-set-transitive gives rise to a di-
rected graph (A;E): fix two distinct elements b1, b2 of A; then two vertices c1, c2
are joined by a directed edge iff there exists an automorphism α with α(b1) = c1
and α(b2) = c2. Note that by 2-set-transitivity, it does not matter which ele-
ments b1 and b2 we choose, there are at most two resulting graphs and they
are always isomorphic. Also note that if the structure is 2-set-transitive and not
2-transitive, then the resulting directed graph is a tournament, i.e., it is without
loops and for any two distinct vertices a, b either (a, b) ∈ E or (b, a) ∈ E, but
not both. Examples of 2-set-transitive tournaments are the order of the ratio-
nals (Q;<), the countable random tournament (see, e.g., Lachlan [28]), and the
countable homogeneous local order S(2) (also see [23]). If ā = (a1, . . . , an) ∈ Bn
and G is a permutation group on B then Gā := {(α(a1), . . . , α(an)) | α ∈ G}
is called the orbit of ā (with respect to G); orbits of pairs (i.e., n = 2) are also
called orbitals. Orbitals of pairs of equal elements are called trivial. To simplify
the presentation, we introduce the following shortcut.

Definition 1. A structure has property J if it is a countably infinite ω-categorical
structure which is 2-set-transitive, but not 2-transitive, and contains binary sym-
bols for the inequality relation and for one of the two non-trivial orbitals.

We give some examples of structures with property J .

Example 1 The structure (Q; 6=, <,Rmi) where

Rmi := {(x, y, z) ∈ Q3 | x ≥ y ∨ x > z}.

Polynomial-time tractability of the CSP of this structure has been shown in [12].

Example 2 The structure (Q; 6=, <,Rll) where

Rll := {(x, y, z) ∈ Q3 | x < y ∨ x < z ∨ x = y = z}.

Polynomial-time tractability of the CSP of this structure has been shown in [13].

Further examples of structure with property J come from expansions of the
countable random tournament and the countable homogeneous local order men-
tioned above. The proof of the following theorem can be found in Section 5.

Theorem 3. Let B be the generic combination of two structures B1 and B2

with property J such that CSP(B1) and CSP(B2) are in P. Then one of the
following applies:

– Th(B1) or Th(B2) is not convex; in this case, CSP(B) is NP-hard.
– Each of Th(B1) and Th(B2) is convex, and CSP(B) is in P.

In other words, either the Nelson-Oppen conditions apply, and CSP(B) is in
P, or otherweise CSP(B) is NP-complete.



Example 4 Let B1 be the relational structure (Q;<, 6=, Rmi) where Rmi is de-
fined as above. Let B2 := (Q;≺, 6≈) where ≺ also denotes the strict order of the
rationals, and 6≈ also denotes the inequality relation (we chose different symbols
than < and 6= to make the signatures disjoint). It is easy to see that B1 and B2

satisfy the assumptions of Proposition 1, so they have a generic combination B.
It is also easy to see that B1 and B2 are 2-set-transitive, but not 2-transitive.
We have already mentioned that they also have polynomial-time tractable CSPs.
However, B1 does not have a convex theory, and hence our result implies that
the CSP of the combined structure is NP-complete (we invite the reader to find
an NP-hardness proof without using our theorem!).

A structure B1 is called a reduct of a structure B2, and B2 is called an
expansion of B1, if B1 is obtained from B2 by dropping some of the relations of
B1. If B1 is a reduct of B2 with the signature τ then we write Bτ

2 for B1. An
expansion B2 of B1 is called a first-order expansion if all additional relations in
B2 have a first-order definition in B1. A structure B1 is called a first-order reduct
if B1 is a reduct of a first-order expansion of B2. Note that if a structure B is
2-set-transitive then so is every first-order reduct of B (since its automorphism
group contains the automorphisms of B).

The CSPs for first-order reducts of Q have been called temporal CSPs; their
computational complexity has been classified completely [12]. There are many
interesting polynomial-time tractable temporal CSPs that have non-convex theo-
ries, which makes temporal CSPs a particularly interesting class for understand-
ing the situation where the Nelson-Oppen conditions do not apply. Generic com-
binations of temporal CSPs are isomorphic to first-order reducts of the countable
random permutation introduced in [22] and studied in [29]; a complexity classifi-
cation of the CSPs of all reducts of the random permutation (as e.g. in [10,12,27]
for simpler structures than the random permutation) is out of reach for the cur-
rent methods (in particular, the classification method via a reduction to the
finite-domain CSP dichotomy from [14] cannot be applied).

