
Automated Reasoning about Key Sets?

Miika Hannula and Sebastian Link

University of Auckland, Department of Computer Science, New Zealand
[m.hannula|s.link]@auckland.ac.nz

Abstract. Codd’s rule of entity integrity stipulates that every table
in a database has a primary key. Hence, the attributes that form the
primary key carry no missing information and have unique value combi-
nations. In practice, data records cannot always meet such requirements.
Previous work has proposed the notion of a key set, which can identify
more data records uniquely when information is missing. Apart from the
proposal, key sets have not been investigated much further. We outline
important database applications, and investigate computational limits
and techniques to reason automatically about key sets. We establish a
binary axiomatization for the implication problem of key sets, and prove
its coNP-completeness. We show that perfect models do not always exist
for key sets. Finally, we show that the implication problem for unary
key sets by arbitrary key sets has better computational properties. The
fragment enjoys a unary axiomatization, is decidable in time quadratic
in the input, and perfect models can always be generated.

1 Introduction

Keys provide efficient access to data in database systems. They are required to
understand the structure and semantics of data. For a given collection of entities,
a key refers to a set of column names whose values uniquely identify an entity
in the collection. For example, a key for a relational table is a set of columns
such that no two different rows have matching values in each of the key columns.
Keys are fundamental for most data models, including semantic models, object
models, XML, RDF, and graphs. They advance many classical areas of data
management such as data modeling, database design, and query optimization.
Knowledge about keys empowers us to 1) uniquely reference entities across data
repositories, 2) reduce data redundancy at schema design time to process updates
efficiently at run time, 3) improve selectivity estimates in query processing, 4)
feed new access paths to query optimizers that can speed up the evaluation of
queries, 5) access data more efficiently via physical optimization such as data
partitioning or the creation of indexes and views, and 6) gain new insight into
application data. Modern applications create even more demand for keys. Here,
keys facilitate data integration, help detect duplicates and anomalies, guide the
repair of data, and return consistent answers to queries over dirty data. The
discovery of keys from data sets is a core task of data profiling.

? Research is supported by Marsden funding from the Royal Society of New Zealand.

Due to the demand in real-life applications, data models have been extended to
accommodate missing information. The industry standard for data management,
SQL, allows occurrences of a null marker to model any kind of missing value.
Occurrences of the null marker mean that no information is available about an
actual value of that row on that attribute, not even whether the value exists
and is unknown nor whether the value does not exist. Codd’s principle of entity
integrity suggests that every entity should be uniquely identifiable. In SQL, this
has led to the notion of a primary key. A primary key is a collection of attributes
which stipulates uniqueness and completeness. That is, no row of a relation must
have an occurrence of the null marker on any columns of the primary key and
the combination of values on the columns of the primary key must be unique.
The requirement to have a primary key over every table in the database is often
inconvenient in practice. Indeed, it can happen easily that a given relation does
not exhibit any primary key. This is illustrated by the following example.

Example 1. Consider the following snapshot of data from an accident ward at
a hospital [15]. Here, we collect information about the name and address of a
patient, who was treated for an injury in some room at some time.

room name address injury time
1 Miller ⊥ cardiac infarct Sunday, 19
⊥ ⊥ ⊥ skull fracture Monday, 19
2 Maier Dresden leg fracture Sunday, 16
1 Miller Pirna leg fracture Sunday, 16

Evidently, the snapshot does not satisfy any primary key since each column
features some null marker occurrence, or a duplication of some value.

In response, several researchers proposed the notion of a key set. As the term
suggests, a key set is a set of attribute subsets. Naturally, we call the elements
of a key set a key. A relation satisfies a given key set if for every pair of distinct
rows in the relation there is some key in the key set on which both rows have
no null marker occurrences and non-matching values on some attribute of the
key. The formal definition of a key set will be given in Definition 1 in Section 3.
The flexibility of a key set over a primary key can easily be recognized, as a
primary key would be equivalent to a singleton key set, with the only element
being the primary key. Indeed, with a key set different pairs of rows in a relation
may be distinguishable by different keys of the key set, while all pairs of rows
in a relation can only be distinguishable by the same primary key. We illustrate
the notion of a key set on our running example.

Example 2. The relation in Example 1 satisfies no primary key. Nevertheless,
the relation satisfies several key sets. For example, the key set {{room}, {time}}
is satisfied, but not the key set {{room, time}}. The relation also satisfies the key
sets X1 = {{room, time}, {injury, time}} and X2 = {{name, time}, {injury, time}},
as well as the key set X = {{room,name, time}, {injury, time}}.

2

It is important to point out a desirable feature that primary keys and key sets
share. Both are independent of the interpretation of null marker occurrences.
That is, any given primary key and any given key set is either satisfied or not,
independently of what information any of the null marker occurrences represent.
Primary keys and key sets are only dependent on actual values that occur in the
relevant columns. This is achieved by stipulating the completeness criterion. The
importance of this independence is particularly appealing in modern applications
where data is integrated from various sources, and different interpretations may
be associated with different occurrences of null markers.

