
Implicit Hitting Set Algorithms for
Maximum Satisfiability Modulo Theories

Katalin Fazekas1(B), Fahiem Bacchus2, Armin Biere1

1 Johannes Kepler University, Linz, Austria,
katalin.fazekas@jku.at

2 University of Toronto, Toronto, Canada

Abstract. Solving optimization problems with SAT has a long tradi-
tion in the form of MaxSAT, which maximizes the weight of satisfied
clauses in a propositional formula. The extension to maximum satisfia-
bility modulo theories (MaxSMT) is less mature but allows problems to
be formulated in a higher-level language closer to actual applications. In
this paper we describe a new approach for solving MaxSMT based on
lifting one of the currently most successful approaches for MaxSAT, the
implicit hitting set approach, from the propositional level to SMT. We
also provide a unifying view of how optimization, propositional reason-
ing, and theory reasoning can be combined in a MaxSMT solver. This
leads to a generic framework that can be instantiated in different ways,
subsuming existing work and supporting new approaches. Experiments
with two instantiations clearly show the benefit of our generic framework.

1 Introduction

SMT solvers have become indispensable tools for solving a wide range of prob-
lems in many areas. Such solvers provide either a satisfying assignment (e.g., a
witness for a bug) or a proof of unsatisfiability (e.g., proving that a particular
abstraction does not display a bug). However, in many applications the problem
to be solved is more naturally cast as an optimization problem: find an assign-
ment that minimizes some cost function. Li et al. [1], for instance, give a range of
applications where optimization is critical. The need to solve such applications
has led to a range of work addressing optimization in SMT (e.g., [1–8]).

Work on SMT optimization varies in the generality of the objective functions
that can be modeled. For example, [1, 4] address optimizing objective functions
stated in the theory of linear real arithmetic, while [7] can deal with linear
objective functions in which some variables are restricted to be integer. MaxSMT
[2] is a restricted but important sub-problem in which the objective functions
are linear expressions over Boolean variables (Pseudo Boolean expressions).

In this paper we focus on MaxSMT. Although MaxSMT is not as general as
some other optimization approaches, MaxSMT specific solvers are often more
efficient on problems where Pseudo Boolean objectives suffice [8], and recent
rapid progress in the efficiency of MaxSAT solvers [9] indicates that this special
case may more likely scale to practical problems than more general optimization

approaches. Furthermore, MaxSAT already has a wide and growing range of
applications including planning, fault localization in C code, design debugging,
and a variety of problems in data analysis (see [10]). This indicates that Pseudo
Boolean objectives are sufficient in a range of applications, and hence MaxSMT,
with its addition of theories, is likely to have even greater applicability.

The implicit hitting set (IHS) approach [11] for solving MaxSAT has seen
considerable recent progress and is now one of the most effective ways of solving
MaxSAT. For example, IHS solvers have been the top performing solvers on
weighted problems in the most recent 2016 and 2017 evaluations of MaxSAT
solvers [9]. One of the key benefits of the IHS approach is that it provides a
clear separation between optimization and propositional reasoning. In particular,
in IHS solvers optimization is performed by a separate minimum cost hitting
set solver, while the SAT solver is used solely for propositional reasoning. This
separation of concerns supports the observed improved performance by allowing
the exploitation of more efficient specialized solvers for each component.

Since MaxSAT and MaxSMT are quite similar problems, this naturally leads
to the question of how MaxSMT can be similarly separated into optimization,
propositional reasoning, and theory reasoning. In this paper we provide a general
view of how these separate components can be combined to solve MaxSMT by
providing a formal reasoning calculus [12] for MaxSMT solvers that achieves a
clear separation of these different components. The calculus formalizes a notion
of state that abstracts the more complex notions of state used in implemented
solvers, and a set of inference rules for transforming the state that abstracts the
operations performed by implemented solvers. The power of the calculus is that
almost any scheme for scheduling the application of these rules leads to a solu-
tion. Hence, it supports the design of a wide range of different implementations
of the basic inferences and of control structures for scheduling their applica-
tion. It also provides a formal framework for effective harvesting of advances in
MaxSAT for improving MaxSMT and vice versa.

2 Preliminaries

We consider formulas F in conjunctive normal form (CNF) consisting of a set
of clauses, where each clause C is a disjunction of literals, which are first-order
atoms or propositional variables, or their negation. MaxSAT problems are spec-
ified by a purely propositional CNF F , without first-order atoms, partitioned
into hard and soft clauses, hard(F) and soft(F). A feasible solution to the
MaxSAT problem is a truth assignment that satisfies all of the hard clauses. A
core in MaxSAT solving is a set of soft clauses (a subset of soft(F)) that when
combined with the hard clauses forms an unsatisfiable set of clauses.

Each soft clause C has a positive weight, denoted by cost(C), which specifies
the cost of falsifying it. The cost of a set of soft clauses S is the sum of the
costs of the soft clauses it contains: cost(S) =

∑
C∈S cost(C). The cost of a

feasible solution π is the sum of the costs of the soft clauses it falsifies: cost(π) =
cost({C ∈ S | π 6|= C}). An optimal solution for a MaxSAT problem is

a feasible solution with minimum cost among all feasible solutions. Solving a
MaxSAT problem is the task of finding an optimal solution.

We can restrict our attention, w.l.o.g, to formulas F in which all soft clauses
are unit. In particular, any non-unit soft clause C can be converted to a unit
soft clause by (i) adding a new (relaxed) hard clause C ∨ v where v is a new
propositional variable (called a relaxing or selector variable), and (ii) replacing
the soft clause C with a new unit soft clause (¬v) with cost((¬v)) = cost(C).
This transformation is sound since any optimal solution satisfies C ↔ ¬v.

