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Abstract. Earlier work showed that automatic verification of GMP’s
algorithms using Why3 exceeds the current capabilities of automatic
solvers. To complete this verification, numerous cut indications had to
be supplied by the user, slowing the project to a crawl. This paper shows
how we have extended Why3 with a framework for proofs by reflection,
with minimal impact on the trusted computing base. This framework
makes it easy to write dedicated decision procedures that make full use
of Why3’s imperative features and are formally verified. We evaluate how
much work could have been saved when verifying GMP’s algorithms, had
this framework been available. This approach opens the way to efficiently
tackling the further verification of GMP’s algorithms.
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1 Introduction

The Why3 software-verification tool3 offers an ML-like language (WhyML) that
makes it possible to write programs and to specify the functional behavior of
these programs using pre- and post-conditions, and loop invariants [7]. The tool
then turns programs and specifications into theorem statements that can be sent
to external provers, be they automated (e.g., SMT or TPTP solvers) or inter-
active (e.g., Coq, Isabelle/HOL, PVS). Once these theorems have been proved,
and assuming that Why3 and the external provers are sound, the programs are
known to satisfy their specification.

In an earlier work, we used Why3 to implement algorithms from the GNU
Multi-Precision library,4 GMP for short, to prove them correct, and to generate
a compatible C library [12]. The proofs were done using automated provers only,
mostly SMT ones. While some algorithms are extremely intricate (e.g., divi-
sion [11]), we ended up having to litter the code with many more assertions than
we initially envisioned, as exemplified on Figure 4, line 24. Seemingly trivial the-
orems were confusing solvers to no end. Indeed, they involved nonlinear integer
3 http://why3.lri.fr/
4 http://gmplib.org/
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arithmetic and large proof contexts. For some theorems (e.g., for the naive mul-
tiplication algorithm), we had to write several 100-line assertions, which defeats
the point of using automated tools rather than an interactive theorem prover.
Thus, we decided to put that experiment on hold, until we got a way to make
the proof of these theorems straightforward.

When one wants to extends a theorem prover with new capabilities (e.g.,
an inference rule dedicated to the problem at hand), one way is to “incorporate
a reflection principle, so that the user can verify within the existing theorem
proving infrastructure that the code implementing a new rule is correct, and
to add that code to the system” [9]. This article shows how we have modified
Why3 to offer computational reflection. It was especially important to make the
user process straightforward, so that reflection can be routinely used whenever
external provers get lost. As an illustration, this paper shows how we made use
of our approach to design and prove a decision procedure suitable for verifying
GMP-like algorithms.

In Section 2, we illustrate computational reflection on the correctness of
Strassen’s algorithm for matrix multiplication in Why3. While straightforward to
verify by hand, this algorithm already exceeds the capabilities of SMT solvers [5].
So we perform a reflection-based proof in a traditional way: we represent logical
propositions about matrix polynomials by inductive objects, we define functions
over these objects in the logical system, we prove some lemmas about them,
and we use these functions and lemmas to prove the correctness property of
Strassen’s algorithm.

This approach does not require any modification to Why3 or to the external
provers, but we have not yet explained how to reify logical propositions into
inductive objects that can be manipulated inside Why3’s logic. Section 3 shows
how we have extended Why3 to do so.

Traditionally, computational reflection performs proofs by evaluating some
pure terms occurring in logical propositions. Yet, Why3’s programming language
is much richer: mutable variables, arrays, exceptions, loops, and so on. Section 4.1
shows how the designer of decision procedures can benefit from the whole extent
of WhyML. This required us to add a WhyML interpreter to Why3 (Section 4.2).

While the reification component does not extend the trusted computing base
of Why3 at all, the interpreter does, albeit in a minimal way. We discuss the
soundness of our approach in Section 5.