Given the flexibility of key sets over primary keys, and given their indepen-
dence of null marker interpretations, it seems natural to further investigate the
notion of a key set. Somewhat surprisingly, however, neither the research commu-
nity nor any system implementations have analyzed key sets since their original
proposal in 1989. The main goal of this article is to take first steps into the
investigation of computational problems associated with key sets. In database
practice, one of the most fundamental problems is the implication problem. The
problem is to decide whether for a given set Σ ∪ {ϕ} of key sets, every relation
that satisfies all key sets in Σ also satisfies ϕ. Reasoning about the implication of
any form of database constraints is important because efficient solutions to the
problem enable us to facilitate the processing of database queries and updates.

Example 3. Recall the key sets X1, X2, and X from Example 2. An instance of the
implication problem is whether Σ = {X1,X2} implies the key set ϕ = X , and an-
other instance is whether Σ implies ϕ′ = {{room}, {name}, {address}, {time}}.

Contributions. Our contributions can be summarized as follows.

– We compare the notion of a key set with other notions of keys. In particular,
primary keys are key sets with just one element, and certain keys are unary
key sets, for which every key is a singleton.

– We illustrate how automated reasoning tools for key sets can facilitate effi-
cient updates and queries in database systems.

– We establish a binary axiomatization for the implication problem of key sets.
Here, binary refers to the maximum number of premises that any inference
rule in our axiomatization can have. This is interesting as all previous notions
of keys enjoy unary axiomatizations, in particular primary keys. What that
means semantically is that every given key set that is implied by a set of key
sets is actually implied by at most two of the key sets.

– We establish that the implication problem for key sets is coNP -complete.
Again, this complexity is quite surprising in comparison with the linear time
decidability of other notions of keys.

– An interesting notion in database theory is that of Armstrong databases. A
given class of constraints, such as keys, key sets, or other data dependencies
[13], is said to enjoy Armstrong databases whenever for every given set of
constraints in this class there is a single database with the property that for
every constraint in the class, the database satisfies this constraint if and only
if the constraint is implied by the given set of constraints. This is a powerful

3

property as multiple instances over the implication problem reduce to val-
idating satisfaction over the same Armstrong database. Consequently, the
generation of Armstrong databases would create ‘perfect models’ of a given
constraint set, which has applications in the acquisition of requirements in
database practice. We show that key sets do not enjoy Armstrong relations,
as opposed to other classes of keys known from the literature.

– We then identify an expressive fragment of key sets for which the associated
implication problem can be characterized by a unary axiomatization and a
quadratic-time algorithm. The fragment also enjoys Armstrong relations and
we show how to generate them with conservative use of time and space.

Organization. We discuss related work in Section 2. Basic notions and nota-
tion are fixed in Section 3. Section 4 discusses applications of key sets in the
processing of queries and updates. An axiomatization for key sets is established
in Section 5. The coNP -completeness of the implication problem is settled in
Section 6. The general existence of Armstrong relations is dis-proven in Sec-
tion 7. A computationally friendly fragment of key sets is identified in Section 8.
We conclude and briefly discuss future work in Section 9.

2 Related Work

We provide a concise discussion on the relationship of key sets with other notions
of keys over relations with missing information.

Codd is the inventor of the relational model of data [4]. He proposed the rule
of entity integrity, which stipulates that every entity in every table should be
uniquely identifiable. In SQL that led to the introduction of primary keys, which
stipulate uniqueness and completeness on the attributes that form the primary
key. The primary key is a distinguished candidate key. We call an attribute set a
candidate key for a given relation if and only if every pair of distinct tuples in the
relation has no null marker occurrences on any of the attributes of the candidate
key and there is some attribute of the candidate key on which the two tuples
have non-matching values. The notions of primary and candidate keys have been
introduced very early in the history of database research [12]. Candidate keys
are singleton key sets, that is, key sets with just one element (namely the can-
didate key). Hence, instead of having to be complete and unique on the same
combination of columns in a candidate key, key sets offer different alternatives
of being complete and unique for different pairs of tuples in a relation. Candi-
date keys were studied in [7]. In that work, the associated implication problem
was characterized axiomatically and algorithmically, the automatic generation
of Armstrong relations was established, and extremal problems associated with
families of candidate keys were investigated. As Example 1 shows, there are
relations on which no candidate key holds, but which satisfy key sets.

Lucchesi and Osborn studied computational problems associated with can-
didate keys [12]. However, their focus was an algorithm that finds all candidate
keys implied by a given set of functional dependencies. They also proved that
deciding whether a given relation satisfies some key of cardinality not greater

4

than some given positive integer is NP-complete. Recently, this problem was
shown to be W[2]-complete in the size of the key [2]. The discovery which key
sets hold on a given relation is beyond the scope of this paper and left as an
open problem for future work.