Examples of ω-categorical structures with 2-transitive automorphism groups
can be found in phylogenetic analysis; see [10]. A generic combination of a struc-
ture with a 2-transitive automorphism with (Q;<) is no longer 2-transitive, but
still 2-set-transitive (this will become obvious from the results in Section 3). So
any 2-transitive structure without algebraicity can be used to produce further
interesting examples that satisfy the conditions of Theorem 3.

2 Combinations of CSPs

We already mentioned that our definition of CSPs for theories is a strict gener-
alisation of the notion of CSPs for structures, and this will be clarified by the
following proposition which is an immediate consequence of Proposition 2.4.6
in [6].

Proposition 2. Let T be a first-order theory with finite relational signature.
Then there exists a structure B such that CSP(B) = CSP(T ) if and only if T



has the Joint Homomorphism Property (JHP), that is, for any two models A, B
of T there exists a model C of T such that both A and B homomorphically map
to C.

Example 5 A simple example of two theories T1, T2 with the JHP such that
T1 ∪ T2 does not have the JHP is given by

T1 := {∀x, y ((O(x) ∧O(y))⇒ x = y)}
T2 := {∀x. ¬(P (x) ∧Q(x)}

Suppose for contradiction that T1 ∪ T2 has the JHP. Note that

T1 ∪ T2 ∪ {∃x(O(x) ∧ P (x))} and T1 ∪ T2 ∪ {∃y(O(y) ∧Q(y))}

are satisfiable. The JHP implies that

T1 ∪ T2 ∪ {∃x(O(x) ∧ P (x)),∃y(O(y) ∧Q(y))}

has a model A, so A has elements u, v satisfying O(u) ∧ O(v) ∧ P (u) ∧ Q(v).
Since A |= T1 we must have u = v, and so A does not satisfy the sentence
∀x. ¬(P (x) ∧Q(x)) from T2, a contradiction.

3 Generic Combinations

For general theories T1, T2 even the question whether T1∪T2 has the JHP might
be a difficult question. But if both T1 and T2 are ω-categorical with a countably
infinite model that does not have algebraicity, then T1 ∪ T2 always has the JHP
(a consequence of Lemma 1 below). A structure B (and its first-order theory)
does not have algebraicity if for all first-order formulas φ(x0, x1, . . . , xn) and all
elements a1, . . . , an ∈ B the set {a0 ∈ B | B |= φ(a0, a1, . . . , an)} is either
infinite or contained in {a1, . . . , an}; otherwise, we say that the structure has
algebraicity.

It is a well-known fact from model theory that the concept of having no alge-
braicity is closely related to the concept of strong amalgamation (see [25], page
138f). The age of a relational τ -structure B is the class of all finite τ -structures
that embed into B. A class K of structures has the amalgamation property if for
all A,B1,B2 ∈ K and embeddings fi : A→ Bi, for i = 1 and i = 2, there exist
C ∈ K and embeddings gi : Bi → C such that g1 ◦ f1 = g2 ◦ f2. It has the strong
amalgamation property if additionally g1(B1)∩g2(B2) = g1(f1(A)) = g2(f2(A)).
If K is a class of structures with finite relational signature which is closed under
isomorphism, substructures, and has the amalgamation property, then there ex-
ists an (up to isomorphism unique) countable homogeneous structure B whose
age is K (see [26]). Moreover, in this case B has no algebraicity if and only if K
has the strong amalgamation property (see, e.g., [21]). The significance of strong
amalgamation in the theory of combining decision procedures has already been
pointed out by Bruttomesso, Ghilardi, and Ranise [19]. By the theorem of Ryll-
Nardzewski, Engeler, and Svenonius (see [25]) a homogeneous structure with



finite relational signature is ω-categorical, and the expansion of an ω-categorial
structure by all first-order definable relations is homogeneous.