Considering ground first-order atoms generalizes MaxSAT to MaxSMT [2],
as SMT [13] generalizes SAT. As in MaxSAT, a MaxSMT problem consists of a
set of hard and soft clauses with each soft clause having a weight. However, in
MaxSMT literals can be formed from theory atoms as well as from propositional
variables. For example, over the theory of linear real arithmetic (LRA) we could
form clauses like (p ∨ ¬(1 ≤ y) ∨ (x + y ≥ 2)), with a propositional variable p
and LRA theory atoms (1 ≤ y) and (x+ y ≥ 2).

Let atoms(F) be the set of atoms in F , which range over propositional vari-
ables as well as theory atoms. We extend this notion to literals, clauses, and
sequences of literals accordingly. A (partial truth) assignment over atoms(F)
is a sequence of literals from atoms(F) that (i) does not contain both x and ¬x
for any x ∈ atoms(F) and (ii) has no repeated literals. If A and M are two se-
quences of literals we write AM to indicate their concatenation. An assignment
π over atoms(F) is called a propositional model of F , denoted by π |= F , if it
satisfies the Boolean abstraction of F in which theory atoms are treated simply
as new independent propositional variables. A propositional model of F , π, is
also a theory consistent model of F if the conjunction of theory literals made
true by π is consistent with all theory axioms, denoted π |=T F .

A feasible solution π for a MaxSMT formula F is required to be theory
consistent model of hard(F) (π |=T hard(F)). The cost of π is defined as in
MaxSAT. Accordingly, solving MaxSMT means finding an optimal (minimum
cost) feasible solution. Again, w.l.o.g., we can assume that all soft clauses are
unit clauses. Similarly, a core in MaxSMT is a subset of soft clauses that when
combined with the hard clauses does not have a theory consistent model.

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of
K is a set of soft clauses that has a non-empty intersection with every set in K:
∀κ ∈ K. η ∩ κ 6= ∅. As defined above cost(η) =

∑
C ∈ η cost(C).

3 Abstract Hitting Set based MaxSMT Solving

The main contribution of our paper is to introduce and formalize a calculus for
the implicit hitting set (IHS) approach for MaxSMT, which at the same time
provides the first formal calculus for the IHS approach to MaxSAT [11]. Our
calculus captures a flexible separation between optimization, propositional rea-
soning, and theory reasoning, supporting a number of different implementation
strategies. The separation between optimization and propositional reasoning is
achieved by exploiting the IHS approach for solving MaxSAT/MaxSMT. Other

Table 1: Transition rules for solving SAT under assumptions (A-Sat)

UnitProp
A |M | F =⇒ A |M ` | F if

{
There is a clause (C ∨ `) ∈ F s.t.
AM |= ¬C and atom(`) /∈ atoms(AM)

Decide
A |M | F =⇒ A |M `d | F if atom(`) ∈

(
atoms(F) \ atoms(AM)

)
Backjump
A |M`dN | F =⇒ A |M `′ | F if

There is a clause C ∈ F s.t. AM`dN |= ¬C
and a clause C′ ∨ `′ s.t. F |= C′ ∨ `′,
AM |= ¬C′ and atom(`′) ∈ atoms(`dN)

Learn
A |M | F =⇒ A |M | F,C if

{
F |= C and C 6∈ F
atoms(C) ⊆

(
atoms(F) ∪ atoms(AM)

)
Forget
A |M | F,C =⇒ A |M | F if F |= C

SatModel
A |M | F =⇒ SAT (AM,F) if AM |= F

UnSat
A |M | F =⇒ conflict(F,C) if

{
There is a clause D ∈ F s.t. AM |= ¬D
M contains no decision literals
and C is a clause s.t. F |= C and A |= ¬C

approaches to MaxSAT solving, e.g., [14–16], employ exclusively propositional
reasoning, doing optimization by solving a sequence of SAT decision problems.

Our calculus can be modified to model such approaches by combining the
optimization and propositional reasoning components into a single “MaxSAT”
component. This would provide a formal model of MaxSMT approaches like [3].
However, as we will demonstrate below, even without such a formal model our
calculus still provides a framework for understanding the approach of [3].

IHS and the above cited approaches to solving MaxSAT use propositional
reasoning to find cores by exploiting SAT solving under assumptions [17]. In
particular, for any subset of soft clauses S we can determine if S and the hard
clauses are satisfiable by assuming that the literal of each (unit) soft clause in S
is true. If the conjunction of these literals with the hard clauses is unsatisfiable,
the SAT solver assumption mechanism returns a clause falsified by the assump-
tions. Hence, this clause contains only negations of assumed literals, identifying
a subset of S that, with the hard clauses, is unsatisfiable (i.e., a core).

Hence, as a first step towards a formal calculus for IHS MaxSMT solving, we
provide a calculus for assumption based SAT and SMT reasoning. To the best of
our knowledge, such a calculus has not been specified before. This contribution
should be useful independent of MaxSMT since assumption based reasoning is
used in many different applications besides optimization.

3.1 SAT/SMT Solving under Assumptions

To formalize assumption based incremental SAT solving [17] and lift it to SMT,
we extend the DPLL(T) calculus originally presented in [12]. As above let F
be a first-order quantifier-free CNF formula over theory T . The states of our
calculus are specified by a triple A |M | F , where F is a CNF formula (initially
the input formula), A and M are non-overlapping assignments over atoms(F).
A is the given set of assumptions, and M is the solver’s current set of implied
and decided (noted by a superscript d, e.g., `d) literals.

