
Probably Half True: Probabilistic Satisfiability
over Lukasiewicz Infinitely-valued Logic

Marcelo Finger? and Sandro Preto

Department of Computer Science, University of São Paulo, São Paulo, Brazil
{mfinger,spreto}@ime.usp.br

Abstract. We study probabilistic-logic reasoning in a context that al-
lows for “partial truths”, focusing on computational and algorithmic
properties of non-classical Lukasiewicz Infinitely-valued Probabilistic Lo-
gic. In particular, we study the satisfiability of joint probabilistic assign-
ments, which we call LIPSAT. Although the search space is initially
infinite, we provide linear algebraic methods that guarantee polynomial
size witnesses, placing LIPSAT complexity in the NP-complete class. An
exact satisfiability decision algorithm is presented which employs, as a
subroutine, the decision problem for Lukasiewicz Infinitely-valued (non
probabilistic) logic, that is also an NP-complete problem. We develop
implementations of the algorithms described and discuss the empirical
presence of a phase transition behavior for those implementations.

1 Introduction

This paper deals with the problem of determining the consistency of proba-
bilistic assertions allowing for “partial truths” considerations. This means that
we depart from the classical probabilistic setting and instead employ a many-
valued underlying logic. In this way we enlarge our capacity to model situa-
tions in which a gradation of truth may be closer to the perceptions of agents
involved. We employ Lukasiewicz Infinitely-valued logic as it is one of the best
studied many-valued logics, having interesting properties which lead to amenable
computational treatment. Notably, it has been shown that foundational proper-
ties of probabilistic theory such as de Finetti coherence criteria also applies to
 Lukasiewicz Infinitely-valued probabilistic theories [27].

We provide theoretical presentation leading to algorithms that decide the sat-
isfiability of probabilistic assertions in which the underlying logic is Lukasiewicz
logic with infinity truth values in the interval [0, 1]. For that, we employ tech-
niques from linear programming and many-valued logics. In the latter case
we need to solve several instances of the satisfiability problem in Lukasiewicz
Infinitely-valued logic. This problem has been shown to be NP-complete [25]
and there are some implementations discussed in the literature [3], but there are

? Partially supported by Fapesp projs. 2015/21880-4 and 2014/12236-1 and CNPq
grant 306582/2014-7.

many implementation options with considerable efficiency differences which we
also analyze in this work.

To understand the kind of situation in which our techniques can be applicable
consider the following example.

Example 1. Three friends have the habit of going to a bar to watch their soccer
team’s matches. Staff at the bar claims that at every such match at least two of
the friends come to the premises, but if you ask them, they will say that each of
them comes to watch at most 60% of the games.

In classical terms, the claims of the staff and of the three friends are in
contradiction. In fact, if there are always two of the three friends present at
matches, someone must attend to least two-thirds of the team’s matches.

However, one may allow someone to arrive for the second half of the match,
and consider his attendance only “partially true”, say, a truth value of 0.5 in
that case. Then it may well be the case that staff and customers are both telling
the truth, that is, their claims are jointly satisfiable. ut

It turns out that the example above is unsatisfiable in classical probabilistic
logic, but it is satisfiable in Lukasiewicz Infinitely-valued Probabilistic logic. In
this work we are going to formalize such problems and present techniques and
algorithms to solve them.

1.1 Classical and Non-classical Probabilistic Logic

Classical probabilistic logic combines classical propositional inference with clas-
sical (discrete) probability theory. The original formulation of such a mix of
logic and probability is due to George Boole who, in his seminal work introduc-
ing what is now known as Boolean Algebras, already discussed the problem [4].
Among the foundational works on classical probabilistic theory we highlight that
provided by de Finetti’s notion of coherent probabilities [9, 11].

The decision problem over classical probabilistic logic is called Probabilistic
Satisfiability (PSAT). PSAT has been extensively discussed in the literature [18,
20, 28], and has recently received a lot of attention due to the improvements in
SAT solving and linear programming techniques, having generated a variety of
algorithms, for which the empirical phenomenon of phase-transition is by now
established [14,15].

 Lukasiewicz Infinitely-valued Logic is widely used in the literature to model
situations that require the notion of “partial truth”, seen as a many-valued logic
and algebra [8]. A probability theory over such a many-valued context, including
a notion of coherent probabilities in line with de Finetti’s original work, was
developed as a sound basis for non-classical probability theory [27]. The problem
of deciding whether a set of probabilistic assignments over Lukasiewicz Infinitely-
valued Logic is coherent was shown to be NP-complete by [6]. It is the goal of
this paper to explore equivalent formulations and algorithmic ways to solve this
problem and study the existence of a phase transition in its empirical behavior.

The rest of this paper is organized as follows. In Section 2 we describe the no-
tions pertaining Lukasiewicz Infinitely-valued Logic and Lukasiewicz Infinitely-
valued Probabilistic Logic and the notion of coherent probability over such logic.
In Section 3 we study the theoretical relationship between linear algebraic meth-
ods and the solution of the LIPSAT problem. In Section 4 we develop a column
generation algorithm for LIPSAT solving and show its correctness. Finally, we
discuss implementation issues and the phase transition behavior of the solvers
in Section 5.

Due to space restrictions, proofs of some results have been omitted. Source
code of the solvers developed are publicly available.

