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Abstract. FORT is a tool that implements the first-order theory of
rewriting for the decidable class of left-linear right-ground rewrite sys-
tems. It can be used to decide properties of a given rewrite system and to
synthesize rewrite systems that satisfy arbitrary properties expressible in
the first-order theory of rewriting. In this paper we report on the exten-
sions that were incorporated in the latest release (2.0) of FORT. These
include witness generation for existentially quantified variables in formu-
las, support for combinations of rewrite systems, as well as an extension
to deal with non-ground terms for properties related to confluence.

1 Introduction

In a recent paper [6] we introduced FORT, a decision and synthesis tool for the
first-order theory of rewriting induced by finite left-linear right-ground rewrite
systems. In this theory one can express well-known properties like termina-
tion, normalization, and confluence, but also properties like strong confluence
(∀ s ∀ t ∀u (s → t ∧ s → u =⇒ ∃ v (t →= v ∧ u →∗ v))) and the normal
form property (∀ s ∀ t ∀u (s → t ∧ s →! u =⇒ t →! u)). The decision proce-
dure implemented in FORTis based on tree automata techniques (Dauchet and
Tison [3]).

In this paper we present several extensions designed to make the tool more
useful. First of all, we added support for combinations of rewrite systems. This is
required to express properties like commutation (∀ s∀ t∀u(s→∗0 t ∧ s→∗1 u =⇒
∃ v (t →∗1 v ∧ u →∗0 v))) and equivalence (∀ s ∀ t (s ↔∗0 t ⇐⇒ s ↔∗1 t)) that
refer to two or more rewrite systems. Tree automata operate on ground terms.
Consequently, variables in formulas range over ground terms and hence the prop-
erties that FORT is able to decide are restricted to ground terms. Whereas for
termination and normalization this makes no difference, for other properties it
does, even for the restricted class of left-linear right-ground rewrite systems as
will be shown below. This brings us to the second extension: How can one use
FORT to decide properties on open terms? We show that for properties related to
confluence it suffices to add one or two fresh constants. We furthermore provide
sufficient conditions which obviate the need for additional constants. The third
extension is concerned with increasing the understanding of the yes/no answer
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provided by FORT in decision mode. For logical formulas with free variables we
are not only interested whether they are satisfied by a particular rewrite system,
but also which terms act as witnesses. Witness generation is also of interest for
existentially quantified variables appearing in formulas.

We assume familiarity with term rewriting. A command-line version of FORT
is available.1 We refer to [6] and the description on the website for the syntax of
the commands and formulas that can be passed to FORT.

2 Witness Generation

The usual output of FORT consists of tree automata (or their size) corresponding
to subformulas of the given formula, which is hard to read. To help the user in
understanding why a property holds or does not hold, we have now implemented
witness generation, which provides evidence by generating an n-tuple of ground
terms for free variables or (implicitly) existentially quantified ones. For instance,
if a given or synthesized TRS is not ground-confluent (¬∀ s ∀ t ∀u : (s →∗ t ∧
s→∗ u =⇒ ∃ v (t→∗ v ∧ u→∗ v)), it is interesting to provide witnessing terms
for the variables s, t, and u. Given the TRS consisting of the rules a→ f(a, b) and
f(a, b) → f(b, a), FORT produces the following terms as witnesses: s = f(a, b),
t = f(b, a), and u = f(f(a, b), b).

To cope with n-ary relations on terms, FORT uses bottom-up tree automata
that operate on encodings of n-tuples of ground terms, subsequently called RRn

automata. Given a signature F we let F (n) = (F ∪ {⊥})n with ⊥ /∈ F a fresh
constant. The arity of a symbol f1 · · · fn ∈ F (n) is the maximum of the arities of
f1, . . . , fn. Given terms t1, . . . , tn ∈ T (F), the encoding 〈t1, . . . , tn〉 ∈ T (F (n)) is
best illustrated on a concrete example. For the ground terms s = f(g(a), f(b, b)),
t = g(g(a)), and u = f(b, g(a)) we have 〈s, t, u〉 = fgf(ggb(aa⊥), f⊥g(b⊥a, b⊥⊥)).
So for each position occurring in one of the terms, function symbols of all terms
are put together, where the fresh symbol ⊥ is used for missing positions. We
refer to [6] for a formal definition.