Table 2: Additional rules for solving SMT under assumptions (A-Smt)

T -Backjump
A |M`dN | F =⇒ A |M `′ | F if

There is a clause C ∈ F s.t. AM`dN |= ¬C
and a clause C′ ∨ `′ s.t. F |=T C′ ∨ `′,
AM |= ¬C′ and atom(`′) ∈ atoms(`dN)

T -Learn
A |M | F =⇒ A |M | F,C if

{
F |=T C and C 6∈ F
atoms(C) ⊆

(
atoms(F) ∪ atoms(AM)

)
T -Forget
A |M | F,C =⇒ A |M | F if F |=T C

T -Model
A |M | F =⇒ T -SAT (AM,F) if AM |=T F

The transition rules given in Table 1 specify an abstract assumption based
SAT solver (A-Sat). These rules follow [12] but are adapted to handle as-
sumptions; the main changes are as follows. First, the abstract states and rules
have been extended with a (possibly empty) set of assumption literals A over
atoms(F). For example, Learn is the same, but UnitProp requires AM |= ¬C,
instead of M |= ¬C. Second, we modified the rule Fail to obtain a new rule Un-
Sat that transitions into a conflict(F,C) state when M has no decision literals
and AM |= ¬D for some D ∈ F . In that case, F ∧A must be unsatisfiable, and
we can always find a clause C implied by F and falsified by A (e.g., by resolving
all literals negated by M from the clause D). And third, we introduce a tran-
sition rule that leads to an explicit SAT (AM,F) state when AM |= F holds.
This facilitates combining the assumption based transitions with a MaxSAT or
MaxSMT transition system. It can be noted that our calculus captures the tech-
nique of [17] which uses one particular control scheme to derive the clauses D
and C used in the UnSat rule (it is irrelevant that [17] intermixes A and M).

Abstract assumption based SMT solving (A-Smt) is specified by the rules
of Table 2 along with the rules UnitProp, Decide and UnSat of Table 1.
Note that T -entailment subsumes propositional entailment, i.e., F |= C implies
F |=T C. Hence, T -Learn can learn any clauses that Learn can, and T -Learn
need not always employ theory reasoning (it can also use propositional reasoning
to perform learning). This can be important in practice if reasoning in T is
expensive. The same remark holds for T -Backjump and T -Forget.

It can also be noted that UnSat requires a falsified clause D to be in F .
Hence, when F ∧A is propositionally satisfiable but T -unsatisfiable our calculus
requires sufficient theory lemmas from T -Learn so as to obtain a falsified clause
in F and to derive a clause C falsified by A.

We say that a state S in a transition system is final when no rules are appli-
cable to it. Given a set of assumed literals A and a formula F , the initial state of
assumption based SAT/SMT solving is A | ∅ | F . Deciding the satisfiability/T -
satisfiability of F assuming A is a derivation of the form A | ∅ | F =⇒ · · · =⇒ Sn,
where Sn is a final state in the A-Sat/A-Smt system.

Theorem 1 (Termination). Any sequence of transitions A | ∅ | F =⇒ · · · in
A-Sat (A-Smt) that contains no infinite subsequence consisting only of rules
from the set {Learn, Forget} ({T -Learn, T -Forget}), is finite.

Table 3: Transition rules for Optimization (∗ is any SAT/SMT state) (A-MaxSMT)

SAT/SMT-Transition
(LB ,UB , µ) |K | 〈∗〉 =⇒

(LB ,UB , µ) |K | 〈∗′〉
if

{ ∗′ is reachable from ∗ by
a single A-Sat/A-Smt transition step
(see Table 1 and Table 2)

Core
(LB ,UB , µ) |K | 〈conflict(F,C)〉 =⇒

(LB ,UB , µ) |K,κ | 〈conflict(F,C)〉
if

{
κ = {(¬`) | ` ∈ C} and κ 6∈ K
(κ is set of soft clauses)

HS
(LB ,UB , µ) |K | 〈∗〉 =⇒

(LB ,UB , µ) |K | 〈A′ | ∅ | F 〉
if

{
η = HS(K)
A′ = {` | (`) ∈ (soft(F)− η)}

MinHS
(LB ,UB , µ) |K | 〈∗〉 =⇒

(LB ′,UB , µ) |K | 〈A′ | ∅ | F 〉
if

{
η = minHS(K)
A′ = {` | (`) ∈ (soft(F)− η)}
LB ′ = max(LB , cost(η))

ImprovedSolution
(LB ,UB , µ) |K | 〈T -SAT (AM,F)〉 =⇒

(LB , cost(AM), AM) |K | 〈T -SAT (AM,F)〉
if cost(AM) < UB

OptimalSolution
(LB ,UB , µ) |K | 〈∗〉 =⇒ optSoln(µ) if LB ≥ UB

Theorem 2 (Soundness). For any derivation A | ∅ | F =⇒ · · · =⇒ S in A-
Sat (A-Smt) where S is final with respect to A-Sat (A-Smt) we have

1. S = conflict(F ′, C) with F ′ |= C, A |= ¬C iff F ∧A is (T -)unsatisfiable.

2. S = (T -)SAT (AM,F ′) with AM |=(T) F
′ iff F ∧A is (T -)satisfiable.

We can treat A as a prefix of decision literals of M that can not be changed
by backjumping. Under this interpretation the results of [12] can be extended to
obtain proofs for Theorems 1 and 2. We omit the details due to space constraints.

3.2 IHS MaxSAT/MaxSMT Solving

To obtain an abstract IHS based MaxSMT solver we add the rules given in
Table 3. These rules extend the states of A-Smt by adding K and the triple
(LB ,UB , µ), where K is a set of cores, LB and UB are lower and upper bounds
on the cost of an optimal solution to the input CNF F , and µ is a feasible
solution, represented as a sequence of literals over atoms(F), with cost(µ) = UB .
Let A-MaxSMT be the transition system defined by the rules in Table 3 along
with the rules A-Smt.3 The initial state of A-MaxSMT is always the state
IS = (0,∞, undef) | ∅ | 〈{` | (`) ∈ soft(F)} | ∅ | hard(F)〉, i.e., we start with valid
lower and upper bounds, an empty set of cores, an initial assumption that all
soft clauses are satisfied, and all of the hard clauses of F .