2 Preliminaries

 Lukasiewicz Infinitely-valued Logic (L∞) is arguably one of the best studied
many-valued logics [8]. It has several interesting properties, such as a truth-
functional semantics that is continuous, having classical logic as a limit case and
possessing well developed proof-theoretical and algebraic presentations. The se-
mantics of L∞-formulas represent all piecewise linear functions and only those [23,
26].

The basic L∞-language is built from a countable set of propositional symbols
P, and disjunction (⊕) and negation (¬) operators. For the semantics, define a
 L∞-valuation v : P→ [0, 1], which maps propositional symbols to a value in the
rational interval [0, 1]. Then v is extended to all L∞-formulas as follows

v(ϕ⊕ ψ) = min(1, v(ϕ) + v(ψ))

v(¬ϕ) = 1− v(ϕ)

From those operations one usually derives the following:

Conjunction: ϕ� ψ =def ¬(¬ϕ⊕ ¬ψ) v(ϕ� ψ) = max(0, v(ϕ) + v(ψ)− 1)

Implication: ϕ→ ψ =def ¬ϕ⊕ ψ v(ϕ→ ψ) = min(1, 1− v(ϕ) + v(ψ))

Maximum: ϕ ∨ ψ =def ¬(¬ϕ⊕ ψ)⊕ ψ v(ϕ ∨ ψ) = max(v(ϕ), v(ψ))

Minimum: ϕ ∧ ψ =def ¬(¬ϕ ∨ ¬ψ) v(ϕ ∧ ψ) = min(v(ϕ), v(ψ))

Bi-implication: ϕ↔ ψ =def (ϕ→ ψ) ∧ (ψ → ϕ) v(ϕ↔ ψ) = 1− |v(ϕ)− v(ψ)|

A formula ϕ is L∞-valid if v(ϕ) = 1 for every valuation v. A formula ϕ is L∞-
satisfiable if there exists a v such that v(ϕ) = 1; otherwise it is L∞-unsatisfiable.
A set of formulas Φ is satisfiable if there exists a v such that v(ϕ) = 1 for all
ϕ ∈ Φ. Note that v(ϕ → ψ) = 1 iff v(ϕ) ≤ v(ψ); similarly, v(ϕ ↔ ψ) = 1 iff
v(ϕ) = v(ψ).

 L∞ also serves as a basis for a well-founded non-classical probability the-
ory [24]. Define a convex combination over a finite set of valuations v1, · · · , vm
as a function on formulas into [0, 1] such that

C(ϕ) = λ1v1(ϕ) + · · ·+ λmvm(ϕ) (1)

where λi ≥ 0 and
∑m
i=1 λi = 1. So a L∞-probability distribution λ = [λ1, · · · , λm]

is a set of coefficients that form the convex combination of L∞-valuations. To
distinguish L∞-probabilities from classical ones, we use the notation C(·), fol-
lowing [24]; it is important to note that C is defined over any finite set of val-
uations1. Note that classical discrete probabilities are also convex combinations
of {0, 1}-valuations.

This notion of probability associates non-zero values only to a finite number
of L∞-valuations; thus the notion of L∞-probability is intrinsically discrete. As
there are infinitely many possible L∞-valuations, the remaining ones are assumed
to be zero. In this work we are interested in deciding the existence of convex
combinations of the form (1) given a set of constraints. So, in theory, the search
space is infinite.

It follows immediately from this definition that C(α) = 1 if there is a convex
combination over v1, · · · , vm where vi(α) = 1, 1 ≤ i ≤ m.

Lemma 1. C(α→ β) = 1 iff C(α) ≤ C(β). ut

Lemma 1 is a direct consequence from the fact that v(ϕ → ψ) = 1 iff v(ϕ) ≤
v(ψ).

We define a Lukasiewicz Infinitely-valued Probabilistic (LIP) assignment as
an expression of the form

Σ =
{
C(αi) = qi | qi ∈ [0, 1], 1 ≤ i ≤ k

}
.

As a foundational view of probabilities, it is possible to define a coherence
criterion over LIP-assignments, in analogy to the de Finetti classical notion of
coherent assignment of probabilities [10,11]. Thus, define the L∞-coherence of a
LIP-assignment {C(αi) = qi | 1 ≤ i ≤ k} in terms of a bet between two players,
Alice the bookmaker and Bob the bettor. The outcome on which the players
bet is a L∞-valuation describing an actual “possible world”. For each formula
αi, Alice states her betting odd C(αi) = qi ∈ [0, 1] and Bob chooses a “stake”

σi ∈ Q; Bob pays Alice
∑k
i=1 σi · C(αi) with the promise that Alice will pay

back
∑k
i=1 σi · v(αi) if the outcome is the possible world (or valuation) v. As in

the classical case, the chosen stake σi is allowed to be negative, in which case
Alice pays Bob |σi| ·C(αi) and gets back |σi| · v(αi) if the world turns out to be
v. Alice’s total balance in the bet is

k∑
i=1

σi(C(αi)− v(αi)).

We say that there is a LIP-Dutch Book against Alice’s LIP-assignment if
there is a choice of stakes σi such that, for every possible outcome v, Alice’s
total balance is always negative, indicating a bad choice of betting odds made
by Alice.

1 Thus C is more restrictive than the full class of states of an MV-algebra, in the sense
of [24], which will not be discussed here.

Definition 1. Given a probability assignment to propositional formulas {C(αi) =
qi | 1 ≤ i ≤ k}, the LIP-assignment is coherent if there are no Dutch Books
against it.