Key sets were introduced by Thalheim [14] as a generalization of Codd’s rule
for entity integrity. He studied combinatorial problems associated with unary
key sets, such as the maximum cardinality that non-redundant families of unary
key sets can have, and which families attain them [13, 15]. Key sets were further
discussed by Levene/Loizou [11] where they also generalized Codd’s rule for
referential integrity. Somewhat surprisingly, the study of the implication problem
for key sets has not been addressed by previous work. This is also true for other
automated tasks which require reasoning about key sets.

More recently, the notions of possible and certain keys were proposed [8].
These notions are defined for relations in which null marker occurrences are
interpreted as ‘no information’, and possible worlds of an incomplete relation are
obtained by independently replacing null marker occurrences by actual domain
values (or the N/A marker indicating that the value does not exist). A key is said
to be possible for an incomplete relation if and only if there is some possible world
of the incomplete relation on which the key holds. A key is said to be certain
for an incomplete relation if and only if the key holds on every possible world
of the incomplete relation. For example, the relation in Example 1 satisfies the
possible key p〈room, name, address〉, since the key {room,name,address} holds
on the possible world:

room name address injury time
1 Miller Dresden cardiac infarct Sunday, 19
2 Maier Pirna skull fracture Monday, 19
2 Maier Dresden leg fracture Sunday, 16
1 Miller Pirna leg fracture Sunday, 16

of the relation. In contrast, the key {room,name} is not possible for the relation
because the first and last tuple will have matching values on room and name
in every possible world of the relation. The key {address} is possible, but not
certain, and the key {room,time} is certain for the given relation. Now, it is not
difficult to see that an incomplete relation satisfies the certain key c〈A1, . . . , An〉
if and only if the relation satisfies the key set {{A1}, . . . , {An}}. In this sense,
certain keys correspond to key sets which have only singleton keys as elements.
The papers [8] investigate computational problems for possible and certain keys
with NOT NULL constraints. In the current paper we investigate a different class
of key constraints, namely key sets. In particular, the computationally-friendly
fragment of key sets we identify in Section 8 subsumes the class of certain keys
as the special case of unary key sets.

Recently, contextual keys were introduced as a means to separate complete-
ness from uniqueness requirements [16]. A contextual key is an expression (C,X)
where X ⊆ C. These are different from key sets since X ⊆ C is a key for only
those tuples that are complete on C. In particular, the special case where C = X

5

only requires uniqueness on X for those tuples that are complete on X. This
captures the UNIQUE constraint of SQL. We leave it as future work to investigate
contextual key sets.

3 Preliminary Definitions

In this section, we give some basic definitions and fix notation.
A relation schema is a finite non-empty set of attributes, usually denoted by

R. A relation r over R consists of tuples t that map each A ∈ R to Dom(A)∪{⊥}
where Dom(A) is the domain associated with attribute A and ⊥ is the unique
null marker. Given a subset X of R, we say that a tuple t is X-total if t(A) 6= ⊥
for all A ∈ X. Informally, a relation schema represents the column names of
database tables, while each tuple represents a row of the table, so a relation
forms a database instance. Moreover, Dom(A) represents the possible values
that can occur in column A of a table, and ⊥ represents missing information.
That is, if t(A) = ⊥, then there is no information about the value t(A) of tuple
t on attribute A.

In our running example, we have the relation schema

Ward={room,name,address,injury,time}.

Each of these attributes comes with a domain, which we do not specify any
further here. Each row of the table in Example 1 represents a tuple. The second
row, for example, is {injury, time}-total, but not total on any proper superset of
{injury, time}. The four tuples together constitute a relation over Ward.

The following definition introduces the central object of our studies. It was
first defined by Thalheim in [14].

Definition 1. A key set is a finite, non-empty collection X of subsets of a given
relation schema R. We say that a relation r over R satisfies the key set X if and
only if for all distinct t, t′ ∈ r there is some X ∈ X such that t and t′ are X-total
and t(X) 6= t′(X). Each element of a key set is called a key. If all keys of a key
set are singletons, we speak of a unary key set.

In the sequel we write X ,Y,Z, . . . for key sets and X,Y, Z, . . . for attribute
sets, and A,B,C, . . . for attributes. We sometimes write A instead of {A} to
denote the singleton set consisting of only A. If X is a sequence, then we may
sometimes write simply X for the set that consists of all members of X.

As already mentioned in Example 2, the relation in Example 1 satisfies the
key sets X1, X2, and X . It also satisfies the unary key set {{room}, {time}}, but
not the singleton key set {{room, time}}.