When K is a class of structures, we write I(K) for the class of all structures
isomorphic to a structure in K. Let τ1 and τ2 be disjoint relational signatures,
and let Ki be a class of finite τi-structures, for i ∈ {1, 2}. Then K1 ∗ K2 denotes
the class of (τ1 ∪ τ2)-structures given by {A | Aτ1 ∈ I(K1) and Aτ2 ∈ I(K2)}. If
B is a set and n ∈ N, we write B(n) for the set of tuples from Bn with pairwise
distinct entries.

Lemma 1. Let T1 and T2 be ω-categorical theories with disjoint relational sig-
natures τ1 and τ2, with infinite models without algebraicity. Then there exists an
ω-categorical model B of T1 ∪ T2 without algebraicity such that

for all k ∈ N, ā, b̄ ∈ B(k) : Aut(Bτ1)ā ∩Aut(Bτ2)b̄ 6= ∅ (1)

and for all k ∈ N, ā ∈ B(k) : Aut(Bτ1)ā ∩Aut(Bτ2)ā = Aut(B)ā . (2)

The proof works via expansion with all first-order definable relations and a
Fräıssé-limit. It can be found in the extended version [7].

Note that by the facts on ω-categorical structures mentioned above, the prop-
erties (1) and (2) for B, Bτ1 , Bτ2 are equivalent to items (2) and (3) in Sec-
tion 1.1 for T = Th(B), T1 = Th(Bτ1), T2 = Th(Bτ2), respectively. Lemma 1
motivates the following definition.

Definition 2 (Generic Combination). Let B1 and B2 be countably infinite
ω-categorical structures with disjoint relational signatures τ1 and τ2, and let B
be a model of Th(B1)∪Th(B2). If B satisfies item (1) then we say that B is a
free combination of B1 and B2. If B satisfies both item (1) and item (2) then
we say that B is a generic combination (or random combination; see [1]) of B1

and B2.

The following can be shown via a back-and-forth argument.

Lemma 2. Let B1 and B2 be countable ω-categorical structures. Then up to
isomorphism, there is at most one generic combination of B1 and B2.

In later proofs we need the following lemma.

Lemma 3 (Extension Lemma). For i = 1 and i = 2, let Bi be an ω-
categorical structure with signature τi such that B1 and B2 have a generic com-
bination. Let ā, b̄1, b̄2 be tuples such that the tuples (ā, b̄1) and (ā, b̄2) have
pairwise distinct entries and equal length. Then there exist αi ∈ Aut(Bi, ā) such
that α2(α1(b̄1)) = b̄2.

Proof. By the definition of free combinations (Property (1)) there exist α ∈
Aut(B1) and β ∈ Aut(B2) such that β(α(ā, b̄1)) = (ā, b̄2). Note that α(ā) lies
in the same orbit as ā both with respect to B1 and with respect to B2, so by
Property (2) of generic combinations there exists an automorphism δ ∈ Aut(B)
that maps α(ā) to ā. Then α1 := δ ◦ α and α2 := β ◦ δ−1 have the desired
properties.



We now prove Proposition 1 that we already stated in the introduction, and
which states that two countably infinite ω-categorical structures with disjoint
relational signatures have a generic combination if and only if both have no
algebraicity, or at least one of the structures has an automorphism group which
is n-transitive for all n ∈ N. Note that the countably infinite structures whose
automorphism group is n-transitive for all n ∈ N are precisely the structures
that are isomorphic to a first-order reduct of (N; =).

Proof. If both B1 and B2 do not have algebraicity then the existence of an
ω-categorical generic combination follows from Lemma 1. If on the other hand
B1 is n-transitive for all n then an ω-categorical generic combination trivially
exists (it will be a first-order expansion of B2). The case that B2 is n-transitive
for all n is analogous.

For the converse direction, let B be the generic combination of the τ1-
structure B1 and the τ2-structure B2. Recall that Bτi is isomorphic to Bi, for
i ∈ {1, 2}. By symmetry between B1 and B2, we will assume towards a contradic-
tion that Bτ1 has algebraicity and Aut(Bτ2) is not n-transitive for some n ∈ N.
Choose n to be smallest possible, so that Aut(Bτ2) is not n-transitive. Therefore
there exist tuples (b0, . . . , bn−1) and (c0, . . . , cn−1), each with pairwise distinct
entries, that are in different orbits with respect to Aut(Bτ2). By the minimality
of n, there exists α ∈ Aut(Bτ2) such that α(b1, . . . , bn−1) = (c1, . . . , cn−1). Alge-
braicity of Bτ1 implies that there exists a first-order τ1-formula φ(x0, x1, . . . , xm)
and pairwise distinct elements a1, . . . , am of B such that φ(x, a1, . . . , am) holds
for precisely one element x = a0 other than a1, . . . , am in B. By adding unused
extra variables to φ we can assume that m ≥ n− 1. Choose elements bn, . . . , bm
such that the entries of (b0, . . . , bn−1, bn, . . . , bm) are pairwise distinct and de-
fine ci := α(bi) for i ∈ {n, . . . ,m}. Since B is a free combination, there exist
tuples (b′0, . . . , b