While the coherence of an assignment provides a foundational view to deal
with L∞-probabilities, a more computational view is possible, based on the satis-
fiability of assignments. Such a view will allow a more operational way of dealing
with L∞-probabilistic assignments.

Definition 2. A LIP-assignment is satisfiable if there exists a convex combina-
tion C and a set of valuations that jointly verifies all restrictions in it.

Example 2. Consider again Example 1, let x1, x2, x3 be variables representing
the presence at the bar of each of the three friends. An L∞-valuation assigns to
each variable a value in [0, 1]. The probabilistic constraint expressing that each
friend comes at most 60% of the games can be expressed as

C(x1) = C(x2) = C(x3) ≤ 0.6, (*)

and the fact that at least two of them are present is expressed by the constraints

C(x1 ⊕ x2) = C(x1 ⊕ x3) = C(x2 ⊕ x3) = 1 (**)

which means that no two of them are simultaneously absent. There are infinitely
many ways of obtaining a convex combination of L∞-valuations that satisfy all
six conditions, the simplest of which is achieved with a single L∞-valuation v,
v(x1) = v(x2) = v(x3) = 0.6; in fact, v(x1 ⊕ x2) = v(x1 ⊕ x3) = v(x2 ⊕ x3) =
min(1, 0.6 + 0.6) = 1, so we can attribute 100% of probability mass to v.

A similar result can be obtained with three “classical” valuations vi(xi) =
0, vi(xj) = vi(xk) = 1, for pair-wise distinct i, j, k ∈ {1, 2, 3} and a fourth
valuation v4(x1) = v4(x2) = v4(x3) = 0.5. Note all four valuation satisfy the
formulas in (**). The convex valuation assigns probability 0.2 to v1, v2, v3 and
0.4 to v4, satisfying all constraints (*) and (**). ut

The following result is the characterization of coherence for Lukasiewicz
Infinitely-valued Probabilistic Logic.

Proposition 1 (Mundici [27]). Given a LIP-assignment Σ = {C(αi) = qi | 1 ≤
i ≤ k}, the following are equivalent:

(a) Σ is a coherent LIP-assignment.
(b) Σ is a satisfiable LIP-assignment.

Proposition 1 asserts that deciding LIP coherence is the same as determin-
ing LIP-assignment satisfiability, which we call LIPSAT. This result is the L∞
analogous to de Finetti’s characterization of coherence of classical probabilistic
assignment as equivalent to the probabilistic satisfiability (PSAT) of the assign-
ment, which was shown to be an NP-complete problem that can be solved using
linear algebraic methods [18,28]. It has also been shown by Bova and Flaminio [6]
that deciding the coherence of a LIP-assignment is also an NP-complete problem.

Our goal here is to explore efficient ways to decide the coherence of LIP-
assignments. In analogy to the algorithms used for deciding PSAT [14, 15], we
explore a linear algebraic formulation of the problem.

3 Algebraic Formulation of LIPSAT

We consider an extended version of LIP-assignments of the form

Σ =
{
C(αi) ./i qi | qi ∈ [0, 1], ./i∈ {=,≤,≥}, 1 ≤ i ≤ k

}
. (2)

Extended LIP-assignments may have both inequalities and equalities. Such
an assignment is satisfiable if there is a L∞-probability distribution λ that verify
all inequalities and equalities in it.

Given an extended LIP-assignment Σ = {C(αi) ./i qi}, let q = (q1, . . . , qk)′

be the vector of probabilities in Σ, ./ the “vector” of (in)equality symbols.
Suppose we are given L∞-valuations v1, . . . , vm and let λ = (λ1, . . . , λm)′ be
a vector of convex weights. Consider the k × m matrix A = [aij] where aij =
vj(αi). Then an extended LIP-assignment of the form (2) is satisfiable if there
are v1, . . . , vm and λ such that the set of algebraic constrains (3) has a solution:

A · λ ./ q∑
λj = 1 (3)

λ ≥ 0

The condition
∑
λj = 1 can be incorporated as an all-1 row k + 1 in matrix

A, q = (q1, . . . , qk, 1)′ and ./k+1 is “=”. Note that the number m of columns in
A is in principle unbounded, but the following consequence of Carathéodory’s
Theorem [13] yields that a if (3) has a solution, than it has a “small” solution.

Proposition 2 (Carathéodory’s Theorem for LIP). If a set of restrictions
of the form (3) has a solution, then it has a solution in which at most k + 1
elements of λ are non-zero. ut

Given the algebraic formulation in (3), NP-completeness of LIP satisfiability,
originally shown by Bova and Flaminio [6], can be seen as a direct corollary of
Proposition 2. In fact, that LIPSAT is NP-hard comes from the fact that when
all qi = 1, the problem becomes L∞-satisfiability, which is NP-complete [25];
and Proposition 2 asserts the existence of a polynomial size witness for LIPSAT,
hence is in NP; so LIPSAT is NP-complete. See Corollary 1.

However, to apply linear algebraic methods to efficiently solve LIPSAT, first
we need to provide a normal form for it.