Given the ability to write decision procedures in WhyML, to verify them
using Why3, and to execute them inside Why3 on reified logical propositions,
we have all the tools to design and use a decision procedure dedicated to veri-
fying GMP’s algorithms. Section 6 presents this procedure. While it might look
like a naive procedure for solving systems of linear equalities, the coefficients it
manipulates are not simple rationals, they are products of rationals by powers
with symbolic exponents, e.g., −5/3 ·βi+j−2. These powers occur because we are
proving the soundness of algorithms manipulating power series

∑
aiβ

i.
This work is part of Why3 and the examples presented in this article are

available at http://toccata.lri.fr/gallery/reflection.en.html.
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2 Computational reflection proofs

When designing a decision procedure by reflection, one first finds an embedding
of the propositions P of interest into the logical language of the formal system.
Let us denote pPq the resulting term, e.g., the abstract syntax tree of P . Then
one proves that, if pPq satisfies some property ϕ, then P holds. Thus, when one
wants to prove that some proposition P holds, one just has to check that ϕ(pPq)
does. If ϕ is designed so that ϕ(pPq) can be validated just by computations, then
we have a proof procedure by computational reflection. This approach has been
used in various contexts [9,8,1,3,4,5].

Let us illustrate this process on a toy example: the correctness of Strassen’s
matrix multiplication algorithm. Among other properties, one has to prove four
matrix equalities such as the following one:

A1,1B1,1 +A1,2B2,1 = M1,1,

with

M1,1 = (A1,1 +A2,2) · (B1,1 +B2,2) +A2,2 · (B2,1 −B1,1)

− (A1,1 +A1,2) ·B2,2 + (A1,2 −A2,2) · (B2,1 +B2,2).

By the group laws of matrix addition and by distributivity of matrix multi-
plication, one easily shows that the right-hand side of the equality can be turned
into the left-hand side. Unfortunately, in practice, SMT solvers (Alt-Ergo, CVC4,
Z3) and TPTP solvers (Eprover) fail to prove such a proposition. There are two
reasons. First, a solver should instantiate the above algebraic laws on the order of
one hundred times, assuming they apply them in an optimal way. Second, when
verifying programs, the proof context is usually filled with hundreds of other
instantiable theorems, which will delay applying the algebraic laws. As a conse-
quence, unless an automated prover implements a dedicated decision procedure
for this kind of property, there is no way its proof can be found.

Let us see how to supplement the lack of such a dedicated decision procedure.
While this paper presents it in the context of Why3, the exact same process could
be followed in any formal system with some computational capabilities.

2.1 Embedding terms

The first step is to embed M1,1 into the logical language of Why3. We define
the following inductive type t to represent its abstract syntax tree:

type t = Var int | Add t t | Mul t t | Sub t t | Ext r t

Matrices appearing at the leaves of the expression (e.g., A2,1) are assigned a
unique integer identifier and are represented using the Var constructor. The sum,
product, and differences of two matrices, are represented using the constructors
Add, Mul, and Sub. Finally, the Ext constructor represents the external product
(by a value of type r), which is not needed in the case of Strassen’s algorithm.
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type vars = int → a
let rec function interp (x: t) (y: vars) : a =

match x with
| Var n → y n
| Add x1 x2 → aplus (interp x1 y) (interp x2 y)
| Mul x1 x2 → atimes (interp x1 y) (interp x2 y)
| Sub x1 x2 → asub (interp x1 y) (interp x2 y)
| Ext r x → ($) r (interp x y)
end

Fig. 1. Interpreting the abstract syntax tree of a polynomial

Note that the function M 7→ pMq cannot be expressed in the logical lan-
guage, but its inverse can. We thus define a function that maps a term of type t
into a matrix, as shown in Figure 1. That definition causes Why3 to create a re-
cursive function interp inside the logical system, since its termination is visibly
guaranteed by the structural decrease of its argument x.

When aplus, resp. atimes, is instantiated using matrix sum, resp. product,
one can prove that the Why3 term

interp (Mul (Add (Var 0) (Var 1)) (Var 7)) y

is equal to (A1,1 + A1,2) · B2,2, assuming that y maps 0 to A1,1, 1 to A1,2,
and 7 to B2,2. This proof can be done by unfolding the definition of interp, by
reducing the match with constructs, and by substituting the applications of y
by the corresponding results. Why3 provides a small rewriting engine that is
powerful enough for such a proof, but one could also use an external prover.