A fundamental problem in automated reasoning about any class of con-
straints is the implication problem. For key sets, the problem is to decide whether
for an arbitrary relation schema R, and an arbitrary set Σ∪{ϕ} of key sets over
R, Σ implies ϕ. Indeed, Σ implies ϕ if and only if every relation over R that
satisfies all key sets in Σ also satisfies the key set ϕ. The following section il-
lustrates how solutions to the implication problem of key sets can facilitate the
efficient processing of queries and updates.

6

4 Applications for Automated Reasoning

The most important applications of data processing are updates and queries.
We briefly describe in this section how automated reasoning about key sets can
facilitate each of these application areas.

4.1 Efficient Updates

When databases are updated it must be ensured that the resulting database
satisfies all the constraints that model the business rules of the underlying ap-
plication domain. Violations of the constraints indicate sources of inconsistency,
and an alert of such inconsistencies should at least be issued to the database
administrator. This is to ensure that appropriate actions can be taken, for ex-
ample, to disallow the update. This quality assurance process incurs an overhead
in terms of the time it takes to validate the constraints. As such, users of the
database expect that such overheads are minimized. In particular, the time on
validating constraints increases with the volume of the database. As a principal,
the set of constraints that are specified on the database and therefore subject
to validation upon updates, should be non-redundant. That is, no constraints
should be specified that are already implied by other specified constraints. The
simple reason is that the validation of any implied constraints is a waste of time
because the validity of the other constraints already ensures that any implied
constraint is valid as well. This is a strong real-life motivation for developing tools
that can decide implication. In our running example, the set Σ = {X1,X2,X}
of key sets is redundant because the subset Σ′ = {X1,X2} implies the key set
X . Automated solutions to the implication problem can thus automatize the
minimization of overheads in validating constraints under database updates.

4.2 Efficient Queries

We are interested in the names of patients that can be identified uniquely based
on information about their name and the room and time at the accident ward,
or based on information about their injury and the time at the accident ward.
In SQL, this may be expressed as follows.

SELECT name
FROM ward
WHERE room IS NOT NULL AND name IS NOT NULL AND

time IS NOT NULL

GROUP BY room, name, time
HAVING count(room,name, time) ≤ 1
UNION

SELECT name
FROM ward
WHERE injury IS NOT NULL AND time IS NOT NULL

GROUP BY injury, time
HAVING count(injury, time) ≤ 1 ;

7

X
X ∪ Y

X ∪ {XY }
X ∪ {X,Y }

X1 X2

{Z(X1,X2) | (X1, X2) ∈ X1 ×X2}
Z(X1,X2) ⊆ X1 ∪X2, and

X1 ⊆ Z(X1,X2) or X2 ⊆ Z(X1,X2)

Upward closure Refinement Composition

Table 1: An axiomatization A for key sets

Knowing that the underlying relation over Ward satisfies the two key sets X1

and X2 and that the key set X = {{room,name, time}, {injury, time}} is implied
by X1 and X2, one can deduce that every tuple of Ward must be in at least
one of the sub-query results of the UNION query. That is, the query above can be
simplified to

SELECT DISTINCT name
FROM ward ;

Note that the DISTINCT word is necessary since the UNION operator eliminates
duplicates. When evaluated on the example from the introduction, each query
will return the result {(name: Miller),(name: ⊥), (name: Maier)}.

Motivated by the applications of key sets for data processing and the lack of
knowledge on automated reasoning tasks associated with key sets, the following
sections will investigate the implication problem for key sets.

5 Axiomatizing Key Sets

In this section we establish axiomatizations for arbitrary key sets as well as unary
ones. This will enable us to effectively enumerate all implied key sets, that is, to
determine the semantic closure Σ∗ = {σ | Σ |= σ} of any given set Σ of key sets.
A finite axiomatization facilitates human understanding of the interaction of the
given constraints, and ensures all opportunities for the use of these constraints
in applications can be exploited.

In using an axiomatization we determine the semantic closure by applying

inference rules of the form
premise

conclusion
. For a set R of inference rules let Σ `R ϕ

denote the inference of ϕ from Σ by R. That is, there is some sequence σ1, . . . , σn
such that σn = ϕ and every σi is an element of Σ or is the conclusion that results
from an application of an inference rule in R to some premises in {σ1, . . . , σi−1}.
Let Σ+

R = {ϕ | Σ `R ϕ} be the syntactic closure of Σ under inferences by
R. R is sound (complete) if for every set Σ over every R we have Σ+

R ⊆ Σ∗

(Σ∗ ⊆ Σ+
R). The (finite) set R is a (finite) axiomatization if R is both sound

and complete.
Table 1 shows a finite axiomatization A for key sets. A non-trivial rule is

Composition which is illustrated by our running example.

