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Abstract. We present Cubicle-W, a new version of the Cubicle model
checker to verify parameterized systems under weak memory models.
Its main originality is to implement a backward reachability algorithm
modulo weak memory reasoning using SMT. Our experiments show that
Cubicle-W is expressive and efficient enough to automatically prove
safety of concurrent algorithms, for an arbitrary number of processes,
ranging from mutual exclusion to synchronization barriers.
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1 Introduction

Concurrent algorithms are usually designed under the sequential consistency
(SC) memory model [20] which enforces a global-time linear ordering of (read or
write) accesses to shared memories. However, modern multiprocessor architec-
tures do not follow this SC semantics. Instead, they implement several optimiza-
tions which lead to relaxed consistency models on shared memory where read
and write operations may be reordered. For instance, in x86-TSO [21, 22] writes
can be delayed after reads due to a store buffering mechanism. Other relaxed
models (PowerPC [6], ARM) allow even more types of reorderings.

The new behaviors induced by these models may make out-of-the-shelf algo-
rithms incorrect for subtle reasons mixing interleaving and reordering of events.
In this context, finding bugs or proving the correctness of concurrent algorithms
is very challenging. The challenge is even more difficult if we consider that most
algorithms are parameterized, that is designed to be run on architectures con-
taining an arbitrary (large) number of processors.

One of the most efficient technique for verifying concurrent systems is model
checking. While this technique has been used to verify parameterized algo-
rithms [12, 5, 4, 16, 9, 2] and systems under some relaxed memory assumptions [7,
11, 10, 3, 2], hardly any state-of-the-art model checker support both parameter-
ized verification and weak memory models [2].
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In this paper, we present Cubicle-W [1], the new version of the Cubicle [13–
15] model checker for verifying safety properties of parameterized array-based
transition systems on weak memory. Cubicle-W is a conservative extension which
allows the user to manipulate both SC and weak variables. Its relaxed consistency
model is similar to x86-TSO : each process has a FIFO buffer of pending store
operations whose side effect is to delay the outcome of its memory writes to all
processes.

Like Cubicle, Cubicle-W is based on the MCMT framework of Ghilardi and
Ranise [17]. Its core extends the SMT-based backward reachability procedure
with a new pre-image computation which takes into account the delays between
write and read operations. In order to consider only coherent read/write pairs,
Cubicle-W relies on a buffer-free memory model inspired by the logical frame-
work of [8] which is implemented as a new theory in its SMT solver. Cubicle-W is
an open-source software freely available at http://cubicle.lri.fr/cubiclew.

2 Tool Presentation

The syntax of Cubicle-W extends Cubicle’s with new constructs for manipulating
weak memories. The reader can refer to [13] for the description of Cubicle’s input
language.

Variable and array declarations can now be prefixed by the keyword weak for
defining weak memories.

weak var X : int
weak array A[proc] : bool

Transitions in Cubicle-W have the same syntactic guard/action form as in
Cubicle and they are also supposed to be executed atomically. The new feature is
that they must now have at least one parameter which represents the process that
performs the operations. This parameter is identified using the [.] notation. For
instance, in the following example, the parameter [i] of transition t1 represents
the process performing all read/write operations on X, A[i] and A[j] when t1
is triggered.

transition t1 ([i] j)
requires { X = 42 && A[i] = False }
{ A[j] := False }

Even if there is no use of parameter [i] in transitions’ guards and actions, this
parameter is still mandatory, as in the transition t2 below, to indicate which
process performs the operations.

transition t2 ([i]) { X := 42 }

Note that, as Cubicle-W’s transitions are atomic, having several processes per-
forming reads or writes operations in the same transition would require an un-
realistic powerful synchronization mechanism between processes.



The main aspect of our relaxed memory semantics is that, from a global
viewpoint, the effect of a write operation on a weak memory is not immediately
visible to all processes. It is only locally visible to the process that performs it.
For instance, if some process i executes the transition t2 above, then X = 42
is true for i after the transition (as the effect of the assignment is immediately
locally visible), while all other processes can still read a different value for X.

To enforce the global visibility of a write operation, one has to use a memory
barrier. In Cubicle-W, barriers are provided as a new built-in predicate fence().
When used in the guard of a transition, fence is true only when the FIFO buffer
of the parameter [i] of the transition is empty. For instance, if a process executes
t2 then the following transition t3:

transition t3 ([i]) requires { fence() }{ ... }

the fence predicate in t3’s guard ensures that the effect of all previous assign-
ments done by i are visible to all processes after t3. Note that fence is not an
action: it does not force buffers to be flushed on memory, but just waits for a
buffer to be empty. As a consequence, it can only be used in a guard.