The calculus computes a growing set of cores K, each obtained from assump-
tion based SMT solving, and uses the two subroutines, minHS (K) which returns
a minimum cost hitting set of K, and HS (K) which returns an arbitrary hitting
set of K. It can be noted that the assumptions (initially and after the rules HS
or MinHS) are always asserting that some subset of the soft clauses along with
the hard clauses are satisfied. Hence, as explained above, the subset of soft(F)

3 IHS MaxSAT solvers can be obtained by using the A-Sat rules and replacing
T -SAT (AM,F) in ImprovedSolution with SAT (AM,F).

identified by the returned conflict and added to K by rule Core must be a core.
Furthermore, the assumptions always specify that all soft clauses except those in
some hitting set η of K are true. Thus, the returned conflict must identify a new
core κ that cannot already be in K. In particular, κ is a subset of soft(F) − η
(it is a subset of the assumed true soft clauses) but no s ∈ K is a subset of
soft(F)− η since s contains a non-empty subset s ∩ η not in soft(F)− η.

We say that S1 =⇒ · · · =⇒ Sn is a progressing subsequence if (a) S1 is
the result of applying the MinHS rule, (b) all transitions in the sequence arise
from applying one of the A-Smt rules (i.e. are SAT/SMT-Transition steps),
and (c) Sn is final with respect to the rules of A-Smt (i.e., no SAT/SMT-
Transition is applicable).

Theorem 3 (Termination). If hard(F) is T -satisfiable then any derivation
IS ⇒ S1 ⇒ · · · of A-MaxSMT is finite if it satisfies the following conditions:

1. contains no infinite subsequence of rules from the set {T -Learn,T -Forget}
2. contains no infinite subsequence not containing a progressing subsequence
3. always applies the transitions OptimalSolution, ImprovedSolution and

Core whenever they are applicable (with OptimalSolution being applied
first).

Theorem 4 (Soundness). If hard(F) is T -satisfiable, IS ⇒ · · · ⇒ Sn is a
finite sequence of transitions in A-MaxSMT, and Sn is final in A-MaxSMT,
then Sn is optSoln(µ) and µ is an optimal solution of F .

Theorem 4 is immediate from the fact that (a) optSoln(µ) is the only final state
in A-MaxSMT, (b) LB and UB are always valid bounds, and (c) cost(µ) = UB .

Hence, the main result is that the calculus terminates under the conditions of
Theorem 3. A sketch of the proof follows. First, from Theorem 1 it can be seen
that all progressing subsequences must be finite, and thus any infinite sequence
of transitions must contain an infinite number of progressing subsequences. The-
orem 2 shows that every progressing subsequence must reach either a T -SAT
or a conflict final state. If a conflict state is reached, then Core must be ap-
plied next. As explained above this must add a new core to K. Each core is
a subset of soft(F) so only a finite number of cores exist. Hence, only a fi-
nite number of progressing subsequences can end in conflict . Otherwise, the
progressing subsequence reaches T -SAT . But this can happen only once since
the feasible solution found, AM , must be an optimal solution. AM satisfies
all clauses except those in a minimum cost hitting set η of K (obtained from
MinHS), and hence cost(AM) ≤ cost(η). Every feasible solution π satisfies
hard(F) and every core is unsatisfiable when added to hard(F). Hence, π must
falsify at least one soft clause in every core; i.e., the set of clauses falsified by
π is a hitting set of K. So by the definition of cost and the minimality of η,
cost(η) ≤ cost(π), and thus cost(AM) ≤ cost(π) for every feasible solution π.
Once AM is found, ImprovedSolution must be applicable and the condition
cost(AM) = UB ≤ cost(η) ≤ LB is achieved (MinHS ensures cost(η) ≤ LB).
Then OptimalSolution must be applied and the derivation terminates. In sum,
under the stated conditions only a finite number of progressing subsequences can
be executed and so the derivation must be finite.

SMT Solver

MaxSAT Solver

SATOPT Theories

optSoln(AM)

hard(F) atoms(F)
cost over
soft(F) K = ∅

κ/AM

Core/Sol.

A

Assume

AM

Lemma

C
Opt. Sol.

Fig. 1: General architecture for an IHS based MaxSMT solver

4 Generic Hitting Set based MaxSMT

Here we present a general framework that realizes the previously introduced
ideas for IHS based MaxSMT solving. Following the desiderata presented in our
introduction, we decompose the problem of MaxSMT into three sub-problems:
optimization (over Boolean atoms), Boolean satisfiability, and theory reasoning.
Although modern SMT solvers are equipped with efficient engines for arithmetic
reasoning, in MaxSMT the optimization problem depends purely on the Boolean
abstraction of the formula and thus delegating the task of optimization to a spe-
cialized solver can be more efficient [8]. Figure 1 shows a general architecture
to solve MaxSMT as an implicit hitting set problem [18, 19]. The method com-
bines three components that are responsible for our three subtasks: OPT, an
optimizer for hitting set computation; SAT, a SAT solver for Boolean reasoning;
and Theories, a set of theory solvers to perform theory reasoning. The framework
expects as input a MaxSMT formula (F) with a satisfiable set of hard clauses.
The SAT and Theory solvers consider only the hard clauses, while the soft (unit)
clauses and their costs are only considered by the optimizer. Note that we can
initially check the hard clauses for satisfiability. If they are unsatisfiable there is
no optimal solution.

The evaluation starts with OPT, which computes a (potentially optimal)
hitting set η of the current set of unsatisfiable cores (K). This is translated into
a set of assumptions (noted as A in Fig. 1) that requires the satisfaction of all
soft clauses not in η (see HS and MinHS steps of A-MaxSMT).