3.1 A Normal Form for LIP-Assignments

An extended assignment may seem more expressive than regular LIP-assignments,
but we show that no expressivity is gained by this extension. In fact, we define
a normal form LIP assignment as a pair 〈Γ,Θ〉, where Γ is a set of L∞-formulas
and Θ is a set of LIP restrictions over propositional symbols of the form

Θ =
{
C(pi) = qi | qi ∈ [0, 1], pi ∈ P, 1 ≤ i ≤ k

}
. (4)

The formulas γ ∈ Γ represent LIP-assignments of the form C(γ) = 1, that
is, a set of hard constrains in the form of L∞-formulas which must be satis-
fied by all valuations in the convex combination that compose a L∞-probability
distribution.

A normal form assignment 〈Γ,Θ〉 is satisfiable if there are L∞-valuations
v1, · · · , vm such that vi(γ) = 1 for every γ ∈ Γ and there is a L∞-probability
distribution λ1, · · · , λm, such that for each assignment C(pi) = qi ∈ Θ,

∑m
j=1 λj ·

vj(pi) = qi.
The satisfiability of extended LIP-assignments reduces to that of normal form

ones, as follows.

Theorem 1 (Atomic Normal Form). For every extended LIP-assignments
Σ there exists a normal form LIP-assignment 〈Γ,Θ〉 such that Σ is a satisfiable
iff 〈Γ,Θ〉 is; the normal form assignment can be built from Σ in polynomial time.

Proof. Start with Γ = Θ = ∅. Given Σ, first transform it into Σ′ in which all
assignments are of the form C(α) ≤ p; for that, if Σ contains a constraint of the
form C(α) ./ 1, ./ ∈ {=,≥} (resp. C(α) = 0, C(α) ≤ 0) we insert α (resp. ¬α)
in Γ and do not insert the constraint in Σ′. If C(α) = q ∈ Σ we insert C(α) ≤ q
and C(α) ≥ q in Σ′. Then all assignments of the latter form are transformed
into C(¬α) ≤ 1 − q. All transformation steps preserve satisfiability and can be
made in linear time, so Γ ∪Σ′ is satisfiable iff Σ is.

For every C(αi) ≤ qi ∈ Σ′, 0 < qi < 1, consider a new symbol yi; insert
αi → yi in Γ and C(yi) = qi in Θ. Clearly 〈Γ,Θ〉 is in normal form and is
obtained in linear time. The fact that Σ is satisfiable iff 〈Γ,Θ〉 is follows from
Lemma 1. ut

Example 3. Note that the formalization presented in Example 2 is already in
normal form, witnessing that this format is quite a natural one to formulate
LIP-assignments. ut

3.2 Algebraic Methods for Normal Form LIP-Assignments

For the rest of this paper we assume that LIP-assignments are in normal form.
Here we explore their algebraic structure as it allows for the interaction between
a LIP problem Θ and a L∞-SAT instance Γ , such that solutions satisfying the
normal form assignment can be seen as probabilistic solutions to Θ constrained
by the SAT instance Γ .

Furthermore, to construct a convex combination of the form (1) we will only
consider Γ -satisfiable valuations. Given a LIP-assignment 〈Γ,Θ = {C(pi) = qi}〉,
a partial assignment v over pi, . . . , pk is Γ -satisfiable if it can be extended to a
full assignment that satisfies all formulas in Γ . Let q be a k + 1 dimensional
vector (q1, . . . , qk, 1)′. The following is a direct consequence of Theorem 1.

Lemma 2. A normal form instance 〈Γ,Θ〉 is satisfiable iff there is a (k + 1)×
(k + 1)-matrix AΘ, such that all of its columns are Γ -satisfiable, AΘ last row is
all 1’s, and AΘλ = q has a solution λ ≥ 0.

Lemma 2 leads to a linear algebraic PSAT solving method as follows. Let V
be the set of partial valuations over the symbols in Θ; consider a |V |-dimensional
vector c such that

cj =

{
0, vj ∈ V is Γ -satisfiable
1, otherwise

(5)

The vector c is a boolean “cost” associated to each partial valuation vj ∈ V ,
such that the cost is 1 iff vj is Γ -unsatisfiable. Consider a matrix A whose
columns are the valuations in V . Now consider linear program (6) which aims
at minimizing that cost, weighted by the corresponding probability value λj .

min c′ · λ
subject to A · λ = q∑

λi = 1
λ ≥ 0
A’s columns are partial valuations in V

(6)

Theorem 2. A normal form instance 〈Γ,Θ = {C(pi) = qi | 1 ≤ i ≤ k}〉 is sat-
isfiable iff linear program (6) reaches a minimal solution c′ ·λ = 0. Furthermore,
if there is a solution, then there is a solution in which at most k+ 1 values of λ
are not null.

Proof. If linear program (6) reaches 0, we obtain v1, . . . , vm by selecting only the
Γ -satisfiable columns Aj for which λj > 0, obtaining a convex combination sat-
isfying Θ. So 〈Γ,Θ〉 is satisfiable. Conversely, if 〈Γ,Θ〉 is satisfiable, by Lemma 2
there exists a matrix AΘ such that all of its columns are Γ -satisfiable partial
valuations and AΘ · λ = q; clearly AΘ is a submatrix of A; make λj = 0 when
Aj is a AΘ column and thus c′ ·λ = 0. Again by Lemma 2, AΘ has at most k+ 1
columns so at most k + 1 values of λ are not null. ut

The following consequence of Theorem 2 was originally proven by Bova and
Flaminio [6] as the decision of LIP-assignment coherence, which is equivalent to
LIP satisfiability by Proposition 1.