Implicit memory barriers are also activated when a transition contains both
a read and a write to weak variables (not necessarily the same). For instance,
the execution of the following transition t4 guarantees that the buffer of process
i is empty before and after t4.

transition t4 ([i])
requires { A[i] = False }
{ X := 1 }

Because there is no unique view of the contents of weak variables, one can
not talk about the value of X, but rather the value of X from the point of view of
a process i, denoted i@X in Cubicle-W. This notation is used when describing
unsafe states. For instance, in the following formula, a state is defined as unsafe
when there exist two (distinct) processes i and j reading respectively 42 and 0
in the weak variable X:

unsafe (i j) { i@X = 42 && j@X = 0 }

This notation is not used for describing initial states as Cubicle-W implicitly
assumes that all processes have the same view of each weak variable in those
states. For instance, the following formula defines initial states where, for all
processes, X equals 0 and all cells of array A contain False.

init (i) { X = 0 && A[i] = False }

Finally, it is important to note that non weak arrays are restricted to be used
only locally by processes: given a non weak array T, only i can read or write to
T[i].



3 Backward Reachability Modulo Weak Memory

The core of Cubicle-W is an extension of Cubicle’s symbolic backward reacha-
bility algorithm [13, 14]. We first briefly recall how the original Cubicle works,
then we give details about our new algorithm.

States in Cubicle are represented by cubes, i.e., formulas of the form ∃ī.(∆∧
F ), where ī is a set of process variables, ∆ is the conjunction of all disequations
between the variables in ī and F is a conjunction of literals. Each literal in F is a
comparison (=, 6=, <, ≤) between two terms. A term can be a constant (integer,
boolean, real, constructor), a process variable (i), a variable (X) or an array
access (A[i], where i is a process variable). All process variables in a state are
implicitly existentially quantified. Initial states are represented by a universally
quantified formula I of the form ∀ī.(∆ ∧ F ), where ∆ and F are as described
above.

The core of Cubicle is a symbolic backward reachability loop that maintains
two collections of states: Q contains the states to visit (it is initialized with
the states declared as unsafe), and V is filled with the visited states (initially
empty). Each iteration of the loop performs the following operations:

1. (pop) retrieve and remove a formula ϕ from Q
2. (safety test) check the satisfiability of ϕ ∧ I, i.e. determine if the states

described by ϕ intersect with the initial states I. If so, the system is declared
as unsafe

3. (fixpoint test) check if ϕ |= V is valid, i.e. determine if the states described
by ϕ have already been visited. If so, discard ϕ and go back to 1

4. (pre-image computation) compute the pre-image pre(ϕ, t) of ϕ for all in-
stances of transitions t, i.e. determine the set of states that can reach ϕ in
one step by applying t with the processes identifiers #1, . . . , #n as parame-
ters, add these states to Q and add ϕ to V.

If Q is empty at step 1, then all the states space has been explored and the
system is declared safe. Note that the (non-trivial) fixpoint and safety tests are
discharged to an embedded SMT solver.

Cubicle-W uses the same procedure but some operations have been extended
to reason modulo an axiomatic description of our weak memory model. This
axiomatization uses the notion of events to describe weak memory accesses and
a global-happens-before (ghb) relation defined as a partial order relation over
these events. This relation is used to determine if an execution is valid.

Our logic is extended with new literals to represent read and write operations
on weak memories. We assume given a (countable) set of events E . A literal of
the form e:RdX(i) denotes a read access on variable X by a process i labeled
with an event identifier e ∈ E . Similarly, literals of the form e:WrX(i) represent
write accesses. The value returned by a read (resp. assigned by a write) is given
by the term val(e), where e is the event identifier associated to the operation.
Operations on weak arrays are represented by literals of the form e:RdA(i, j) and
e:WrA(i, j), which represent an access by a process i to the cell j of an array A.
Last, there is also literals of the form e:fence(i) which indicate that a process



i has a memory barrier on the event e, where e is an event identifier associated
to a read by the same process.

The reachability loop of Cubicle-W implements a new pre-image computa-
tion. At step 4, pre(ϕ, t) is modified so that read and write operations from t give
rise to Rd and Wr literals labeled with fresh event identifiers. These new events
are ordered w.r.t the older ones in the ghb relation expressed by predicates of
the form ghb(e1, e2), indicating that event e1 is ghb-before (i.e., occurs before)
event e2. The ghb-ordering of events is built w.r.t. the following rules:

• New read events are ghb-before old read and write events from the same
process.
• New write events are ghb-before old write events from the same process,

however they are ghb-before old reads events from the same process only if
there is a fence on these reads.

• New write events are ghb-before all the old write events to the same variable.
• New read events are ghb-before all the old write events to the same variable.