The recursive algorithm depicted in Figure 1 generates (encoded) witnesses
that reach a given state α of an RRn automaton. As a side condition, it does
not make use of the given set Qv of visited states to avoid non-termination. In
the outer call, Qv = ∅. The set C of candidates contains all transition rules
ending in the given state α such that the states in the left-hand side of the rule
were not visited before. Furthermore, in the outermost call (Qv = {α}) rules
having a ⊥ in their list of function symbols are excluded as well, since they do
not produce encodings of terms over the original signature F . Then a rule with
minimal number of arguments (to obtain small witnesses) is chosen from C and
the function find terms is called recursively for each argument position to get
witnesses for the argument states. This might fail in case the automaton was not
normalized beforehand and we end up in non-reachable states, in which case we
move on to the next candidate rule from C.
1 http://cl-informatik.uibk.ac.at/software/FORT
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Input: • RRn automaton A = (F (n), Q,Qf ,∆)

• state α ∈ Q, set of states Qv ⊆ Q
Output: • term accepted in α not using states in Qv

Qv := Qv ∪ {α};
C := { fs(α1, . . . , αm)→ α ∈ ∆ | α1, . . . , αm /∈ Qv ∧ (Qv = {α} =⇒ ⊥ /∈ fs) };
while C 6= ∅ do

select fs(α1, . . . , αm)→ α ∈ C with minimal m and remove it from C;
if (ti := find terms(A, αi, Qv) for i = 1, . . . , m) does not fail then

return fs(t1, . . . , tm)

od;

fail

Fig. 1. Function find terms for witness generation.

In order to apply this algorithm to generate an n-tuple of terms accepted by
an RRn automaton, one has to call the function find terms with a final state
of the automaton and decode the resulting term over F (n).

Example 1. Consider the signature F = {a: 0, b: 0, g: 1, f: 2, h: 3} and the RR2

automaton A over F (2) with final state X and transition rules

aa→ α ⊥a→ α′ fg(α, β′)→ γ fh(α, β, α′)→ X ff(α, γ)→ X
bb→ β b⊥ → β′ gf(β, α′)→ γ gg(γ)→ γ ff(X, α)→ X

We compute find terms(A,X,∅). We have C = {fh(α, β, α′) → X,ff(α, γ) →
X}. Note that ff(X, α)→ X does not belong to C. We select the rule ff(α, γ)→ X
having the least number of arguments. The recursive call find terms(A, α, {X})
returns aa, since aa→ α is the only rule ending in α. Depending on the selected
transition rule ending in γ, after further recursive calls we obtain fg(aa, b⊥) or
gf(bb,⊥a). The latter term gives rise to ff(aa, gf(bb,⊥a)), which encodes the pair
of witnessing terms f(a, g(b)) and f(a, f(b, a)).

3 Combinations

Several important properties, like (normalization) equivalence, commutation,
and relative termination, refer to two or more TRSs. Inspired by Zantema’s
work on Carpa [10], we added support for combinations of rewrite systems in
FORT 2.0. For instance, the commutation property can be written as

forall s, t, u ([0] s ->* t & [1] s ->* u =>

exists v ([1] t ->* v & [0] u ->* v))

in FORT syntax. Here the indices 0 and 1 refer to different TRSs (provided
by the user in decision mode). Lists of indices (e.g. [0,2,3]) are also supported,
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indicating that the subsequent (sub)formula is checked for the union of the TRSs
corresponding to the listed indices. If no index is specified, the union of all
involved TRSs is taken. We return to commutation in Section 6. Here we compare
FORT with Carpa. The following task is mentioned in the Carpa distribution.2

Example 2. If we want to generate two terminating abstract rewrite systems
(ARSs) such that their union is non-terminating, the formula ([0] SN & [1] SN

& ∼SN) can be used. The additional requirement that the composition of both
relations is a subset of the transitive closure of one of them is expressed as

forall s, t, u ([0] s -> t & [1] t -> u => [0] s ->+ u | [1] s ->+ u)

FORT synthesizes the following two ARSs satisfying the conjunction of these
requirements: A0 = {a→ b, c→ a} and A1 = {a→ b, b→ c}. Using completely
different techniques, the same ARSs are generated by Carpa.

Whereas Carpa is restricted to ARSs, its successor Carpa+ can synthesize
TRSs that admit rules of the shape a → b, a → f(b), and f(a) → b with
exactly one unary function symbol f . The properties supported by Carpa+ are
restricted to those that can be encoded into the conjunctive fragment of SMT-
LRA (linear real arithmetic). For this reason properties like (local) confluence
are only approximated. In Carpa these and many others properties were encoded
exactly in SAT, which is possible since the number of different terms (constants)
is finite in the case of ARSs.

Small ARSs as in Example 2 are easily synthesized by FORT. Checking the
examples from the Carpa website for correctness poses no problem for the decision
mode of FORT, but the method does not scale very well in synthesis mode.

4 Properties on Open Terms

Since the decision algorithm implemented in FORT is based on tree automata,
variables in formulas range over ground terms and hence the properties that
FORT is able to decide are restricted to ground terms. Whereas for properties
like termination and normalization (restricted to right-ground rewrite systems)
this makes no difference, for most properties it does, even for left-linear right-
ground rewrite systems, as illustrated by the following example.