2.2 Normalizing terms

Let us suppose that we now have two concrete expressions x1 and x2 of type t
and a single map y of type vars and that we want to prove the following equality:

goal g: interp x1 y = interp x2 y

The actual value of y does not matter, but the facts that aplus is a group
operation and that amult is distributive do. In other words, we want to see x1
and x2 as non-commutative polynomials and we want to prove that they have
the same monomials with the same coefficients. To do so, let us turn them into
weighted lists of monomials. Figure 2 shows an excerpt of the code. For example,
the term (A1,1 +A1,2) ·B2,2 gets turned into the list

Cons (M 1 (Cons 0 (Cons 7 Nil))) (Cons (M 1 (Cons 1 (Cons 7 Nil))) Nil)

Note that we have introduced a new interpretation function interp’ and we
have stated the postcondition of conv accordingly. Why3 requires us to prove
that this postcondition holds. The proof is straightforward, even in the multi-
plication case. Once done, we obtain the following lemma in the context:

lemma conv_def: forall x y. interp x y = interp’ (conv x) y
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type m = M int (list int)
type t’ = list m

let rec function interp’ (x: t’) (y: vars) : a =
match x with
| Nil → azero
| Cons (M r m) l → aplus (($) r (mon m y)) (interp’ l y)
end

let rec function conv (x:t) : t’
ensures { forall y. interp x y = interp’ result y }

= match x with
| Var v → Cons (M rone (Cons v Nil)) Nil
| Add x1 x2 → (conv x1) ++ (conv x2)
| Mul x1 x2 → ...
end

Fig. 2. Converting a polynomial to a list of monomials

We define one last function, norm, which sorts a weighted list of monomials
by insertion using a lexicographic order, merging contiguous monomials along
the way. Its postcondition, once proved, leads to

lemma norm_def: forall x y. interp’ x y = interp’ (norm x) y

Note that we do not even need to prove that norm actually sorts the input list
or that it merges monomials, so the proof is again trivial. If there is some bug
in norm, it only endangers the completeness of the approach, not its soundness.
For example, defining norm as the identity function would ultimately be fine but
pointless.

By composing norm and conv and equality, we get our decision procedure ϕ
dedicated to verifying Strassen’s algorithm. Indeed, to prove the goal g above,
we just need to prove the following intermediate lemma:

lemma g_aux: norm (conv x1) = norm (conv x2)

As with interp before, norm and conv are logic functions defined by in-
duction on their argument, so there is no difficulty in proving g_aux using the
rewriting engine of Why3 or an external automated prover.

2.3 Advantages

There are several advantages to this approach. The most important one is that
the user can easily design a decision procedure dedicated to the problem at hand.
Indeed, the inductive type for representing expressions does not have to handle
the full extent of the language, but can focus on the constructions that mat-
ter (e.g., addition). Moreover, the soundness of the system is not endangered,
since the user has to prove the correctness of the procedure (e.g., the lemmas
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conv_def and norm_def). Finally, since the procedure is ad hoc, performances
in the general case do not matter much, so one can write it so that both the
code and the proof are straightforward. For instance, in the example above, the
sorting algorithm has quadratic complexity and one only has to prove that the
interpretation of the list is left unchanged. Thus, SMT solvers quickly discharge
all the verification conditions that Why3 generates to guarantee that the imple-
mentation of the decision procedure satisfies its specification.

Even if this normalization procedure is dedicated to proving Strassen’s algo-
rithm, we took advantage of Why3’s module system to make it generic: coeffi-
cients are in an arbitrary commutative ring and variables are in a (noncommu-
tative) ring. Both rings are potentially different, as in the case of matrices. The
genericity of the presented decision procedure does not extend to supporting
variables in a commutative ring, but it is just a matter of duplicating the code
of the decision procedure to modify the ordering relation, which we did.

A very similar reflection-based tactic is used by the Coq proof assistant to
formally verify equalities in a commutative ring or semi-ring [8]. This tactic was
implemented, part as an OCaml plugin for Coq, part in the meta-language Ltac
of Coq. Rather than lists of monomials, that work uses Horner’s representation
of polynomials: p0 + x1 · (p1 + x1 · (p2 + x1 · · ·)) with (pi)i being polynomials
where variable x1 does not occur.