′
m), (c′0, . . . , c

′
m) and β1, γ1 ∈ Aut(Bτ1) and β2, γ2 ∈ Aut(Bτ2)

such that

β2(b0, . . . , bm) = (b′0, . . . , b
′
m), β1(b′0, . . . , b

′
m) = (a0, . . . , am),

γ2(c0, . . . , cm) = (c′0, . . . , c
′
m), γ1(c′0, . . . , c

′
m) = (a0, . . . , am).

Because γ−11 ◦β1 ∈ Aut(Bτ1) and γ2 ◦α◦β−12 ∈ Aut(Bτ2) both map (b′1, . . . , b
′
m)

to (c′1, . . . , c
′
m), and due to the second condition for generic combinations, there

exists µ ∈ Aut(B) such that µ(b′1, . . . , b
′
m) = (c′1, . . . , c

′
m). Since any operation in

Aut(Bτ1) preserves φ, we have γ1◦µ◦β−11 (a0, . . . , am) = (a0, . . . , am). Therefore
µ must map b′0 to c′0. Hence, γ−12 ◦ µ ◦ β2 ∈ Aut(Bτ2) maps (b0, . . . , bn−1) to
(c0, . . . , cn−1), contradicting our assumption that they lie in different orbits with
respect to Aut(Bτ2).

4 Difficulties for a General Complexity Classification

Let T1 and T2 be ω-categorical theories with disjoint finite relational signatures
such that CSP(T1) is in P and CSP(T2) is in P. The results in this section sug-
gest that in general we cannot hope to get a classification of the complexity



of CSP(T1 ∪ T2). We use the result from [8] that there are homogeneous di-
rected graphs B such that CSP(B) is undecidable. There are even homogeneous
directed graphs B such that CSP(B) is coNP-intermediate, i.e., in coNP, but nei-
ther coNP-hard nor in P [8] (unless P = coNP). All of the homogeneous graphs
B used in [8] can be described by specifying a set of finite tournaments T . Let
C be the class of all finite directed loopless graphs A such that no tournament
from T embeds into A. It can be checked that C is a strong amalgamation class;
the Fräıssé-limits of those classes are called the Henson digraphs.

Proposition 3. For every Henson digraph B there exist ω-categorical convex
theories T1 and T2 with disjoint finite relational signatures such that CSP(T1) is
in P, CSP(T2) is in P, and CSP(T1 ∪ T2) is polynomial-time Turing equivalent
to CSP(B).

The proof is omitted for reasons of space, but can be found in [7]. Note
that the Nelson-Oppen conditions do not apply here because it is crucial for our
construction that T1 does not contain a symbol for inequality. We mention that
another example of two theories such that CSP(T1) and CSP(T2) are decidable
but CSP(T1 ∪ T2) is not can be found in [18].

5 On the Necessity of the Nelson-Oppen Conditions

In this section we introduce a large class of ω-categorical theories where the
condition of Nelson and Oppen (the existence of binary injective polymorphisms)
is not only a sufficient, but also a necessary condition for the polynomial-time
tractability of generic combinations (unless P = NP); in particular, we prove
Theorem 3 from the introduction. We need the following characterisation of
convexity of ω-categorical theories.

Theorem 6 (Lemma 6.1.3 in [6]).
Let B be an ω-categorical structure and let T be its first-order theory. Then

the following are equivalent.

– T is convex;
– B has a binary injective polymorphism.

Moreover, if B contains the relation 6=, these conditions are also equivalent to
the following.

– for every finite set S of atomic τ -formulas such that S ∪ T ∪ {x1 6= y1} is
satisfiable and S∪T ∪{x2 6= y2} is satisfiable, then T ∪S∪{x1 6= y1, x2 6= y2}
is satisfiable, too.