Example 4. Recall Example 1 from the introduction, in particular Σ = {X1,X2}
and ϕ = X . It turns out that ϕ is indeed implied by Σ, since ϕ can be inferred

8

from Σ by an application of the Composition rule, and the rule is sound for the
implication of key sets. Indeed, X1 ×X2 consists of:

({room,time}, {name,time}),
({room,time}, {injury,time}),

({injury,time}, {name,time}), and
({injury,time}, {injury,time}) .

and for each element X = (X1, X2) we need to pick one attribute set ZX that
is contained in the union X1 ∪ X2 and contains either X1 or X2. For the first
element we pick {room, time,name}, and for the remaining three elements we
pick {injury, time}. That results in the key set X .

We now proceed with the completeness proof for the axiom system A of Table
1. The proof proceeds in three stages. First in Lemma 1, we show a characteri-
zation of the implication problem. This is applied in Lemma 2 to show that A
extended with n-ary Composition for all n ∈ N is complete (see Table 2). At
last, we show in Lemma 3 that n-ary Composition can be simulated with the
binary Composition of A.

X1 . . . Xn

{ZX |X ∈ X1 × . . .×Xn}
ZX ⊆

⋃
X and

∨
i Xi ⊆ ZX

Table 2: The n-ary Composition rule

Lemma 1. {X1, . . . ,Xn} |= Y iff for all (X1, . . . , Xn) ∈ X1 × . . . × Xn there is
Z ⊆ Y such that

⋃
Z ⊆

⋃
iXi, and Xi ⊆

⋃
Z for some i.

Proof. Assume first that one finds such an Z. We show that any relation r that
satisfies each Xi satisfies also Y. Let t, t′ be two tuples from r. Then for some
(X1, . . . , Xn) ∈ X1 × . . .× Xn, t and t′ are both

⋃
iXi-total and disagreeing on

each Xi. Assume that i is such that Xi ⊆
⋃
Z, and let A ∈ Xi be such that

t(A) 6= t′(A). Then selecting some Z ∈ Z such that it also contains A, we have
that t and t′ are Z-total and deviate on Z. Thus Z is witness for r |= Y.

For the other direction we assume that no such Z exists. Then there is
(X1, . . . , Xn) ∈ X1 × . . . × Xn such that for Z := {Z ∈ Y | Z ⊆

⋃
iXi},

Xi 6⊆
⋃
Z for all i. Then, selecting an attribute Ai from Xi \

⋃
Z for all i, we

may construct a relation r satisfying {X1, . . . ,Xn,¬Y}. This relation r consists
of two tuples t, t′ where t is a constant function mapping all of R to 0, and t′

maps
⋃

iAi to 1,
⋃

iXi \
⋃

iAi to 0, and all the remaining attributes to ⊥. Now,
obviously r satisfies all Xi. Furthermore, for Y ∈ Y \ Z, t′ is not Y -total, and
for Y ∈ Y ∩ Z both t and t′ are Y -total but with constant values 0. Therefore,
r is a witness of {X1, . . . ,Xn} 6|= Y which concludes the proof. ut

Notice that the latter condition of Lemma 1 can be equivalently stated as Xi ⊆⋃
{Y ∈ Y | Y ⊆

⋃
iXi} for some i.

9

Lemma 2. The axiomatization A extended with n-ary Composition is complete
for key sets.

Proof. Assume {X1, . . . ,Xn} |= Y. Then we obtain by Lemma 1 for all X =
(X1, . . . , Xn) ∈ X1 × . . . × Xn a subset ZX ⊆ Y such that

⋃
ZX ⊆

⋃
X,

and Xi ⊆
⋃
ZX for some i. Then by Composition we may derive {

⋃
ZX |

X ∈ X1 × . . . × Xn}. With repeated applications of Refinement we then derive⋃
{ZX |X ∈ X1 × . . .×Xn}. Since this set is a subset of Y, we finally obtain Y

with a single application of Upward closure. ut

Lemma 3. n-ary Composition is derivable in A.

Proof. Assume that K = {ZX |X ∈ X1× . . .×Xn} is obtained from X1, . . . ,Xn

by an application of n-ary Composition. We will perform consecutive applica-
tions of (binary) Composition until we have obtained K. Composition is applied
incrementally so that the first application of this rule combines X1 and X2 to
obtain a new key set X , the second combines X and X3 to obtain the next key
set X ′, the third X ′ and X4 to obtain X ′′, and so forth. Once Xn is reached the
cycle is started again from X1.