Example 3. The TRS R consisting of the rewrite rules a → b, f(x, a) → b, and
f(b, b)→ b is ground confluent since all ground terms rewrite to the normal form
b. However, R is not confluent as b← f(x, a)→ f(x, b) with normal forms b and
f(x, b).

In this section we consider the following properties of single TRSs:

CR : ∀ s ∀ t ∀u (s→∗ t ∧ s→∗ u =⇒ t ↓ u)

WCR : ∀ s ∀ t ∀u (s→ t ∧ s→ u =⇒ t ↓ u)

2 https://www.win.tue.nl/~hzantema/carpa.html

https://www.win.tue.nl/~hzantema/carpa.html


5

SCR : ∀ s ∀ t ∀u (s→ t ∧ s→ u =⇒ ∃ v (t→= v ∧ u→∗ v))

UN : ∀ s ∀ t ∀u (s→! t ∧ s→! u =⇒ t = u)

UNC : ∀ t ∀u (t↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

NFP : ∀ s ∀ t ∀u (s→ t ∧ s→! u =⇒ t→! u)

The results stated for confluence below apply to commutation as well. Let P =
{CR,WCR,SCR,UN,UNC,NFP}. For P ∈ P we write GP to denote the property
P restricted to ground terms. Let R consist of all pairs (F ,R) where R is a finite
left-linear right-ground TRSs over the finite signature F (containing at least one
constant).

For all properties P ∈ P, GP does not imply P . Example 3 gives a coun-
terexample to the implication for all properties except SCR. For SCR the TRS
consisting of the rules a→ b, b→ f(a, a), and f(a, x)→ a can be used. The peak
f(b, x)← f(a, x)→ a cannot be joined using →= · ∗← but any ground instance
of f(b, x) can be reached from a. Nevertheless, according to the following result
(whose proof can be found in [7]), it is possible to check a property P ∈ P using
tree automata techniques.

Lemma 4. If (F ,R) ∈ R then

1. (F ,R) � P ⇐⇒ (F ∪ {c},R) � GP for all P ∈ P \ {UNC}
2. (F ,R) � UNC ⇐⇒ (F ∪ {c, c′},R) � GUNC

with fresh constants c and c′. ut

The following example shows that adding a single fresh constant is not suf-
ficient for UNC.

Example 5. The left-linear right-ground TRS R consisting of the rules

a→ b f(x, a)→ f(b, b) f(b, x)→ f(b, b) f(f(x, y), z)→ f(b, b)

does not satisfy UNC since f(x, b) ← f(x, a) → f(b, b) ← f(y, a) → f(y, b) is a
conversion between distinct normal forms. Adding a single fresh constant c is
not enough to violate GUNC as f(c, b) is the only ground instance of f(x, b) that
is a normal form. The latter is ensured by the last two rewrite rules. Adding
another fresh constant c′ solves the issue. FORT 2.0 generates the witnessing
terms f($, b) and f(%, b): f($, b)← f($, a)→ f(b, b)← f(%, a)→ f(%, b). Here $
and % are the fresh constants added by FORT.

Lemma 4 does not generalize to arbitrary properties that are expressible in
the first-order theory of rewriting. Consider for example the formula ϕ:

¬∃ s ∃ t ∃u ∀ v (v ↔∗ s ∨ v ↔∗ t ∨ v ↔∗ u)

which is satisfied on open terms (with respect to any (F ,R) ∈ R). For the TRS
consisting of the rule f(x)→ a and two additional constants c and c′, ϕ does not
hold for ground terms because every ground term is convertible to a, c or c′.

The following result (whose proof can be found in [7]) shows that for prop-
erties in P it is not always necessary to add fresh constants. Here a monadic
signature consists of constants and unary function symbols.
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Lemma 6. Let (F ,R) ∈ R such that R is ground or F is monadic. For all
P ∈ P, (F ,R) � P if and only if (F ,R) � GP . ut

FORT indeed benefits from this optimization. For instance, deciding GCR of
Cops #506 whose signature is monadic takes 1.73 seconds if a fresh constant is
added, compared to 0.85 seconds if Lemma 6 is used.

We now report on some synthesis experiments that we performed in FORT,
based on the following diagram which summarizes the relationships between
properties P and GP for P ∈ P:

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

The following TRSs were produced by FORT on the given formulas when re-
stricting the signature (using the command-line option -f "f:2 a:0 b:0") to
a binary function symbol f and two constants a and b:

GWCR & ∼WCR & ∼GCR a→ b f(x, a)→ a a→ f(a, a)

GCR & ∼CR & ∼GSCR a→ b f(x, a)→ b b→ f(a, a)

GNFP & ∼NFP & ∼GCR a→ b f(x, a)→ f(a, a) f(b, b)→ f(a, a)

GUNC & ∼UNC & ∼GNFP a→ a f(x, a)→ a f(b, x)→ b

We do not know whether there exist TRSs over the restricted signature that
satisfy GUN & ∼UN & ∼GUNC. Human expertise was used to produce a witness over
a larger signature, which was subsequently simplified using the decision mode of
FORT:

b→ a c→ c d→ c f(x, a)→ A f(x,A)→ A

b→ c d→ e f(x, e)→ A f(c, x)→ A

FORT produces the following terms as witnesses for the fact that UN is not
satisfied: s = f(d, $), t = A, and u = f(e, $). Indeed both A and f(e, $) are normal
forms reachable from f(d, $). Moreover, we obtain witnesses t = a and u = e
showing that GUNC does not hold. (The rule c→ c is needed to satisfy GUN.)