Corollary 1 (LIPSAT Complexity). The problem of deciding the satisfiabil-
ity of a LIP-assignment is NP-complete.

Despite the fact that solvable linear programs of the form (6) always have
polynomial size solutions, with respect to the size of the corresponding normal
form LIP-assignment, the elements of linear program itself (6) may be expo-
nentially large, rendering the explicit representation of matrix A impractical. In
the following, we present an algorithmic technique that avoids that exponential
explosion.

4 A LIPSAT-solving Algorithm

Based on the results of the previous section we are going to present an algorithm
employing a linear programming technique called column generation [21, 22],

to obtain a decision procedure for Lukasiewicz Infinitely-valued Probabilistic
Logic, which we call LIPSAT solving. This algorithm solves the potentially large
linear program (6) without explicitly representing all columns and making use
of an extended solver for L∞-satisfiability as an auxiliary procedure to generate
columns.

To avoid the exponential blow of the size of matrix in (6), the algorithm basic
idea is to employ the simplex algorithm [2,29] over a normal form LIP-assignment
〈Γ,Θ〉, coupled with a strategy that generates cost decreasing columns without
explicitly representing the full matrix A. In this process, we start with a feasible
solution, which may contain several L∞ Γ -unsatisfiable columns. We minimize
the cost function consisting of the sum of the probabilities associated to Γ -
unsatisfiable columns, such that when it reaches zero, we know that the problem
is satisfiable; if no column can be generated and the minimum achieved is bigger
than zero, a negative decision is reached.

The general strategy employed here is similar to that employed to PSAT
solving [14, 15], but the column generation algorithm is considerably distinct
and requires an extension of L∞ decision procedure.

From the input 〈Γ,Θ〉, we implicitly obtain an unbounded matrix A and
explicit obtain the vector of probabilities q mentioned in (6). The basic idea of
the simplex algorithm is to move from one feasible solution to another one with
a decreasing cost. The feasible solution consists of a square matrix B, called
the basis, whose columns are extracted from the unbounded matrix A. The pair
〈B, λ〉 consisting of the basis B and a LIP probability distribution λ is a feasible
solution if B · λ = q and λ ≥ 0. We assume that qk+1 = 1 such that the last
line of B we will force

∑
G λj = 1, where G is the set of B columns that are Γ -

satisfiable. Each step of the algorithm replaces one column of the feasible solution
〈B(s−1), λ(s−1)〉 at step s− 1 obtaining a new feasible solution 〈B(s), λ(s)〉. The

cost vector c(s) is a {0, 1} vector such that c
(s)
j = 1 iff Bj is Γ -unsatisfiable. The

column generation and substitution is designed such that the total cost is never
increasing, that is c(s)′ · λ(s) ≤ c(s−1)′ · λ(s−1).

Algorithm 4.1 presents the top level LIPSAT decision procedure. Lines 1–3
present the initialization of the algorithm. We assume the vector q is in ascending
order. Let the Dk+1 be a k + 1 square matrix in which the elements on the
diagonal and below are 1 and all the others are 0. At the initial step we make

B(0) = Dk+1, this forces λ
(0)
1 = q1 ≥ 0, λ

(0)
j+1 = qj+1 − qj ≥ 0, 1 ≤ j ≤ k; and

c(0) = [c1 · · · ck+1]′, where ck = 0 if column j in B(0) is Γ -satisfiable; otherwise
cj = 1. Thus the initial state s = 0 is a feasible solution.

Algorithm 4.1 main loop covers lines 5–12 which contains the column gen-
eration strategy described above. Column generation occurs at beginning of the
loop (line 5) which we are going to detail bellow. If column generation fails the
process ends with failure in line 7. Otherwise a column is removed and the gen-
erated column is inserted in a process we called merge at line 9. The loop ends
successfully when the objective function (total cost) c(s)′ · λ(s) reaches zero and
the algorithm outputs a probability distribution λ and the set of Γ -satisfiable
columns in B, at line 13.

Algorithm 4.1 LIPSAT-CG: a LIPSAT solver via Column Generation

Input: A normal form LIPSAT instance 〈Γ,Θ〉.
Output: No, if 〈Γ,Θ〉 is unsatisfiable. Or a solution 〈B, λ〉 that minimizes (6).

1: q := [{qi | C(pi) = qi ∈ Θ, 1 ≤ i ≤ k} ∪ {1}] in ascending order;
2: B(0) := Dk+1;
3: s := 0, λ(s) = (B(0))−1 · q and c(s) = [c1 · · · ck+1]′;
4: while c(s)′ · λ(s) 6= 0 do
5: y(s) = GenerateColumn(B(s), Γ, c(s));
6: if y(s) column generation failed then
7: return No; \\ LIPSAT instance is unsatisfiable
8: else
9: B(s+1) = merge(B(s), b(s))

10: s++, recompute λ(s) and c(s);
11: end if
12: end while
13: return 〈B(s), λ(s)〉; \\ LIPSAT instance is satisfiable

The procedure merge is part of the simplex method which guarantees that
given a k+1 column y and a feasible solution 〈B, λ〉 there always exists a column
j in B such that if B[j := y] is obtained from B by replacing column j with y,
then there is λ′ such that 〈B[j := y], λ′〉 is a feasible solution.

Lemma 3. Let 〈B, λ〉 be a feasible solution of (6), such that B is non-singular,
and let y be a column. Then there always exists a column j such that 〈B[j := y], λ′〉
is a non-singular feasible solution.