At each step of the aforementioned procedure we have deduced a key set
X such that each X ∈ X either is a union

⋃
Y1 ∪ . . . ∪

⋃
Yn for Yi ⊆ Xi, or

belongs to the required key set K. In the previous case, provided that each Yi is
the maximal subset of Xi such that

⋃
Yi ⊆ X, we refer to Y1 ∪ . . . ∪ Yn as the

maximal decomposition of X and |Y1 ∪ . . .∪Yn| as the decomposition size of X.
Furthermore, given a set ZX ∈ K where X ∈ X1 × . . . × Xn we say that a set
Xi ∈X is full in ZX if Xi ⊆ ZX . By the prerequisite of the n-ary Composition
some member of X is always guaranteed to be full in ZX .
Initialization. Consider an instance of n-ary Composition. We initialize the
procedure by applying Composition n− 1 many times so that we obtain the key
set {

⋃
X |X ∈ X1× . . .×Xn}. This is done by letting U1 := X1 and taking the

key set Ui+1 = {X1 ∪X2 | (X1, X2) ∈ Ui ×Xi+1} for i = 1, . . . , n− 1.
Inductive step. After the initial step we have reached a key set V1 := Un such
that all X ∈ V1 \ K have decomposition size at least 1. Assume now that we
have reached a key set Vm such that all X ∈ Vm \ K have decomposition size at
least m. As the induction step we show how to obtain a key set Vm+1 such that
every member of Vm+1 \ K has decomposition size at least m + 1. This is done
by taking a single round of applications of Composition to Vm and X1, . . . ,Xn.
That is, Vm and X1 are first combined using Composition, then the outcome is
combined with X2, and its outcome with X3, and so forth until we have applied
this procedure to Xn. All these applications keep the members of Vm ∩ K fixed.
For instance, at the first step Z(X,Y) for X ∈ Vm ∩K and any Y ∈ X1 is defined
as X. We show how this deduction handles an arbitrary X ∈ Vm \ K.

By induction assumption each X ∈ Vm \ K has decomposition size at least
m. Let

⋃
Y1 ∪ . . . ∪

⋃
Yn be the maximal decomposition of X. Now, assume

towards a contradiction that for each i there is Yi ∈ Yi such that Yi is not full
in any ZY ∈ K where Y ∈ Y1 × . . .×Yn and Yi is the ith member of Y . Then,
however, the diagonal Y ′ = (Y1, . . . , Yn) must have a member that is full in ZY ′ .

10

This is a contradiction and hence there is i such that all Yi ∈ Yi are full in some
ZY ∈ K where Y ∈ Y1 × . . .×Yn and Yi is the ith member of Y . With regards
to X, Composition is then applied as follows. For the first i−1 applications X is
kept fixed. For the ith application that considers Xi, each pair of X and Y ∈ Yi
is transformed to that ZY ∈ K in which Y is full. Furthermore, each pair of X
and Y ∈ Xi \ Yi is transformed to XY . Take note that the decomposition size
of XY is at least n+ 1. At last, the remaining applications of Composition keep
the obtained sets fixed. Since this procedure is applied to all X ∈ Vm \ K, we
obtain that Vm+1 \K has only sets with decomposition size at least m+ 1. This
concludes the induction step.

Now, VM+1 where M = |X1 ∪ . . . ∪ Xn| is a subset of K. Hence, we conclude
that VM+1 yields K with one application of Upward closure. ut

Note that a simulation of one application of n-ary of Composition to {X1, . . . ,Xn}
takes at most (n + 1) · |

⋃n
i=1 Xi| applications of binary Composition plus one

application of Upward Closure.
The previous three lemmata now generate the following axiomatic character-

ization of key set implication. We omit the soundness proof which is straightfor-
ward to check.

Theorem 1. The axiomatization A is sound and complete for key sets.

Another important application. A direct application of an axiomatization
is the efficient representation of collections of key sets. Similar to the computa-
tion of non-redundant covers during update operations, removing any redundant
constraints makes the result easier to understand by humans. This is, for exam-
ple, important for the discovery problem of key sets in which one attempts to
efficiently represent all those key sets that a given relation satisfies. Even more
directly, one can understand any sound inference rule as an opportunity to apply
pruning techniques as part of a discovery algorithm. A complete axiomatization
ensures all opportunities for the pruning of a search space can be exploited.

6 Complexity of Key Set Implication

In this section we settle the exact computational complexity of the implication
problem for key sets. While the implication problem for most notions of keys
over incomplete relations is decidable in linear time, the implication problem for
key sets is likely to be intractable. This should also be seen as evidence for the
expressivity of key sets.

Theorem 2. The implication problem for key sets is coNP-complete.

Proof. Consider first the membership in co−NP. By Lemma 1, for determining
whether {X1, . . . ,Xn} 6|= Y, it suffices to choose X1, . . . , Xn respectively from
X1, . . . ,Xn, and then deterministically check that Xi 6⊆

⋃
Z for all i, where Z

is selected deterministically as Z := {Z ∈ Y | Z ⊆
⋃

iXi}.

11

For the hardness, we reduce from the complement of 3-SAT. Let C1, . . . , Cn

be a collection of clauses, each consisting of three literals, i.e., propositions of
the form p or negated propositions of the form ¬p. Let P be the set of all
proposition symbols that appear in some Ci, and let P consist of their negations.
Letting P ∪ P be our relation schema, we show that

∧
i

∨
Ci has a solution iff

{{p,¬p} | p ∈ P} 6|= {C1, . . . , Cn}. Notice that the antecedent is a set of singleton
key sets, each of size two.