3 Reification

We have not yet explained how one obtains the inductive objects used to instan-
tiate the decision procedure. Without modifying Why3, it is up to the user to
provide them. Even for an algorithm as simple to verify as Strassen’s, the user
might forfeit before finishing to translate all the terms of the algorithm.

3.1 Possible approaches

To circumvent this issue, the original Why3 proof of Strassen’s algorithm uses
a clever approach [5]. The type of matrices has been modified so that a matrix
contains not only the values of its cells but also the normalized list of monomials
representing all the operations performed to obtain the matrix. In other words,
the decision procedure has been split and embedded into all the matrix opera-
tions and it is executed symbolically along them. The lists of monomials (and
the operations to build them) are declared ghost, so they do not interfere with
actual matrix computations and can be erased from the final algorithm, which
is therefore still fundamentally the same. Nonetheless, this approach forces the
user to instrument the matrix operations, and while these modifications are suit-
able to prove Strassen’s algorithm, they might be useless when verifying another
matrix algorithm, if not detrimental by polluting the proof context with all the
symbolic computations.

Thus, for a reflection-based decision procedure to be useful, we have to pro-
vide some ways to automate the reification process, that is, the conversion of
expressions into their inductive representation.
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As mentioned above, one difficulty lies in defining pq, which is an inverse
function of interp. This inverse is usually written using the meta-language of
a formal system to parse the term and to produce the corresponding inductive
object. Since Why3 can load plugins written in OCaml, one could certainly use
OCaml as a meta-language for Why3. This unfortunately requires the user to
learn the inner workings of Why3.

Another possibility would be to use WhyML as a meta-language by providing
some primitives to visit the abstract syntax trees of expressions and by making
Why3 able to interpret it. As is the case for other formal systems [13,6], any
WhyML function using such primitives would no longer be meaningful for the
remainder of the logical system, so as to avoid inconsistencies. The user would
thus no longer need to leave the confines of WhyML, but this is still not com-
pletely satisfactory. Indeed, as written before, pq is the inverse of interp, so any
explicit definition seems superfluous. Instead, we could have some OCaml code,
e.g., a Why3 plugin, that inverts interp on the fly.

3.2 Inversion of the interpretation function

Consider the following function, which is just a variant of the decision procedure
for Strassen’s algorithm:

let norm_f (x1 x2: t) : bool
ensures { forall y:vars. result = True → interp x1 y = interp x2 y }

= match norm (conv (Sub x1 x2)) with
| Nil → True (* the difference evaluates to the empty polynomial *)
| _ → False
end

Whenever the user wants to use this decision procedure to prove a goal, we
would like Why3 to automatically find x1, x2, and y, so that the right-hand
side of the post-condition matches the goal. This is done by a straightforward
recursive walk of the goal. Let us illustrate this walk with foo a + b = c. This
goal is an equality, and so is the right-hand side of the postcondition of norm_f, so
Why3 proceeds recursively on each side of the equality. The left-hand side starts
with an addition, while there is an application of interp in the postcondition,
so Why3 assumes that interp is an interpretation function.

This function starts with a pattern matching on its first argument, so Why3
looks at all of the branches. The second branch starts with an addition (i.e.,
aplus, which we assume was instantiated with +). So Why3 registers that x1
should start with the constructor Add. And so on, recursively. Eventually, Why3
has to match foo a against a branch. None of them matches, but the one for the
Var constructor returns y n, with y a variable of type arrow. So Why3 selects
a fresh integer for n, e.g., 0, and remembers that it should choose y so that it
maps 0 to foo a.
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3.3 Extensions

The previous process works fine when a goal has to be proved in isolation, irre-
spective of the proof context. To remove this limitation, Why3 also recognizes
the presence of an implication inside a branch of an interpretation function. In
that case, it tries to match a hypothesis of the proof context against the left-hand
side of the implication, and it does so recursively until all the hypotheses of the
context have been tried. The following functions illustrate this behavior. They
serve as interpretation functions of a decision procedure that needs to consider
all the equalities from the proof context. In this example taken from the verifi-
cation of GMP’s algorithms, the fact that the goal also has to be an equality is
a coincidence.

function interp_eq (g:equality) (y:vars) (z:C.cvars) : bool
= match g with (g1, g2) → interp g1 y z = interp g2 y z end

function interp_ctx (l:list equality) (g:equality) (y:vars) (z:C.cvars)
: bool

= match l with
| Nil → interp_eq g y z (* goal *)
| Cons h t → (interp_eq h y z) → (interp_ctx t g y z)
end

Notice that, since Why3’s logical system does not permit functions returning
logical propositions, we have defined these interpretation functions as returning
Boolean values. But this has no impact on the way reification proceeds.