The SAT solver can then decide if there exists a feasible solution satisfying
hard(F) and the assumptions. Theory solvers can be invoked at various points to
check the T -consistency of the SAT solver’s current partial assignment AM and
to perform T -learning. As in [12] there are a range of flexible (e.g., more eager
or more lazy) strategies for deciding when theory reasoning should be invoked.

For a given conjunction of theory literals, a theory solver might return a
subset that is T -unsatisfiable forming a conflict clause after negation, or addi-
tional theory clauses for T -learning. In both cases the returned clauses are valid
lemmas of the theory (C in Fig. 1). The SAT and theory solvers continue their
collaboration under the assumption of A until either a theory consistent model

SMTMIP

optSoln(AM)

hard(F)
cost over
soft(F) K = ∅

κ/AM

Core/Sol.

A

Assume

Opt. Sol.

MaxSAT Theories

optSoln(AM)

F atoms(F)
AM

Lemma

C
Opt. Sol.

Fig. 2: Example merged (i.e. single-SAT) instantiations of our framework

of hard(F)∧A is found (i.e. state T -SAT (AM,F) is reached), or hard(F)∧A is
found to be unsatisfiable (i.e. state conflict(F,C) is reached). In the latter case,
the SAT solver constructs an unsatisfiable core (κ in Fig. 1) that consists of a
subset of the soft clauses assumed to be satisfied in A. After that, the optimizer
can compute a new hitting set that hits κ as well. Note that the new hitting
set need not be of minimum cost. From the new hitting set, a new A is con-
structed and a new iteration starts. Any theory consistent model that is found
for hard(F) ∧ A is a feasible solution of the MaxSMT problem. The optimality
of these solutions can be decided by the optimizer component based on their
costs. In case the found solution is not optimal, a new hitting set is computed
in order to find a better solution. Otherwise, the model is returned as a final
optimal solution.

4.1 Possible Instantiations

A practical tool following our proposed general architecture can be achieved in
various ways. Based on Fig. 1, one could combine a hitting set calculator with a
SAT solver and a set of theory solvers. However, this implementation would not
automatically benefit from the advanced techniques implemented in MaxSAT
and SMT solvers nor from any future improvements to such solvers. So a more
practical question is how to combine already existing tools to obtain a MaxSMT
solver. Here we consider mixed integer programming solvers (MIP), for example
CPLEX, for solving the minimum hitting set problem since they are widely
available and display state of the art performance on a range of instances.

As Fig. 1 hints, some MaxSAT solvers already implement efficient collabora-
tion between MIP and SAT solvers, while SMT solvers combine SAT and theory
solvers. Combining these solvers as black-boxes results in an engine that contains
two SAT solvers, while merging these engines results in a tool with a single SAT
solver. Figure 2 shows two possible instances of the latter case. On the left, we
keep an SMT solver as a black-box and combine it with a MIP solver that is
responsible for the hitting sets (and so the assumptions) in each iteration. A ben-
efit of this instance is efficient SMT solving and the ability to use the full power
of the MIP solver to express complex objective functions (e.g., multi-objective
optimization). One disadvantage is the lack of MaxSAT preprocessing and sim-
plifications. A tighter combination could replace the SAT solver in an IHS based
MaxSAT solver with an SMT solver. However, in IHS MaxSAT solving SAT

SMTMaxSAT

optSoln(AM)

F hard(F)

κ/AM

Core/Sol.

A

Assume

Opt. Sol.

SMTMaxSAT

optSoln(AM)

F hard(F)

C

Lemma

AM

Opt. Sol.

Fig. 3: Example combined (i.e. double-SAT) instantiations of our framework

calls are considered relatively cheap compared to MIP calls [20], but SMT calls
can be more expensive, so the tradeoffs of some techniques would have to be
reevaluated. The instance on the right side of Fig. 2 considers a (not necessarily
IHS based) MaxSAT solver as a black-box to find an optimal solution for the
abstraction of the problem, and forms a lazy lemmas on demand structure with
a set of theory solvers for theory consistency checks. The benefit here is efficient
optimization solving, but the disadvantage is delayed theory support.

Instantiations in Fig. 3 present possibilities for combining black-box (i.e. not
necessarily IHS based) MaxSAT and SMT solvers, providing the advantage of
efficient optimization and SMT solving at the same time. These combinations
contain multiple SAT solvers where the connecting interface determines the work
distribution among them. On the left side, the solvers communicate via assump-
tions and cores or solutions. Whenever the MaxSAT solver finds an optimal
propositional model for its current problem, the SMT solver has to verify that
the soft clauses satisfied in that model are also T -satisfiable (via a set of assump-
tions that forces their satisfaction). If not, it returns a new core to refine the
MaxSAT problem. In practice, the effectiveness of this instance would be com-
promised if many iterations are needed to refine the MaxSAT model. Another
possible disadvantage of this instance is that the SMT solver could learn lemmas
that would be useful to the MaxSAT engine but are never passed to it.

An alternate instance (right side in Fig. 3) involves the MaxSAT solver giving
to the SMT solver the complete propositional model it found (the optimal model
for its current problem). If that model is not theory consistent the SMT solver
can return any number of lemmas to refine the MaxSAT problem. In this instance
the MaxSAT solver can learn theory related constraints from the SMT solver
beyond unsatisfiable cores. The approach introduced in [3] can be seen as a
combination of the instances in Fig. 3. There the MaxSAT optimal model is
used to provide assumptions to the SMT solver (as in the left-hand instance),
but the SMT solver can return many lemmas to the MaxSAT solver not just
cores (as in the right-hand instance). A potential drawback of that approach is
that the returned lemmas might or might not be useful to the MaxSAT solver,
and there is a risk of overloading the MaxSAT solver.