Assume first that there is a solution. Let S ⊆ P(P) encode the complement
of that solution, i.e., S is such that each Ci contains some p /∈ S or some ¬p for
p ∈ S. Let S = {¬p | p 6∈ S}, and define singleton sets Xp = {p,¬p} ∩ (S ∪ S),
encoding those literals that are set false by the solution. Then Ci 6⊆

⋃
pXp for

all i, implying be Lemma 1 that {{p,¬p} | p ∈ P} 6|= {C1, . . . , Cn}.
Assume then that {{p,¬p} | p ∈ P} 6|= {C1, . . . , Cn}. By Lemma 1 we find

Xp ∈ {p,¬p} such that for no Z ⊆ {C1, . . . , Cn} we have that
⋃
Z ⊆

⋃
pXp

and
∨

pXp ⊆
⋃
Z. Now, Ci ⊆

⋃
pXp implies Xp ⊆ Ci for three distinct p, and

therefore we must have Ci 6⊆
⋃

pXp for all i. It is now easy to see that the sets
Xp give rise to a solution to the satisfiability problem. ut

7 Armstrong Relations

In this section we ask the basic question whether key sets enjoy Armstrong
relations. These are special models which are perfect for a given collection of key
sets. More formally, a given relation r is said to be Armstrong for a given set Σ
of key sets if and only if for all key sets ϕ it is true that r satisfies ϕ if and only
if Σ implies ϕ. Indeed, an Armstrong relation is a perfect model for Σ since it
satisfies all keys sets implied by Σ and does not satisfy any key set that is not
implied by Σ. Armstrong relations have important applications in data profiling
[1] and the requirements acquisition phase of database design [10].

Unfortunately, arbitrary sets of key sets do not enjoy Armstrong relations as
the following result manifests.

Theorem 3. There are sets of key sets for which no Armstrong relations exist.

Proof. An example isΣ = {{{A}, {B}}, {{C}, {D}}} with attributesA,B,C,D.
Then σ1 = {{A,C}, {A,D}, {B,C}} and σ2 = {{A,D}, {B,C}, {B,D}} are two
non-consequences of Σ, respectively exemplified by the two 2-tuple relations on
the left of Figure 1, where “d” refers to any distinct total value.

These are the only possible types of tuple pairs that satisfy Σ ∪ {¬σ1} and
Σ ∪ {¬σ2}, respectively. Therefore, we observe that any relation r satisfying Σ
and refuting both σ1 and σ2 has a homomorphism from a relation of the form on
the right of Figure 1 to a subset of r with the condition that this homomorphism
preserves nulls and maps domain values to domain values. However, then neither
{{A}, {B}} nor {{C}, {D}} is a key set anymore. ut

12

A B C D

d d ⊥ d
⊥ d d d

A B C D

d d d ⊥
d ⊥ d d

A B C D

d d ⊥ d
⊥ d d d
d d d ⊥
d ⊥ d d

Fig. 1

8 Implication for Unary by Arbitrary Key Sets

In this section we identify a fragment of key sets for which automated reasoning
is efficient. This is strongly motivated by the results of the previous sections
in which the coNP-completeness of the implication problem, and the lack of
general Armstrong relations has been established. Indeed, the fragment is the
implication of unary key sets by arbitrary key sets. We show that this fragment
is captured axiomatically by the Refinement and Upward Closure rules, can be
decided in time quadratic in the input, and Armstrong relations always exist
and can be computed with conservative use of time and space.

8.1 An algorithmic characterization

Our first result establishes that unary key sets must be implied by a single key
set from the given collection of key sets.

Theorem 4. Let Σ = {X1, . . . ,Xn} be a collection of arbitrary key sets, and let
ϕ = {{A1}, . . . , {Ak}} be a unary key set over relation schema R. Then Σ im-
plies ϕ if and only if there is some i ∈ {1, . . . , n} such that

⋃
Xi ⊆ {A1, . . . , Ak}.

Proof. If
⋃
Xi ⊆ X for some i ∈ {1, . . . , n}, Refinement and Upward Closure

infer ϕ from Σ. Due to the rules’ soundness, ϕ is implied by Σ.

Vice versa, assume that
⋃
Xi 6⊆ X holds for all i = 1, . . . , n. Let r be defined

as r = {t, t′} where t and t′ are two total tuples that agree on X = {A1, . . . , Ak}
and disagree elsewhere. It follows that r violates ϕ. Since

⋃
Xi 6⊆ X for all

i = 1, . . . , n, t1 and t2 must differ on some attribute in
⋃
Xi for i = 1, . . . , n.

This means, r satisfies all key sets in Σ. Consequently, Σ does not imply ϕ. ut

A direct consequence of Theorem 4 is the quadratic time complexity of the
implication problem for unary by arbitrary key sets. For a collection Σ of key
sets let |Σ| denote the total number of attribute occurrences in elements of Σ.