While the decision procedures presented in this paper ignore quantified for-
mulas, our reification transformation does support them. For example, the ex-
cerpt below would handle universal quantifiers in a nameless fashion, using neg-
ative indices to store the depth of the quantifier:

function interp_fmla (f:fmla) (l:int) (b:vars) : bool
= match f with

| Forall f’ → forall v. interp_fmla f’ (l-1) b[l ← v]
| ...
end

A current limitation of our approach is the purely syntactic nature of the reifi-
cation step. For example, for an uninterpreted function foo, the terms foo (a+b)
and foo (b+a) are mapped to distinct variables, even though they are provably
equal. This requires a significant amount of extra work from the user. However,
we are optimistic that this can be mitigated either in the reification step itself
or by composition with another decision procedure (as shown in Section 6.3).

4 Effectful decision procedures

Computations in the reflection-based proof from Section 2 are all done in logic
functions, which are unfolded by automated provers or Why3’s rewriting engine.
A limitation of this approach is that Why3’s language of logic functions is not
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very expressive, as they must be side effect-free and their termination must be
guaranteed by a structurally decreasing argument.

In this section, we show how we can instead write decision procedures as
regular WhyML programs, making full use of the language’s imperative features
such as loops, references, arrays, and exceptions. These decision procedures are
proved correct using Why3 and some automated theorem provers. Their contract
can then be instantiated by reification of the goal and context, and used as a
cut indication.

4.1 Running example: systems of linear equalities

As an example, let us consider a decision procedure for linear equation systems
in an arbitrary field (code excerpts in Figure 3). Given some assumed-valid linear
equalities in the context, the procedure attempts to prove a linear equality by
showing that it is a linear combination of the context.

This is done by representing the context and goal by a matrix and performing
a Gaussian elimination (function gauss_jordan). In case of success, we obtain a
vector of coefficients and we check whether the corresponding linear combination
of the context is equal to the goal (function check_combination). Otherwise,
the procedure returns False and proves nothing, since its postcondition has
result = True as premise.

As is done in Coq with the tactics lia and lra [1], this is a proof by certificate,
since we check if the linear combination of the context returned by gauss_jordan
matches the goal. There is no need to prove the Gaussian elimination algorithm
itself, nor to define a semantics for the matrix passed to it as a parameter. In
fact, we do not prove anything about the content of any matrix in the program.
This makes the proof of the decision procedure very easy in relation to its length
and intricacy.

Let us now examine the contract of the decision procedure. The postcondi-
tion states that the goal holds if the procedure returns True, for any valuations y
and z of the variables such that the equalities in the context hold. The valid_ctx
and valid_eq preconditions state that the integers used as variable identifiers
(second argument of the Term constructor) in the context and goal are all non-
negative. This is needed to prove the safety of array accesses. The nature of
the reification procedure ensures that these preconditions will always be true in
practice, but as reification is not trusted, the user has to verify them explicitly;
SMT solvers do this very easily. Finally, the raises clause expresses that an
exception may escape the procedure (typically an arithmetic error, as we allow
the field operations to be partial). In that case, nothing is proven.

Notice that the decision procedure is independent from Why3 (apart from
the fact that it is formally verified), in the sense that it does not contain meta-
instructions for reification or anything linked to Why3 internals. One could easily
imagine finding the same kind of code in an automatic prover.
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clone LinearEquationsCoeffs as C with type t = coeff

type expr = Term coeff int | Add expr expr | Cst coeff
type equality = (expr, expr)

let linear_decision (l: list equality) (g: equality) : bool
requires { valid_ctx l }
requires { valid_eq g }
ensures { forall y z. result = True → interp_ctx l g y z }
raises { C.Unknown → true }