Based on these instances, it appears that support of assumption based incre-
mental solving and efficient extraction of small cores are important features of
the involved tools. Thus techniques that improve these aspects of solvers (e.g.,
[21]) have the potential to improve modular MaxSMT solvers as well. Further,

note that our calculus allows the interruption of SMT calls in certain cases (see
conditions in Theorem 3), which may be worth considering in practice.

5 Related Work

As argued in the introduction the focus of this paper is on the important class
of MaxSMT solvers. Thus this section will concentrate on the closest related
approaches. Additional experimental results are provided in the next section.

We modify and extend a general DPLL(T) framework introduced in [12] to
formalize our MaxSMT solving approach. Another extension of DPLL(T) by
Nieuwenhuis and Oliveras in [2] represents the optimization task explicitly as a
set of theory constraints and progressively strengthens this theory by deriving
tighter bounds. Our extension of DPLL(T) focuses only on MaxSMT problems
and separates the optimization task from theory reasoning.

A modular approach was proposed by Cimatti et al. in [3] where MaxSAT and
SMT solvers are employed as black-boxes for MaxSMT solving. As we showed
in Section 4.1, our framework includes this approach. In Section 6 we present
some empirical results comparing their approach with other instantiations.

In the context of core-guided MaxSAT solving, SMT solvers have been used
instead of SAT, e.g., [22], to handle cardinality constraints more efficiently. We
focus on IHS based MaxSMT solving in which no cardinality constraints are
introduced into the SMT sub-problems.

Manolios et al. introduced the theoretical underpinnings of a Branch and Cut
Modulo Theories framework and developed an optimization procedure where in-
teger linear programming (ILP) and stably-infinite theories are combined [7].
Our approach delegates Boolean reasoning to a SAT solver, while in their con-
struction this is done by the ILP solver.

6 Experimental Evaluation

We implemented two instantiations of our framework. Both use MathSAT5 [23]
version 5.5.1 as the SMT component. Our first implementation maxhs-msat
follows the architecture proposed on the left side of Fig. 3. It combines maxHS
3.0 as the optimizer with MathSAT5. To evaluate the potential of lifting theory
lemmas to the MaxSAT level, as proposed in [3] and described in Section 4.1
as a combination of the instances in Fig. 3, the configuration maxhs-msat-
ll lifts and adds all used theory lemmas to the MaxSAT solver in addition to
unsatisfiable cores. Our second solver cplex-msat implements the architecture
shown on the left of Fig. 2 which combines MathSAT5 directly with a hitting set
solver (CPLEX 12.7 as in maxHS 3.0) as the optimizer. In this implementation
the components interface only with assumptions and unsatisfiable cores.

In both solvers the optimizers compute an optimal hitting set η. In maxhs-
msat maxHS computes an optimal solution to its current Boolean abstraction,
but the clauses falsified by that solution form an optimal hitting set. The SMT

solver then tests if the other soft clauses (soft(F) − η) are T -satisfiable. If not,
a new core is added to the optimizer (along with additional theory lemmas
in maxhs-msat-ll). Following [20], rather than calling the optimizer in each
iteration we allow non-optimal hitting sets. In particular, the new SMT core can
be added to the previous hitting set (-djnt), or a single minimum weight clause
from the new core can be added to the hitting set (-min). In both cases we
obtain a new (non-minimum) hitting set covering the new core. For cplex-msat
only, we can also use CPLEX to compute a linear programming solution of the
hitting set problem which when rounded up yields a new hitting set (-lp). In
these cases we continue to use non-minimum hitting sets η′ until soft(F) − η′
becomes T -satisfiable, and then we again use the optimizer to compute a hitting
set with minimum cost.

We compare against two state-of-the-art MaxSMT solvers. OptiMathSAT
(version 1.4.5) [6] is a general purpose Optimization Modulo Theories (OMT)
solver that we use in two different configurations. The default configuration is
denoted by optimathsat-omt, while optimathsat-maxres employs the maxi-
mum resolution approach of [14]. We also compare against z3 (version 4.6.0) with
two different MaxSAT engine configurations (z3-maxres and z3-wmax). Note,
that the hitting set based engine in z3 has been deprecated and was removed.

We considered three sets of benchmarks from three different sources. The
LL-benchmark set consists of all 398 quantifier free MaxSMT benchmarks used
in [3] with annotations replaced by soft assertions, split into 212 benchmarks
over the theory of linear integer arithmetic and 186 benchmarks over linear
real arithmetic. For each theory, half the instances have Unit weight for soft
assertions, while the other half contains Random weights in the interval of 1
and 100. The runtime limit on these instances was set to 20 minutes.

Our second benchmark set LEX-benchmark, consisting of equalities over
propositional atoms, are lexicographically-optimum realization problems used
in [8]. We only considered the 6098 instances where three groups of soft asser-
tions (Time, Cost and Weight) have different priorities and the objective is to
lexicographically minimize the sum of the falsified assertions with respect to a
given priority order of T, C, W). The time limit was set to 100 seconds.

Finally, in order to further exercise the strengths of the different approaches,
we generated a set of scaled problems from one (arbitrarily chosen) QF-LIA
SMT-LIB benchmark family (Bofill-scheduling waste water treatment schedul-
ing problems from [24]). The original family contained 156 randomly generated
(referred as rand-wwtp) and 251 industrial (ind-wwtp) satisfiable SMT problems.
We derived instances from these SMT problems by adding randomly chosen the-
ory atoms with random polarity as unit soft clauses. The four groups of derived
instances introduced four different percentages (10%, 25%, 50% and 100%) of
the atoms in the original problem as soft assertions. All instances were gener-
ated once with unit weights and once more with random weights between 1 and
the total number of atoms. Due to space constraints, we only present results on
instances derived from rand-wwtp problems, where we observed an interesting
pattern. The time limit was set to 5 minutes.

Table 4: Results of various solvers and configurations on LL-benchmarks from [3].