Lemma 3 guarantees the existence of a column which may not be unique and
further selection heuristic is necessary; in our implementation we give priority to
remove columns which are associated to probability zero on a left-to-right order.

We now describe the column generation method, which takes as input the
current basis B, the current cost c, and the L∞ restrictions Γ ; the output is
a column y, if it exists, otherwise it signals No. The basic idea for column
generation is the property of the simplex algorithm called the reduced cost of
inserting a column y with cost cy in the basis. The reduced cost is given by
equation

ry = cy − c′B−1y (7)

and the simplex method guarantees that the objective function is non increasing
if ry ≤ 0. Furthermore the generation method is such that the column y is
Γ -satisfiable so that cy = 0. We thus obtain

c′B−1y ≥ 0 (8)

which is an inequality on the elements of y. To force λ to be a probability
distribution, we make yk+1 = 1, the remaining elements yi are valuations of
the variables in Θ, so that we are searching for solution to (8) such that 0 ≤

yi ≤ 1, 1 ≤ i ≤ k. To finally obtain column y we must extend a L∞-solver that
generates valuations satisfying Γ so that it also respects the linear restriction (8).
In fact this is not an expressive extension of L∞ as the McNaughton property
guarantees that (8) is equivalent to some L∞-formula on variables y1, . . . , yk [8].
In practice, we tested two ways of obtaining a joint solver for Γ and (8):

– Employ an SMT (SAT modulo theories) solver that can handle linear al-
gebraic equations such as (8) and the linear inequalities generated by the
 L∞-semantics. L∞-solvers based on SMT can be found in the literature,
see [3];

– Use a MIP (mixed integer programming) solver that encodes L∞-semantics.
Equation (8) is simply a new linear restriction to be dealt by the MIP solver.
 L∞-solvers based on MIP solvers have been proposed by [19].

In both cases, the restrictions posed by Γ -formulas and (8) are jointly handled
by the semantics of the underlying solver. Note that both MIP solving and
SMT(linear algebra) are NP-complete problems. We have thus the following
result.

Lemma 4. There are algorithmic solutions to the problem of jointly satisfying
 L∞-formulas and inequalities with common variables.

We now deal with the problem of termination. Column generation as above
guarantees that the cost is never increasing. The simplex method ensures that a
solvable problem always terminates if the costs always decrease, we are left with
the problem of guaranteeing that the objective function does not become sta-
tionary. This is guaranteed in the implementation by a column selection strategy
that respects Bland’s Rule and also by plateau escaping strategies such as Tabu
search [2, 29].

Lemma 5. There are column selection strategies that guarantee that the Algo-
rithm 4.1 always terminates.

We know that there are no column selection heuristics that guarantee that
the simplex method terminates in a polynomial number of steps. However, the
simplex method performs very well in most practical cases and its average com-
plexity is known to be polynomial [5].

By placing all the results above together we can state the correction of Al-
gorithm 4.1.

Theorem 3. Consider the output of Algorithm 4.1 with normal form input
〈Γ,Θ〉. If the algorithm succeeds with solution 〈B, λ〉, then the input problem
is satisfiable with distribution λ over the valuations which are columns of B. If
the program outputs no, then the input problem is unsatisfiable. Furthermore,
there are column selection strategies that guarantee termination.

Proof. Lemma 3 guarantees that all steps 〈B(s), λ(s)〉 is a feasible solution to
the problem. If Algorithm 4.1 terminates with success, than cost zero has been

reached, so by Theorem 2 the input problem is satisfiable. On the other hand, if
column generation fails, this fails with a positive cost, this means there are no
Γ -satisfiable columns that can reduce the cost. So, the problem in unsatisfiable.
Finally, a suitable column selection strategy by Lemma 5 guarantees termination.

Example 4. We show the steps for the solution of Example 2. Initially, we have

q =

[
0.6
0.6
0.6
1

]
, B(0) =

[
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

]
, λ(0) = (B(0))−1 · q =

[
0.6
0
0
0.4

]
, c(0) =

[
0
0
1
1

]
.

c(0) expresses that the first two columns of B(0) are Γ -satisfiable. The total cost
cost(0) = c(0)′ · λ(0) = 0.4. At this point, column y(1) is generated substituting
B(0)’s column 3 in the merge procedure:

y(1) =

[
1
0
1
1

]
, B(1) =

[
1 0 1 0
1 1 0 0
1 1 1 0
1 1 1 1

]
, λ(1) =

[
0.6
0
0
0.4

]
, c(1) =

[
0
0
0
1

]
.

cost(1) = 0.4. Again, column generation provides y(2) in place of column 1:

y(2) =

[
1
1
0
1

]
, B(2) =

[
1 0 1 0
1 1 0 0
0 1 1 0
1 1 1 1

]
, λ(2) =

[
0.3
0.3
0.3
0.1

]
, c(2) =

[
0
0
0
1

]
.

cost(2) = 0.1. Finally, column generation provides y(3) in place of column 4:

y(3) =

[
0.5
0.5
0.5
1

]
, B(3) =

[
1 0 1 0.5
1 1 0 0.5
0 1 1 0.5
1 1 1 1

]
, λ(3) =

[
0.2
0.2
0.2
0.4

]
, c(3) =

[
0
0
0
0

]
.

cost(3) = 0, so that the problem is satisfiable with solution 〈B(3), λ(3)〉. ut

5 Implementation and Results

The mere development of a solver over a handful of tests is, in our opinion, an
insufficient way to assess the quality of an implementation. In this section we
explore a qualitative behavior of solvers, called phase transition, over a large
class of randomly generated formulas.