The following well-known fact easily follows from many published results,
e.g., from the results in [16]. An operation f : Bk → B is called essentially unary
if there exists an i ≤ k and a function g : B → B such that f(x1, . . . , xk) = g(xi)
for all x1, . . . , xk ∈ B. The operation f is called essential if it is not essentially
unary.



Proposition 4 (see [16]). Let B be an infinite ω-categorical structure with
finite relational signature containing the relation 6= and such that all polymor-
phisms of B are essentially unary. Then CSP(B) is NP-hard.

Hence, we want to show that the existence of an essential polymorphism of
the generic combination of two countably infinite ω-categorical structures B1 and
B2 implies the existence of a binary injective polymorphism. The key technical
result, which we prove at the end of this section, is the following proposition.

Proposition 5. Let B1,B2 be ω-categorical structures with generic combina-
tion B so that

– each of B1 and B2 has a relation symbol that denotes the relation 6=;
– B has a binary essential polymorphism;
– B1 is 2-set-transitive; and
– B2 is 1-transitive and contains a binary antisymmetric irreflexive relation.

Then B1 must have a binary injective polymorphism.

To apply Proposition 5, we therefore need to prove the existence of binary
essential polymorphisms of generic combinations B. For this, we use an idea
that first appeared in [12] and was later generalized in [6], based on the following
concept. A permutation group G on a set B has the orbital extension property
(OEP) if there is an orbital O such that for all b1, b2 ∈ B there is an element
c ∈ B where (b1, c) ∈ O and (b2, c) ∈ O. The relevance of this property comes
from the following lemma.

Lemma 4 (Kára’s Lemma; see [6], Lemma 5.3.10). Let B be a structure
with an essential polymorphism and an automorphism group with the OEP. Then
B must have a binary essential polymorphism.

To apply this lemma to the generic combination B of B1 and B2, we have
to verify that Aut(B) has the OEP.

Lemma 5. Any 2-set-transitive permutation group action on a set with at least
3 elements has the OEP.

Lemma 6. Let B be a generic combination of two ω-categorical structures B1

and B2 with the OEP. Then B has the OEP.

Now, we proof Theorem 3. Property J from Definition 1 is needed in order
to apply Proposition 5 twice.

Proof (Proof of Theorem 3). If all polymorphisms of B are essentially unary
then Proposition 4 shows that CSP(B) is NP-hard. Otherwise, B has a binary
essential polymorphism by Lemma 4, because B has the OEP by Lemma 5 and
Lemma 6. Property J implies that Bi, for i = 1 and i = 2, is 2-set-transitive
and contains a binary relation symbol that denotes 6= and a binary relation
symbol that denotes the orbital of Bi, which is a binary antisymmetric irreflexive



relation. Thus, B1 and B2 satisfy the assumptions of Proposition 5. It follows
that B1 has a binary injective polymorphism. By Theorem 6, this shows that
Th(B1) is convex. Since we have the same assumptions on B1 and on B2, we can
use Proposition 5 again to show that also Th(B2) is convex. Now, the Nelson-
Oppen combination procedure implies that CSP(B) is in P.

Proof (Proof of Proposition 5). Since B1 and B2 have a generic combination,
by Proposition 1 either both B1 and B2 have no algebraicity or at least one
of B1,B2 is n-transitive for all n ∈ N. The structure B2 is not 2-transitive.
Suppose that B1 is n-transitive for all n ∈ N. Since B has a binary essential
polymorphism, so has B1. Since B1 also contains a symbol that denotes the
relation 6=, it must also have a binary injective polymorphism (see [11]) and
we are done. So we assume in the following that both B1 and B2 do not have
algebraicity. Since B1 and B2 are isomorphic to reducts of B, we may assume
that they actually are reducts of B. Let φ be a primitive positive formula over
the signature of B1 and suppose that φ∧x1 6= y1 has a satisfying assignment s1
over B1 and φ∧ x2 6= y2 has a satisfying assignment s2 over B2. By Theorem 6
it suffices to show that in B1 there exists a satisfying assignment to

φ ∧ x1 6= y1 ∧ x2 6= y2. (3)