Solver
LIA(212) LRA(186)

Total SMT% OPT%
U R U R

cplex-msat 82 90 85 85 342 99.22% 0.13%
cplex-msat-djnt 85 91 85 85 346 98.83% 0.33%
cplex-msat-min 83 86 85 85 339 99.22% 0.04%
cplex-msat-lp 84 89 85 85 343 98.26% 0.97%

maxhs-msat 85 87 85 85 342 88.15% 11.20%
maxhs-msat-djnt 86 89 85 85 345 83.85% 15.36%
maxhs-msat-min 84 89 85 85 343 92.31% 7.04%

maxhs-msat-ll 80 84 83 78 325 82.57% 15.45%
maxhs-msat-ll-djnt 78 84 83 77 322 87.97% 10.37%
maxhs-msat-ll-min 79 86 82 85 332 80.13% 17.03%

optimathsat-maxres 87 90 85 86 348 – –
optimathsat-omt 75 72 85 85 317 – –

z3-maxres 73 79 86 85 323 – –
z3-wmax 69 77 88 88 322 – –

The experiments were performed on a cluster in which each computing node
consisted of two Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz CPUs and 128 GB of
main memory. We limited memory usage of each tool to 7GB on each instance
and used different time limits as described above.

Table 4 presents results on the LL-benchmarks. For each solver configuration
the first two columns list the number of solved instances with linear integer
arithmetic as background theory, where the soft assertions have Unit weights
in the first column and Random weights in the second. Analogously, the next
two columns present results in linear real arithmetic. The fifth column contains
the total sum of solved instances in the previous four columns. The last two
columns show the percentage of time spent in the SMT and in the optimization
component (considering only solved instances). The optimization component in
cplex-msat is CPLEX, while in maxhs-msat it is maxHS.

It turns out that optimathsat-maxres outperforms the other tools and
configurations on these instances, but our implementations remain competitive.
Furthermore, lemma lifting (maxhs-msat-ll and its different configurations)
reduces the percentage time spent in SMT solving, but has a negative effect
with respect to the number of solved instances compared to maxhs-msat and
its different configurations. None of the involved tools appears to be sensitive
to the type of weights (Uniform vs. Random). Although cplex-msat does not
contain any MaxSAT preprocessing or simplification technique, the results of
that tool in this experiment are similar to maxhs-msat.

Results on the LEX-benchmark are shown in Table 5. The 6098 problems
contained two groups of problems. The first group of 3699 instances used the
lexicographic preference ordering Cost, Time and then Weight, and are shown in
the first two columns which list the number of solved instances and the total run
time used to solve them. The second group of 2399 instances used the reversed
lexicographic preference and are shown in the next two columns. For our tools
we also give the total number of unsatisfiable cores and of optimal hitting set
calculations (considering again only solved instances) in the last two columns.

Table 5: Results of various solvers and configurations on LEX-benchmarks from [8].
Solver CTW Time[s] WTC Time[s] cores opt. HS

cplex-msat 3499 27825 2399 1942 1610031 1615150
cplex-msat-djnt 3687 5936 2399 1455 920387 137339
cplex-msat-min 3699 2479 2399 1391 909828 27245
cplex-msat-lp 3699 4564 2399 1493 1260683 19056

maxhs-msat 3699 2401 2399 1367 0 5319
maxhs-msat-djnt 3699 2224 2399 1359 0 5319
maxhs-msat-min 3699 2451 2399 1409 0 5319

maxhs-msat-ll 3699 2302 2399 1518 0 5319
maxhs-msat-ll-djnt 3699 2394 2399 1406 0 5319
maxhs-msat-ll-min 3699 2441 2399 1437 0 5319

optimathsat-maxres 3410 13851 1850 10209 – –
optimathsat-omt 3481 9710 2068 10483 – –

z3-maxres 3699 4555 2399 2231 – –
z3-wmax 3651 5566 2295 9513 – –

On these instances most versions of our approach solve at least as many
problems as the state-of-the-art tools and in significantly less time. Due to the
background theory of these instances it is enough to find a propositional model,
i.e., solve a MaxSAT problem, since every propositional solution also happens to
be T -satisfiable. This is reflected in the last two columns, where the two instan-
tiations of our framework show different behaviour. For maxhs-msat, which
combines maxHS with the SMT solver, the number of iterations is always one
(in all 5319 satisfiable instances). In this case maxHS finds an optimal Boolean
model (through several iterations of its internal SAT solver), which the SMT
solver then verifies to be theory consistent in one call. In case of cplex-msat
there is no additional SAT solver between the SMT and the optimization com-
ponents. Therefore it has to learn all the necessary transitivity properties of the
equalities in form of cores from the SMT solver. Thus the number of unsatis-
fiable cores is higher for cplex-msat, which can significantly increase solving
time depending on the type of hitting sets used.

These benchmarks in essence allow us to compare the effectiveness of the
optimization components independently of the SMT component. This benefits
our hitting set based methods, while other solvers rely on alternative approaches.
Another important difference is that our prototypes solve lexicographic problems
as single objective functions in one run by aggregating the cost functions [25].

The last table (Table 6) presents results for the randomized rand-wwtp
benchmarks on which cplex-msat performs better than maxhs-msat. Using
non-minimum hitting sets measurably reduces the performance of both imple-
mentations on these instances. From the last two columns we can deduce that
the best performing methods are those where more time was spent within the
optimization component. Although lemma lifting does result in significant more
time spent in maxHS calls, some part of it is spent in the SAT solver, and not
in actual optimization. This might explain its bad performance.

To summarize, the experiments support the need for a generic framework
for MaxSMT. More concretely we make the following three observations. First,
there is no overall best configuration. Performance depends on the distribution

Table 6: Results of considered solvers and configurations on rand-wwtp family with
10%-100% random unit soft clauses. Each percentage group consists of 312 problems.