A decision problem displays a phase transition when there is an ordering
of classes of problems that presents a transition from predominantly satisfiable
instances (answer “yes”) to predominantly unsatisfiable instances (answer “no”),
which is called a first order phase transition. Furthermore the decision problem
displays a peak in average execution time around the middle of that transition in
which fifty percent of answers “yes” and fifty percent of answers “no”, which is
called a second order phase transition, following the terminology of mechanical
statistics [7].

It is conjectured that there is a (second order) phase transition for every
NP-complete decision problem [7]. Empirical phase transition behavior are well

established for classical SAT [17] and PSAT [14], among many others. In fact, the
empirical verification of phase transition for solvers of an NP-complete problem
can be perceived as a quality test for its implementation. In the following we
present our empirical results, searching for a phase transition behavior, for L∞-
solvers and LIPSAT solver.

5.1 Phase Transition for L∞-Solvers

In a classical setting one usually employs 3-SAT format to obtain a phase tran-
sition diagram. The randomly generated formulas are clauses with three literals
each, the number of symbols n is fixed and the rate between the number n of
clauses and the rate m

n is used as the control parameter, where m is the number
of clauses. In classical 3-SAT, the shape of the curve and the phase transition
point is maintained when n is changed. Unfortunately for L∞ Logic there is no
clausal normal form. So instead we employ a set of formulas which are used
by [3] consisting of

l1 ⊕ l2 ⊕ l3 (9)

¬(l4 ⊕ l5)⊕ l6 (10)

where li are literals (negated or non-negated symbols). The generation of the
formulas is parametrized by the number n of propositional symbols and the
number m of formulas, which define the class of randomly generated formulas.
Following [3], formulas are generated as follows: 70% of formulas are of format
(9) and 30% of the format (10). Each literal is randomly chosen from the n
possible symbols with equal probability, then there is a 50% chance of being a
positive or negative literal.

Two implementations were developed using publicly available open source
software2:

– a C++-implementation using the C++ interface to the YICES SMT(LA)
solver [12];

– a C++-implementation using the C++ interface to the SCIP MIP solver [1].

For each implementation, the experiment proceed as follows: with a fixed n = 100
we varied the value of m such that the rate m

n varies from 0.2 to 8 in 0.2 steps.
For each pair 〈n,m〉 we construct a set of 100 randomly generated formulas as
described above. And for each set we compute the percentage of L∞-satisfiable
formulas and the average decision time (user time).

All the experiments in this section were run on a UNIX machine with a i7-
6900K CPU @ 3.20GHz with 16 processors. The results of the experiments using
two L∞-solvers are shown in Fig. 1. In Fig. 1a we see the results of an SMT(LA)
 L∞-solver using YICES which presents a first-order phase transition from SAT
to unSAT with a middle point occurring at rate m

n ≈ 2; however the average

2 The source code for all experiments under license GPLv3 are publicly available at
http://lipsat.sourceforge.net.

http://lipsat.sourceforge.net

(a) Based on SMT(LA) using YICES (b) Based on MIP solver using SCIP

Fig. 1: L∞-solvers performance, randomly gen. instances: n = 100, m = 20 to 780

decision time peak occurs at m
n ≈ 5, unlike what is expected. Furthermore,

the peak time for solving a L∞ problem is about 35 seconds. This unexpected
behavior may be credited to the fact that YICES converts internally all floating
point numbers to pair of integers, which impacts the efficiency of problems whose
formulation involves a lot of floating point numbers as is the case of L∞ decision.

Figure 1b presents an L∞-solver build with using MIP solver SCIP, in which
we can see a phase transition from SAT to unSAT also at m

n ≈ 2, with an
average time peak also around m

n ≈ 2, as expected. Furthermore, the peak time
is 0.35 seconds, two orders of magnitude more efficient than the YICES solver.
Observing the average time, we note an always increasing right tail, which can
be credited to the fact that MIP solvers are not implemented with a “fail early”
strategy commonly used in logic based solvers, which normally employ what is
called restriction learning strategies; furthermore, the size of the matrices used by
the MIP solver increases withm. Another possibility to explain such a behavior is
the fact that the choice of the family of formulas may be inappropriate, however
no such increasing tail was observed in the SMT based method, which reinforces
the hypothesis that this behavior is due to the MIP solver. Due to its superior
efficiency we only use the SCIP solver as an auxiliary procedure for the LIPSAT
solver described next.

5.2 Phase Transition for LIPSAT

The input for the LIPSAT solver is a normal form 〈Γ,Θ〉. We developed a C++-
implementation for Algorithm 4.1 using the C++ interface of the SoPlex linear
algebra solver which is part of the SCIP suite of optimizers. We used the L∞-
solver based on SCIP MIP.

The experiments were obtained as follows. The input L∞-formula Γ was
generated in the form we describe above, with a fixed number of symbols n and
a varying number of clauses of format (9) and (10) as described above. The
probabilistic Θ-restrictions of the form {C(yi) = qi | i ≤ i ≤ k} were generated
fixing k ≤ n and randomly choosing the probabilities qi uniformly over the
interval [0, 1].