Finally, when a memory fence is encountered, a literal e:fence(i) is added on all
old reads events e which belong to the process i executing the transition.

The treatment of write events is also specific when we have to consider the
delays introduced by store buffers: when a new write event e is produced, all
possible combinations of e with older compatible reads are considered (unlike in
SC), as a write operationmay or may not satisfy subsequent reads. By compatible
read, we mean a read on the same variable or array cell as the write, though we
may also consider the constant values associated to these events in order to
obtain a more accurate set of compatible reads. The connection between a write
and an older read obeys the following rules:

• When the write event satisfies an old read event from a different process, the
write is ghb-before the read.
• When the write event does not satisfy an old read event from a different

process, the read is ghb-before the write.
• When the write and the read events belong to the same process, none of

them is considered ghb-before the other (unless there is a fence on the read
event).

In order to show how our reachability procedure works, we consider the sim-
ple parameterized mutual exclusion algorithm and the exploration graph given
below. Cubicle-W starts with the unsafe formula in node 1. Then, each node
represents the result of a pre-image computation by an instance of a transition
(denoted by the label of the edge). Remark that formulas in the graph’s nodes
are implicitly existentially quantified and that a process identifier i is written #i.



type loc = Idle | Want | Crit

weak array X[proc] : bool
array PC[proc] : loc

init (i) {PC[i] = Idle && X[i] = False}

unsafe (i j) {PC[i] = Crit && PC[j] = Crit}

transition t_req ([i])
requires { PC[i] = Idle }
{ X[i] := True ; PC[i] := Want }

transition t_enter ([i])
requires { PC[i] = Want && fence() &&

forall_other k. X[k] = False }
{ PC[i] := Crit }

transition t_exit ([i])
requires { PC[i] = Crit }
{ X[i] := False ; PC[i] := Idle }

PC[#1] = Crit, 
PC[#2] = Crit

PC[#1] = Want, PC[#2] = Idle, 
e1:RdX(#2,#1), val(e1) = False, 
e2:RdX(#1,#2), val(e2) = False, 
e3:WrX(#2,#2),                        .

e1:fence(#2), e2:fence(#1)
ghb(e3,e1), ghb(e2,e3)

PC[#1] = Idle, PC[#2] = Idle
e1:RdX(#2,#1), val(e1) = False, 
e2:RdX(#1,#2), val(e2) = False, 
e3:WrX(#2,#2),                         .
e4:WrX(#1,#1),                        .

e1:fence(#2), e2:fence(#1)
ghb(e3,e1), ghb(e2,e3)
ghb(e4,e2), ghb(e1,e4)

PC[#1] = Want, PC[#2] = Idle, 
e1:RdX(#2,#1), val(e1) = False, 
e2:RdX(#1,#2), val(e2) = False, 
e3:WrX(#2,#2), val(e3) = True, 

e1:fence(#2), e2:fence(#1), 
ghb(e3,e1), ghb(e3,e2),

val(e2) = val(e3)

PC[#1] = Want, PC[#2] = Want, 
e1:RdX(#2,#1), val(e1) = False, 
e2:RdX(#1,#2), val(e2) = False, 

e1:fence(#2), e2:fence(#1)

PC[#1] = Crit, PC[#2] = Want, 
e1:RdX(#2,#1), val(e1) = False, 

e1:fence(#2)                      .

t_req(#1)

t_req(#2)

t_req(#2)

t_enter(#1)

t_enter(#2)
1 2

3

4

5

6

We focus on node 3 which results from the pre-image of node 1 by
t_enter(#2) then t_enter(#1). In this state, both processes have read False
in X (events e1 and e2). Also, since there is a memory barrier in t_enter, both
reads are associated to a fence literal. The pre-image of node 3 by t_req(#2)
introduces a new write event e3:WrX(#2,#2) with an associated value val(e3)
= True. Since there is a memory barrier e1:fence(#2) on e1 by the same pro-
cess #2, we add ghb(e3,e1) in the formula. Now, this new write event may or
may not satisfy the read e2, so we must consider both cases (node 4 and 5).

In node 4, event e3 satisfies e2. The equality val(e2) = val(e3) is then
added to the formula which obviously makes it inconsistent. In node 5, the
write e3 does not satisfy the read e2, then the value val(e3) is discarded
and ghb(e2,e3) is added to the formula. Similarly, the pre-image of node 5
by t_req(#1) yields the formula in state 6 where the new write e4 does not
satisfy the read e1. Now, the ghb relation is not a valid partial order as the se-
quence ghb(e2, e3), ghb(e3, e1), ghb(e1, e4), ghb(e4, e2) forms a cyclic relation.
Therefore, this state is discarded and the program is declared safe.