If s1(x2) 6= s1(y2) or if s2(x1) 6= s2(y1) then there is nothing to be shown, so
we assume that this is not the case. Let f be the binary essential polymorphism
of B. Then there are a1, a2, a3, b1, b2, b3 ∈ B such that f(a2, b1) 6= f(a3, b1)
and f(a1, b2) 6= f(a1, b3). It is easy to see that then there also exist elements
u1, u2, v1, v2 ∈ B such that f(u1, v1) 6= f(u2, v1) and f(u1, v1) 6= f(u1, v2)
(choose u1 = a1, v1 = b1 and suitable u2 ∈ {a2, a3} , v2 ∈ {b2, b3}). Note that
in particular u1 6= u2 and v1 6= v2. By the 2-set-transitivity of B1, there exist
α1, α2 ∈ Aut(B1) such that

α1({s1(x1), s1(y1)}) = {u1, u2} and α2({s2(x2), s2(y2)}) = {v1, v2} .

By renaming variables if necessary we may assume that α1(s1(x1), s1(y1)) =
(u1, u2) and α2(s2(x2), s2(y2)) = (v1, v2).
Note that |s1({x1, y1, x2, y2})|, |s2({x1, y1, x2, y2})| ∈ {2, 3}.
Case 1. |s1({x1, y1, x2, y2})| = |s2({x1, y1, x2, y2})| = 3. In other words, s1(x2) =
s1(y2) /∈ {s1(x1), s1(y1)} and s2(x1) = s2(y1) /∈ {s2(x2), s2(y2)}.

By the transitivity of Aut(B1) there exist β1, β2 ∈ Aut(B1) such that
β1(s1(x2)) = u1 and β2(s2(y1)) = v1. We can choose β1 ∈ Aut(B1) such that
β1(s1(x1)), β1(s1(y1)) are distinct from α1(s1(x2)) and u2: to see this, note that
Aut(B1, u1) has no finite orbits other than {u1} because B1 has no algebraicity,
and by Neumann’s lemma (see e.g. [25], page 141, Corollary 4.2.2) there exists
a g ∈ Aut(B1, u1) such that

g({β1(s1(x1)), β1(s1(x1))}) ∩ {α1(s1(x2)), u2} = ∅.

We can thus replace β by g ◦ β. Hence, u1, u2, β1(s1(x1)), α1(s1(x2)), β1(s1(y1))
are pairwise distinct. Likewise, we can choose β2 ∈ Aut(B2) such that v1, v2,
β2(s2(x2)),α2(s2(x1)), β2(s2(y2)) are pairwise distinct.



Let R be the binary antisymmetric irreflexive relation of B2, choose any
(a, b) ∈ R, and let α ∈ Aut(B2) be such that α(a) = b. Define c := α(b) and
note that c 6= a since otherwise (a, b), (b, a) ∈ R contrary to our assumptions.
Since B is a generic combination and B1, B2 are transitive, B is transitive as
well and we can choose a, b, c disjoint from u1, u2, v1, v2 by Neumanns Lemma as
above. Then the Extension Lemma (Lemma 3) asserts the existence of elements
u3, u4, u5 and automorphisms δi,1 ∈ Aut(Bi), for i ∈ {1, 2}, such that

δ1,1(u1, u2, u3, u4, u5) = (u1, u2, β1(s1(x1)), α1(s1(x2)), β1(s1(y1)))

and δ2,1(u1, u2, u3, u4, u5) = (u1, u2, a, b, c) .

Similarly, there are elements v3, v4, v5 and δi,2 ∈ Aut(Bi), for i ∈ {1, 2}, such
that

δ1,2(v1, v2, v3, v4, v5) = (v1, v2, β2(s2(x2)), α2(s2(x1)), β2(s2(y2)))

and δ2,2(v1, v2, v3, v4, v5) = (v1, v2, a, b, c) .