Since the previous release (1.0) of FORT, many-sorted TRSs are supported.
As the set of many-sorted ground terms is accepted by a tree automaton, this
extension was mostly straightforward. However, concerning confluence-related
properties on non-ground terms, one has to add one (or two for UNC) fresh
constant(s) for every sort that variables appearing in the rules can take.

http://cops.uibk.ac.at/?q=506
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5 Other Extensions

Apart from the extensions detailed before, the efficiency of FORT was improved
(in FORT 1.0) using the multithreading features of Java for parallelizing both
synthesis and decision. Furthermore, we now also admit variables in right-hand
sides of rewrite rules, provided they appear only once in the rule. This extension
opens up the possibility of using FORT to compute dependency graphs based on
the non-variable approximation for termination analysis [5], check infeasibility
of conditional critical pairs for confluence analysis of conditional TRSs [9], and
compute needed redexes based on the strong and non-variable approximations
for the analysis of optimal normalizing strategies [4]. Even inside FORT this
extension was already useful. We previously used (−→‖ R ∪ −→‖ −1R )+ to construct
an RR2 automaton for the conversion relation (↔∗) but now we can use−→‖ +

R∪R−1

which results in smaller automata for many TRSs. For instance, the conversion
relation ↔∗ induced by the TRS

g(f(a))→ f(g(f(a))) g(f(a))→ f(f(a)) f(f(a))→ f(a)

is modeled as an RR2 automaton consisting of 118 transitions, down from 427.

6 Experimental Results

In this section we report on the experiments we performed to compare FORT 2.0
with AGCP [1,2] and CoLL [8]. As starting point we consider the 121 left-linear
right-ground TRSs in the latest version (765) of the Cops database.3

AGCP is a ground confluence tool for many-sorted TRSs based on rewriting
induction. In Table 1 we compare FORT and AGCP v0.03 on one-sorted versions
of the selected problems. Internally, FORT computes a compatible many-sorted
signature with maximal number of sorts, when faced with a ground TRS. This
is beneficial to reduce the set of possible ground terms, resulting in smaller
automata. We used a 60 seconds time limit. FORT subsumes AGCP on our col-
lection, with one exception. On Cops #741 AGCP reports “no” whereas FORT
does not deliver an answer within 60 seconds. Increasing the time limit to 150
seconds enables FORT to report “no” as well.

CoLL is a confluence tool for left-linear TRSs based on commutation and it
can establish commutation of multiple TRSs. In Table 2 we compare FORT 2.0
and the latest version4 of CoLL on 7381 =

(
121
2

)
+ 121 commutation problems

stemming from the selected 121 TRSs. To ensure compatibility of the signatures
of the separate TRSs, we consistently renamed all function symbols (c0, c1, . . .
for constants, g0, g1, . . . for unary symbols, etc.). Also for this comparison we
used a 60 seconds time limit. FORT fully subsumes CoLL on our collection.

Detailed results can be obtained from the FORT website. AGCP and CoLL are
not restricted to left-linear right-ground TRSs, but we believe that our research
can help to make these (and other) tools stronger.

3 http://cops.uibk.ac.at/
4 Version 1.2 released on January 17, 2018; comparing FORT with version 1.1 of CoLL

brought several bugs to light in the latter.

http://cops.uibk.ac.at/?q=741
http://cops.uibk.ac.at/
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Table 1. AGCP versus FORT on 121 ground confluence problems.

tool yes (∅ time) no (∅ time) maybe timeout total time

AGCP 24 (0.02 s) 78 (0.06 s) 15 4 276 s

FORT 37 (0.45 s) 81 (0.70 s) – 3 253 s

Table 2. CoLL versus FORT on 7381 commutation problems.

tool yes (∅ time) no (∅ time) maybe timeout total time

CoLL 623 (0.21 s) – 276 6482 390682 s

FORT 761 (0.25 s) 6567 (0.60 s) – 36 6308 s

Acknowledgments. We are grateful to Bertram Felgenhauer, Nao Hirokawa, and
Julian Nagele for their support with the experiments. The comments by the
anonymous reviewers helped to improve the presentation.
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