= ...
fill_ctx l 0;
let (ex, d) = norm_eq g in
fill_goal ex;
let ab = m_append a b in
let cd = v_append v d in
match gauss_jordan (m_append (transpose ab) cd) with

| Some r → check_combination l g (to_list r 0 ll)
| None → False

end

Fig. 3. Decision procedure for linear equation systems

4.2 Interpreter

Due to their side effects, functions from WhyML programs only have abstract
declarations in the logical world (as opposed to the concrete logic functions used
in Section 2). Therefore, they cannot be unfolded by automatic provers or by
Why3’s rewriting engine. In order to compute the results of decision procedures
such as the previous one, we have added an interpreter to Why3. It operates on
an ML-like intermediate language that corresponds to WhyML programs from
which logic terms, assertions, and ghost code, were erased, thereby assuming
that the program was proved beforehand and that the preconditions are met.
This intermediate code is produced by the existing extraction mechanism, which
is used to produce OCaml and C programs from proved WhyML programs.

Our interpreter provides built-in implementations for some axiomatized parts
of the Why3 standard library, such as integer arithmetic and arrays. For perfor-
mances purposes, we also chose to implement references as a builtin rather than
interpret their WhyML definition (records with a single mutable field), in order
to reduce the number of indirections. To ease debugging decision procedures, we
have added to Why3’s standard library a print function of type ’a → unit
and without effects. It is interpreted as a polymorphic printf function.

There have been few works on computational reflections using effectful deci-
sion procedures. One may cite Claret et al [4]. They use a monadic encoding of
effectful computations in Coq (e.g., non-termination). Monadic decision proce-
dures are turned into impure programs that are executed outside of Coq. The
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result of these external computations is used as a “prophecy” to simulate the
execution of the decision procedure inside of Coq. Since we are working with
Why3, which natively supports impure computations, we sidestep the need for
a heavyweight simulation mechanism.

5 Soundness

The implementation of our framework requires two additions to Why3: a reifica-
tion transformation and an interpreter of WhyML programs. Let us discuss the
soundness of our approach.

First, the rather large and intricate code needed for reification is not part
of the trusted computing base of Why3. Indeed, the reification merely guesses
values for all the relevant variables and asks Why3 to instantiate the contract
of the decision procedure with them. Assuming the user has proved the sound-
ness of the decision procedure, this instantiated proposition holds, whether the
reification algorithm is correct or not. A reification failure would either prevent
a well-typed instantiation of the post-condition, or the resulting cut would be
useless for proving the current goal.

Contrarily to the reification code, our interpreter is part of the trusted com-
puting base. Fortunately, it is very simple, since it only manipulates concrete
values. There is no need for partial evaluation nor symbolic execution nor poly-
morphic equality, which makes this new interpreter much simpler than the ex-
isting rewriting engine. Another reason for its simplicity is that the intermediate
language has relatively few constructions, since program transformations per-
formed by the existing extraction mechanism eliminate potentially confusing
behaviors from the surface language such as parallel assignation.

6 Application: GMP

In this section, we briefly present our verified multiprecision library [12] and show
how we eliminated a large number of assertions by implementing a dedicated
reflection-based decision procedure.

6.1 A GMP function

In GMP, natural integers are represented as little-endian buffers of unsigned
machine integers called limbs. We set a radix β (typically 264). Any natural
number N has a unique radix-β decomposition

∑n−1
k=0 akβ

k, which is represented
as the buffer a0a1 . . . an−1.

In the low-level functions, there is almost no memory management; operands
are specified as pointers to their least significant limb and a size of type int32.
Given such a pointer a and a size n, provided the pointer is valid over the size n,
we denote

value a n = a0 . . . an−1 =

n−1∑
k=0

akβ
k.
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1 (** [add_limbs r x y sz] adds [x[0..sz-1]] and [y[0..sz-1]]
2 and writes the result in [r].
3 Returns the carry, either [0] or [1].
4 Corresponds to the function [mpn_add_n]. *)
5

6 let add_limbs (r x y: ptr limb) (sz: int32) : limb
7 ensures { 0 ≤ result ≤ 1 }
8 ensures { value r sz + (power radix sz) * result =
9 value x sz + value y sz }