Remark that if we removed the fence predicate in t_enter, then we would
only have ghb(e3, e1), ghb(e4, e2) in state 6, which is a valid partial order rela-
tion, so the formula would intersect with the initial state and the program would
be unsafe.



4 Benchmarks and Conclusion

We have evaluated Cubicle-W on some classical parameterized concurrent al-
gorithms (available on the tool’s webpage [1]). Most of these algorithms are
abstraction of real world protocols, expressed with up to eight transitions and
up to four weak variables or two unbounded weak arrays. The spinlock example
is a manual translation of an actual x86 implementation of a spinlock from the
Linux 2.6 kernel. We compared Cubicle-W’s performances with state-of-the-art
model checkers supporting the TSO weak memory model, since our model is
similar. The model checkers we used are CBMC [7], Trencher [11, 10], MEMO-
RAX [3] and Dual-TSO [2]. As most of these tools do not support parameterized
systems, we used them on fixed-size instances of our benchmarks and increased
the number of processes until we obtained a timeout (or until we reached a high
number of processes, i.e. 11 in our case). Dual-TSO supports a restricted form
of parameterized systems, but does not allow process-indexed arrays, which are
often needed to express parameterized programs. When it was possible, we used
it on both parameterized and non parameterized versions of our benchmarks.

Cubicle Memorax Memorax Trencher CBMC CBMC Dual
W SB PB Unwind 2 Unwind 3 TSO

naive US 0.04s [N] – – – – – NT [N]
mutex TO [6] TO [10] TO [5] 23.6s [11] 5m37s [11] TO [6]

7m54s [5] 12m02s [9] 10.1s [4] 14.7s [10] 3m39s [10] 1m12s [5]
naive S 0.30s [N] – – – – – NT [N]
mutex TO [5] TO [11] TO [6] TO [5] TO [3] TO [5]

23.3s [4] 2m28s [10] 54.8s [5] 2m24s [4] 19.4s [2] 35.7s [4]
lamport US 0.10s [N] – – – – – NT [N]

TO [4] TO [4] KO [4] 7m42s [11] TO [7] TO [6]
17.4s [3] 25.4s [3] 1.73s [3] 4m29s [10] 5m12s [6] 13m12s [5]

lamport S 0.60s [N] – – – – – NT [N]
TO [3] TO [4] KO [5] TO [4] TO [3] TO [4]
0.14s [2] 3m02s [3] 3.37s [4] 8m39s [3] 1m55s [2] 9.42s [3]

spinlock S 0.07s [N] – – – – – TO [N]
[22] TO [5] TO [7] TO [7] TO [3] TO [3] TO [6]

8m51s [4] 9m52s [6] 21.45s [6] 19.58s [2] 5m08s [2] 1m16s [5]
sense [19] S 0.06s [N] – – – – – NT [N]
reversing TO [3] TO [3] TO [5] TO [9] TO [4] TO [3]
barrier 0.34s [2] 0.09s [2] 1m58s A [4] 12m25s [8] 1m43s [3] 0.09s [2]
arbiter S 0.18s [N] – – – – – NT [N]
v1 [18] TO [1+2] TO [1+2] KO [1+5] TO [1+6] TO [1+3] TO [1+6]

4.57s [1+4] 12m02s [1+5] 44.3s [1+2] 2m45s A [1+5]
arbiter S 13.5s [N] – – – – – NT [N]
v2 [18] TO [1+2] TO [1+2] KO [1+4] TO [1+4] TO [1+2] TO [1+3]

1.62s [1+3] 2m56s [1+3] 24.2s [1+2]
two S 54.1s [N] – – – – – NT [N]
phase TO [2] TO [4] TO [4] TO [11] TO [11] TO [3]
commit 39.7s [3] 7.08s A [3] 12m39s [10] 13m41s [10] 12.3s [2]

The table above gives the running time for each benchmark, with the number
of processes between square brackets, where N indicates the parametric case. The
second column indicates whether the program is expected to be unsafe (US) or
safe (S). Unsafe programs have a second version that was fixed by adding fence
predicates. A indicates that a tool gave a wrong answer. KO means that a tool
crashed. NT indicates a benchmark that was not translatable to Dual-TSO.

The tests were run on a MacBook Pro with an Intel Core i7 CPU @ 2,9 Ghz
and 8GB of RAM, under OSX 10.11.6. The timeout (TO) was set to 15 minutes.

These results show that in spite of the relatively small size of each benchmark,
state-of-the-art model checkers suffer from scalability issues, which justifies the



use of parameterized techniques. Cubicle-W is thus a very promising approach
to the verification of concurrent programs that are both parameterized and op-
erating under weak memory. We have yet to tackle larger programs, which can
be achieved by adapting Cubicle’s invariant generation mechanism to our weak
memory model.
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