Fig. 2: Phase transition for LIPSAT solver: k = 20, n = 100 and m = 20 to 780

The results of the experiment can be seen in Fig. 2. We clearly see a second
order phase transition with a peak average time execution that overlaps the
decreasing part of the percentage SAT curve. Note that no increasing tail is
observed, so that the “fail early” mechanism is achieved in the combination of
logic and linear algebra. The peak is near but does not coincide with the fifty
percent point of the first order phase transition which may be credited to the
increasing shape of the right tail in the L∞-solver presented in Fig. 2. Also, there
is a left shift of the phase transition point m

n ≈ 1, similar to the shift of PSAT
phase transition point with respect to SAT [16]. Overall the phase transition
format can be considered satisfactory.

6 Conclusion and the Future

We provided the theoretical basis for the development and implementation of
probabilistic reasoning over “partial truth” that respect Lukasiewicz Infinitely-
valued Logic restricts. A phase transition behavior could be empirically observed.
For the future we hope to develop better solvers for the logics employed having
the analysis of the phase transition as a qualitative guideline; and hope to employ
the mechanisms developed here to linearly approximate generic functions.

References

1. Achterberg, T.: Scip: solving constraint integer programs. Mathematical Program-
ming Computation 1(1) (2009) 1–41 See http://scip.zib.de/.

2. Bertsimas, D., Tsitsiklis, J.N.: Introduction to linear optimization. Athena Scien-
tific (1997)

3. Bofill, M., Manya, F., Vidal, A., Villaret, M.: Finding hard instances of satisfiability
in Lukasiewicz logics. In: ISMVL, IEEE (2015) 30–35

4. Boole, G.: An Investigation on the Laws of Thought. Macmillan, London (1854)
Available on project Gutemberg at http://www.gutenberg.org/etext/15114.

5. Borgward, K.H.: The Simplex Method: A Probabilistic Analysis. Algorithms and
Combinatorics 1. Springer (1986)

6. Bova, S., Flaminio, T.: The coherence of Lukasiewicz assessments is NP-complete.
International Journal of Approximate Reasoning 51(3) (2010) 294–304

7. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: 12th IJCAI, Morgan Kaufmann (1991) 331–337

8. Cignoli, R., d’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-Valued
Reasoning. Trends in Logic. Springer Netherlands (2000)

9. de Finetti, B.: Sul significato soggettivo della probabilità. Fundamenta Mathe-
maticae 17(1) (1931) 298–329

10. de Finetti, B.: La prévision: Ses lois logiques, ses sources subjectives (1937)
11. de Finetti, B.: Theory of probability: A critical introductory treatment. Translated

by Antonio Mach́ı and Adrian Smith. John Wiley & Sons (2017)
12. Dutertre, B.: Yices 2.2. In Biere, A., Bloem, R., eds.: Computer-Aided Verification

(CAV’2014). Volume 8559 of Lecture Notes in Computer Science., Springer (July
2014) 737–744

13. Eckhoff, J.: Helly, Radon, and Caratheodory type theorems. In: Handbook of
Convex Geometry. Elsevier Science Publishers (1993) 389–448

14. Finger, M., Bona, G.D.: Probabilistic satisfiability: Logic-based algorithms and
phase transition. In Walsh, T., ed.: IJCAI, IJCAI/AAAI (2011) 528–533

15. Finger, M., De Bona, G.: Probabilistic satisfiability: algorithms with the presence
and absence of a phase transition. AMAI 75(3) (2015) 351–379

16. Finger, M., De Bona, G.: Probabilistic satisfiability: algorithms with the presence
and absence of a phase transition. Annals of Mathematics and Artificial Intelligence
75(3) (2015) 351–379

17. Gent, I.P., Walsh, T.: The SAT phase transition. In: ECAI94 – Proceedings of
the Eleventh European Conference on Artificial Intelligence, John Wiley & Sons
(1994) 105–109

18. Georgakopoulos, G., Kavvadias, D., Papadimitriou, C.H.: Probabilistic satisfiabil-
ity. Journal of Complexity 4(1) (1988) 1–11

19. Hähnle, R.: Towards an efficient tableau proof procedure for multiple-valued logics.
In: 4th Workshop, CSL. Springer (1991) 248–260

20. Hansen, P., Jaumard, B.: Probabilistic satisfiability. In: Handbook of Defeasible
Reasoning and Uncertainty Management Systems. Vol.5. Springer Netherlands
(2000) 321

21. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem.
Computing 44 (1990) 279–303 10.1007/BF02241270.

22. Kavvadias, D., Papadimitriou, C.H.: A linear programming approach to reasoning
about probabilities. AMAI 1 (1990) 189–205

23. McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of
Symbolic Logic 16 (1951) 1–13

24. Mundici, D.: Advanced Lukasiewicz calculus and MV-algebras. Trends in Logic.
Springer Netherlands (2011)

25. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theo-
retical Computer Science 52(1-2) (1987) 145–153

26. Mundici, D.: A constructive proof of McNaughton’s theorem in infinite-valued
logic. The Journal of Symbolic Logic 59(2) (1994) 596–602

27. Mundici, D.: Bookmaking over infinite-valued events. International Journal of
Approximate Reasoning 43(3) (2006) 223–240

28. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28(1) (1986) 71–87
29. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and

Complexity. Dover (1998)

	Probably Half True: Probabilistic Satisfiability over Łukasiewicz Infinitely-valued Logic