10 =
11 let limb_zero = Limb.of_int 0 in
12 let i = ref (Int32.of_int 0) in
13 let lx = ref limb_zero in
14 let ly = ref limb_zero in
15 let c = ref limb_zero in
16 while Int32.(<) !i sz do
17 invariant { value r !i + (power radix !i) * !c =
18 value x !i + value y !i }
19 lx := get_ofs x !i;
20 ly := get_ofs y !i;
21 let res, carry = add_with_carry !lx !ly !c in
22 set_ofs r !i res;
23 c := carry;
24 assert { value r (!i+1) + (power radix (!i+1)) * !c
25 = value x (!i+1) + value y (!i+1)
26 by value r (!i+1) + (power radix (!i+1)) * !c
27 = value r !i + (power radix !i) * res
28 + (power radix !i) * c
29 = ... (* 10+ subgoals *) };
30 i := Int32.(+) !i (Int32.of_int 1);
31 done;
32 !c

Fig. 4. Addition of two integers

As an example, Figure 4 shows the function that adds two natural integers of
identical limb count. Part of the specification and most invariants and assertions
have been omitted for readability. The algorithm is the schoolbook addition:
starting from the least significant limb, the input numbers are added limb by
limb, keeping track of the carry.

Unfortunately, even such a simple algorithm somewhat stumps the SMT
solvers. In order to prove the loop invariant, we needed the assertion at line 24.
Its proof consists in a sequence of about ten rather simple steps (rewrite an
equality in the context, use distributivity, etc.) but the large search space pre-
vents the automatic provers from succeeding. Therefore, we had to provide many
cut indications by hand using the by construct.
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Yet, with a judicious choice of coefficients, this goal (and many others in
the proofs of our library) can be seen as a linear combination of the context.
Therefore, we should be able to use the decision procedure from Section 4 to
prove the assertion in one go.

6.2 Coefficients

The following is a simplified version of the context and goal obtained for the
assertion of the main loop of add_limbs (Figure 4, line 24). Variables r1 and c1
denote the values of r and c at the start of the loop (before the modifications
that occur at lines 22 and 23).

axiom H: value r1 i + (power radix i) * c1 = value x i + value y i
axiom H1: res + radix * c = lx + ly + c1
axiom H2: value r i = value r1 i
axiom H3: value x (i+1) = value x i + (power radix i) * lx
axiom H4: value y (i+1) = value y i + (power radix i) * ly
axiom H5: value r (i+1) = value r i + (power radix i) * res
goal g: value r (i+1) + power radix (i+1) * c

= value x (i+1) + value y (i+1)

Notice that the linear combination H5− H4− H3+ H2+ βi · H1+ H simplifies
to an equality equivalent to g. In order to prove this, our decision procedure has
to include powers of β (radix in the WhyML code) in its coefficients, and to
support symbolic exponents (as i is a variable).

More precisely, the coefficients of our decision procedure are the product of
a rational number and a (symbolic) power of β. Figure 5 is an excerpt of the
WhyML implementation of the coefficients. The decision procedure of Figure 3
is instantiated with type coeff = t.

One can define addition, multiplication, and multiplicative inverse over these
coefficients. Addition is partial, since one may only add two coefficients with
equal exponents. If this is not the case, the addition raises an exception, which is
accounted for in the specification of the decision procedure (exception C.Unknown
in Figure 3). Note that exponents do not have to be structurally equal, only to
have equal interp_exp interpretations for all values of y, which can be auto-
matically proved within the decision procedure.

6.3 Modular decision procedures

The coefficients above are expressive enough to prove assertions such as the
one in Figure 4. However, notice that their interpretation (function interp in
Figure 5) is expressed in terms of real numbers (this is needed because the
Gaussian elimination algorithm used in the decision procedure needs to compute
the multiplicative inverse of some coefficients), while the context and goal consist
in equalities over integers. Moreover, the inductive type for expressions that
is used in the decision procedure (type expr in Figure 3) is quite restrictive,
which avoids repetitions in the code of the decision procedure. However, this is
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type exp = Lit int | Var int | Plus exp exp | Minus exp | Sub exp exp
type rat = (int, int)
type t = (rat, exp)

function qinterp (q:rat) : real
= match q with (n,d) → from_int n /. from_int d end

function interp_exp (e:exp) (y:vars) : int
= match e with

| Lit n → n
| Var v → y v
| Plus e1 e2 → interp_exp e1 y + interp_exp e2 y
| Sub e1 e2 → interp_exp e1 y - interp_exp e2 y
| Minus e’ → - (interp_exp e’ y)
end

function interp (t:t) (y:vars) : real
= match t with

(q,e) → qinterp q *. pow radix (from_int (interp_exp e y))
end

Fig. 5. Definition of the coefficients

problematic for the user, since a term such as 2 * 3 * x cannot be reified by
inversion of interp.