Solver 10% 25% 50% 100% Total SMT% OPT%

cplex-msat 289 271 203 4 767 60.85% 38.46%
cplex-msat-djnt 286 247 114 2 649 97.35% 1.96%
cplex-msat-min 282 244 142 16 684 91.46% 7.68%
cplex-msat-lp 287 262 184 13 746 83.4% 15.27%

maxhs-msat 288 270 179 0 737 42.28% 57.31%
maxhs-msat-djnt 289 249 112 1 651 93.91% 5.69%
maxhs-msat-min 281 242 132 15 670 87.99% 11.59%

maxhs-msat-ll 266 166 16 0 448 7.69% 84.93%
maxhs-msat-ll-djnt 266 161 9 0 436 11.30% 77.59%
maxhs-msat-ll-min 263 166 27 0 456 11.36% 68.11%

optimathsat-maxres 291 258 123 0 672 – –
optimathsat-omt 240 130 0 0 370 – –

z3-maxres 280 224 103 0 607 – –
z3-wmax 304 288 4 0 596 – –

of the workload among the involved components, since in general the difficulty
of the optimization and SMT problems differ. For instance, improved MaxSAT
performance does not necessarily translate into improved MaxSMT performance,
simply because of different relative costs between SMT calls and SAT calls.
Accordingly, non-minimum hitting sets (like disjoint cores or LP relaxation)
usually reduce the workload of the optimizer but put more stress on the SMT
solver.

Second, the number of extracted unsatisfiable cores or calculated optimal
hitting sets is not always an expedient metric to measure the performance of
MaxSMT. Finally, most of the time, lemma lifting does not improve but actually
seems to reduce performance of a modular MaxSMT solver, particularly with an
implicit hitting set based approach.

All of our experimental results as well as the evaluated benchmarks are avail-
able at http://fmv.jku.at/maxsmt/.

7 Conclusion

We have proposed an abstract framework to gain a unifying view of how opti-
mization, propositional reasoning, and theory reasoning can be combined in IHS
based MaxSMT solving. Our framework is very flexible supporting a rich space of
possible implementation architectures all of which are provably sound. Our em-
pirical results show that different architectures yield quite different performance
on different problems sets. This implies that there is considerable potential in
more fully exploiting the flexibility of our framework to obtain improved and
more robust performance in MaxSMT solvers.

Acknowledgments This research has been supported by the Austrian Science
Fund (FWF) under projects W1255-N23 and S11408-N23.

References

1. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: POPL, ACM (2014) 607–618

2. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: SAT. Volume 4121 of LNCS., Springer (2006) 156–169

3. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach to
MaxSAT modulo theories. In: SAT. Volume 7962 of LNCS., Springer (2013)

4. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
ACM Trans. Comput. Log. 16(2) (2015) 12:1–12:43

5. Bjørner, N., Phan, A., Fleckenstein, L.: νZ - an optimizing SMT solver. In: TACAS.
Volume 9035 of LNCS., Springer (2015) 194–199

6. Sebastiani, R., Trentin, P.: OptiMathSAT: A tool for optimization modulo theories.
In: CAV. (2015) 447–454

7. Manolios, P., Pais, J., Papavasileiou, V.: The Inez mathematical programming
modulo theories framework. In: CAV. (2015) 53–69

8. Sebastiani, R., Trentin, P.: On optimization modulo theories, MaxSMT and sorting
networks. In: TACAS. Volume 10206 of LNCS. (2017) 231–248

9. Ansótegui, C., Bacchus, F., Järvisalo, M., Martins, R.: MaxSAT Evaluation 2017
(2017) http://mse17.cs.helsinki.fi/.

10. Bacchus, F., Järvisalo, M.: Algorithms for maximum satisfiability with applications
to AI. AAAI-16 Tutoral https://www.cs.helsinki.fi/group/coreo/aaai16-tutorial/

11. Davies, J., Bacchus, F.: Solving MaxSAT by solving a sequence of simpler SAT
instances. In: CP. Volume 6876 of LNCS., Springer (2011) 225–239

12. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM 53(6) (2006) 937–977

13. Sebastiani, R.: Lazy satisability modulo theories. JSAT 3(3-4) (2007) 141–224
14. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT

resolution. In: AAAI, AAAI Press (2014) 2717–2723
15. Martins, R., Joshi, S., Manquinho, V.M., Lynce, I.: Incremental cardinality con-

straints for MaxSAT. In: CP. Volume 8656 of LNCS., Springer (2014) 531–548
16. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.

196 (2013) 77–105
17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT. (2003) 502–518
18. Chandrasekaran, K., Karp, R.M., Moreno-Centeno, E., Vempala, S.: Algorithms

for implicit hitting set problems. In: SODA, SIAM (2011) 614–629
19. Saikko, P., Wallner, J.P., Järvisalo, M.: Implicit hitting set algorithms for reasoning

beyond NP. In: KR, AAAI Press (2016) 104–113
20. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving.

In: Principles and Practice of Constraint Programming. (2013) 247–262
21. Lagniez, J., Biere, A.: Factoring out assumptions to speed up MUS extraction. In:

SAT. Volume 7962 of LNCS., Springer (2013) 276–292
22. Ansótegui, C., Gabàs, J., Levy, J.: Exploiting subproblem optimization in SAT-

based MaxSAT algorithms. J. Heuristics 22(1) (2016) 1–53
23. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT

solver. In: TACAS. Volume 7795 of LNCS., Springer (2013) 93–107
24. Bofill, M., Muñoz, V., Murillo, J.: Solving the wastewater treatment plant problem

with SMT. CoRR abs/1609.05367 (2016)
25. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic opti-

mization: algorithms & applications. Ann. Math. AI 62(3-4) (2011) 317–343