See Figure 1. If f(u4, v3) 6= f(u4, v5), then
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s1(y2)

s1(x1) s1(y1)
s1

s2(y1)
s2(x1)

s2(x2)

s2(y2)

s2

u1 u2 u3 u4 u5

v1

v2

v3

v4

v5

q

p

Fig. 1. An illustration of the first case in the proof of Proposition 5. Dashed edges
indicate (potential) inequalities between function values.

s := f(δ−11,1α1s1, δ
−1
1,2β2s2)

is a solution to (3):

s(x1) = f(δ−11,1α1s1(x1), δ−11,2β2s2(x1)) = f(δ−11,1(u1), δ−11,2(v1)) = f(u1, v1)

6= f(u2, v1) = f(δ−11,1(u2), δ−11,2(v1)) = f(δ−11,1α1s1(y1), δ−11,2β2s2(y1)) = s(y1)

s(x2) = f(δ−11,1α1s1(x2), δ−11,2β2s2(x2)) = f(u4, v3)

6= f(u4, v5) = f(δ−11,1α1s1(x2), v5) = f(δ−11,1α1s1(y2), δ−11,2β2s2(y2)) = s(y2).

So let us assume that p := f(u4, v3) = f(u4, v5). If f(u3, v4) 6= f(u5, v4), then

s := f(δ−11,1β1s1, δ
−1
1,2α2s2)



is a solution to (3), by similar reasoning as above. Thus, we also assume that
q := f(u3, v4) = f(u5, v4). As (a, b) ∈ R, (b, c) ∈ R, δ2,1, δ2,2 ∈ Aut(B2), and f
preserves R,

(p, q) = (f(u4, v3), f(u5, v4)) = (f(δ−12,1(b), δ−12,2(a)), f(δ−12,1(c), δ−12,2(b))) ∈ R.

Similarly,

(q, p) = (f(u3, v4), f(u4, v5)) = (f(δ−12,1(a), δ−12,2(b)), f(δ−12,1(b), δ−12,2(c))) ∈ R.

Hence, both (p, q) ∈ R and (q, p) ∈ R, contradicting our assumptions.

Case 2. |s1({x1, y1, x2, y2})| = |s2({x1, y1, x2, y2})| = 2.

Case 2a. s1(x2) = s1(y2) = s1(x1) and s2(x1) = s2(y1) = s2(x2).
In this case, it is easy to verify that

s := f(α1(s1), α2(s2))

is a solution to (3).

Case 2b. s1(x2) = s1(y2) = s1(y1) and s2(x1) = s2(y1) = s2(x2).
This case can be proven similarly to Case 1 and is written out in [7].

Case 2c. s1(x2) = s1(y2) = s1(x1) and s2(x1) = s2(y1) = s2(y2). This case
can be shown analogously to case 2b (swap x and y).

Case 2d. s1(x2) = s1(y2) = s1(y1) and s2(x1) = s2(y1) = s2(y2). This case
can be shown analogously to case 2a (swap x and y).

Case 3. |s1({x1, y1, x2, y2})| = 3 and |s2({x1, y1, x2, y2})| = 2.

Case 3a. s1(x2) = s1(y2) /∈ {s1(x1), s1(y1)} and s2(x1) = s2(y1) = s2(x2).
The proof is similar to the first and to the second case.

Case 3b. s1(x2) = s1(y2) /∈ {s1(x1), s1(y1)} and s2(x1) = s2(y1) = s2(y2).
The proof is analogous to Case 3a.

Case 4. |s1({x1, y1, x2, y2})| = 2 and |s2({x1, y1, x2, y2})| = 3. This case is
symmetric to Case 3 (swap s1 and s2).

6 Conclusion and Future Work

For many theories T1 and T2 we have shown that the Nelson-Oppen conditions
are not only a sufficient, but also a necessary condition for the polynomial-time
tractability of the combined constraint satisfaction problem CSP(T1 ∪ T2). Our
results imply for example the following complexity classification for combinations
of temporal CSPs.

Corollary 1. Let B1 and B2 be two first-order expansions of (Q;<, 6=); rename
the relations of B1 and B2 so that B1 and B2 have disjoint signatures. Then
CSP(Th(B1) ∪ Th(B2)) is in P if CSP(B1) and CSP(B2) are in P and if both
Th(B1) and Th(B2) are convex. Otherwise, CSP(Th(B1)∪Th(B2)) is NP-hard.



This follows from Proposition 1 which characterises the existence of a generic
combination of T1 and T2, and from Theorem 3 which classifies the computational
complexity of the generic combination.

It would be interesting to show our complexity result for even larger classes
of ω-categorical theories T1 and T2. It would also be interesting to drop the
assumption that the signatures of T1 and T2 contain a symbol for the inequality
relation.
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