These constraints can be lifted thanks to an approach similar to the conv
function in Section 2. We compose the decision procedure linear_decision with
a function that converts integer-valued coefficients to real-valued coefficients, and
a function that converts from a more expressive expression type to the expr type
(code excerpts in Figure 6).

The conversion procedure from integer-valued to real-valued coefficients is
only sound when the exponents of β are nonnegative. This is always the case for
GMP algorithms. Due to the symbolic exponents, it is not yet possible to auto-
matically prove this property within the decision procedure, so we instead add
it as an extra precondition (the pos_* predicates in mp_decision). In practice,
SMT solvers prove it easily.

While the final decision procedure is specialized for GMP goals, almost all
the reasoning is done in the generic linear decision procedure linear_decision,
which we did not modify at all. We expect that, for other use cases than GMP,
users will also be able to develop their own interpretation and conversion layers
and reuse the primary linear decision procedure as is.

7 Conclusion

This paper presents two contributions. First, we have developed a framework for
proofs by reflection that uses effectful WhyML programs as decision procedures.
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let decision (l:list equality’) (g:equality’) : bool
requires { valid_ctx’ l ∧ valid_eq’ g }
ensures { forall y z. result = True → interp_ctx’ l g y z }
raises { Unknown → true }

= let sl, sg = simp_ctx l g in
linear_decision sl sg

let mp_decision (l: list equality’’) (g: equality’’) : bool
requires { valid_ctx’’ l ∧ valid_eq’’ g }
ensures { forall y z. result = True → pos_ctx’’ l z → pos_eq’’ g z

→ interp_ctx’’ l g y z }
raises { Unknown → true }

= decision (m_ctx l) (m_eq g)

Fig. 6. Composition of decision procedures

Second, we have implemented and verified a procedure for automatically solving
systems of linear equalities with symbolic coefficients. We have used this decision
procedure to prove many goals throughout our formalization of GMP algorithms.

As a point of comparison, we have revisited all our existing proofs of addition,
subtraction, and multiplication algorithms, which previously required numerous
user-supplied assertions. The decision procedure was able to discharge all the
large assertions (in the vein of Figure 4, line 24). This section of our library
was previously about 1660 lines long. The 660 lines of program code were obvi-
ously left unchanged, but the 1000 lines of specifications and proofs were halved.
Moreover, a large part of the remaining 500 lines consists in function contracts
and loop invariants, which are essentially incompressible.

The hardest goal we have successfully used our decision procedure on (an
assertion in the proof of the generic-case long division) involves Gaussian elimi-
nation on a matrix of size about 150× 90, and it terminates in about 3 seconds,
which is acceptable from a user-experience standpoint. Should larger matrices
become problematic, one option to improve performance would be, instead of
using a WhyML interpreter, to extract the decision procedure to OCaml and
execute the resulting binary.

Note that while our decision procedure only deals with linear equation sys-
tems, we have successfully used it to prove goals in the proofs of multiplication,
division, and logical shifts that, at first glance, are completely nonlinear. In these
cases, we had to supply one or two cut indications that took care of the nonlinear
part of the reasoning, but this is very acceptable considering that many of these
goals previously required more than fifty user-supplied cut indications each. We
are optimistic that this new tool will allow us to verify new GMP algorithms
much more efficiently than we used to.

The approach presented in this article is not limited to Why3 in principle.
All that is required to develop a similar framework is the capability to specify
and prove the correctness of decision procedures, and the capability to execute
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verified programs. As such, it would likely not take much work to adapt our
framework to verification platforms such as Leon [2] and Dafny [10]. For example,
Leon is already able to compile ground terms to Java bytecode and execute them.
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