Corollary 1. The implication problem of unary key sets by arbitrary key sets
is decidable in time O(|Σ| × |ϕ|) in the input Σ ∪ {ϕ}.

13

8.2 A finite axiomatization

Our next result establishes a finite axiomatization for the implication of unary
by arbitrary key sets that consists of the Refinement and Upward Closure rules.
As this fragment is decidable in time quadratic in the input, and the general case
is coNP -complete, the Composition rule is the source of likely intractability.

Corollary 2. The implication problem of unary key sets by arbitrary key sets
has a sound and complete axiomatization in Refinement and Upward Closure.

Proof. Let Σ = {X1, . . . ,Xn} be a set of key sets, and let ϕ = {{A1}, . . . , {Ak}}
be a unary key set over relation schema R. If ϕ can be inferred from Σ by
a sequence of applications of the Refinement and Upward Closure rules, the
soundness of these rules ensures that ϕ is also implied by Σ.

For completeness we assume that ϕ cannot be inferred from Σ by means of
applications using the Refinement and Upward Closure rules. Hence,

⋃
Xi 6⊆ X

holds for all i = 1, . . . , n. Theorem 4 shows that Σ does not imply ϕ. ut

8.3 Existence and computation of Armstrong relations

Armstrong models relative to unary consequences are also easy to obtain. It
merely suffices to take a disjoint union of all of the two tuple relations mentioned
in the proof of Theorem 4.

Corollary 3. The implication problem of unary key sets by arbitrary key sets
has Armstrong relations. ut

While the existence of perfect models is easy to come by the disjoint union
construction, an actual generation of Armstrong relations by this construction
is not efficient. Smaller Armstrong relations can be constructed as follows. The-
orem 4 shows that the implication problem of unary key sets X by a collection
Σ = {X1, . . . ,Xn} of arbitrary key sets only depends on the attributes contained
in each given key set of Σ, and not on how they are grouped as sets in a key set.
We thus identify, without loss of generality, X with

⋃
X and each Xi with

⋃
Xi.

The idea is then to compute so-called anti-keys, which are the maximal sub-
sets of the underlying relation schema which are key sets not implied by Σ.
Given the anti-keys, an Armstrong relation for Σ can be generated by starting
with a single complete tuple, and introducing for each anti-key a new tuple that
has matching total values on the attributes of the anti-key and unique values on
attributes outside the anti-key. This construction ensures that all non-implied
(unary) key sets are violated and all given key sets are satisfied. The computation
of the anti-keys from Σ can be done by taking the complements of the minimum
transversals of the hypergraph formed by the elements of Σ. A transversal for a
given set of attribute subsets Xi is an attribute subset T such that T ∩ Xi 6= ∅
holds for all i. While many efficient algorithms exist for the computation of all
hypergraph transversals, it is still an open problem whether there is an algorithm
that is polynomial in the output [5]. We can show that this construction always
generates an Armstrong relation whose number of tuples is at most quadratic in
that of an Armstrong relation that requires a minimum number of tuples.

14

Corollary 4. Armstrong relations that are at most quadratic in that of a min-
imum Armstrong relation can be generated for unary by arbitrary key sets.

Proof (Sketch). One can show first that a given relation is Armstrong for a
given set of key sets if and only if for every anti-key the relation has two tuples
which have matching values on exactly those attributes that form the anti-key
and for no union over the elements of a key set there is a pair of tuples with
matching values on all attributes in the union. Subsequently, one can show that
the number of tuples in a minimum-sized Armstrong relation is bounded from
below by one half of the square root of 1 plus 8 times the number of anti-keys, and
bounded upwards by the increment of the number of anti-keys. Consequently,
our construction generates an Armstrong relation that is at most quadratic in a
minimum-sized Armstrong relation. ut

Our construction can also be viewed as a construction of Armstrong relations
for certain keys by key sets. Note that [8] constructed Armstrong relations for
sets of possible and certain keys under NOT NULL constraints, whenever they
exist. Our construction here does not require null markers.

Example 5. Consider the set Σ = {X1,X2} with X1 and X2 from Example 2
over the relation schema Ward. Then

⋃
X1 = {room, time, injury} and

⋃
X2 =

{name, time, injury}. The minimum transversals would be T1 = {time}, T2 =
{injury}, and T3 = {room,name}, and their complements on Ward are the anti-
keys A1 = {room,name, address, injury}, A2 = {room,name, address, time}, and
A3 = {address, injury, time}. The following relation is Armstrong for Σ.

room name address injury time
1 Miller 24 Queen St leg fracture Sunday, 16
1 Miller 24 Queen St leg fracture Monday, 19
1 Miller 24 Queen St arm fracture Monday, 19
2 Maier 24 Queen St arm fracture Monday, 19

The relation satisfies X1 and X2, but the relation violates the unary key set
ϕ′ = {{room}, {name}, {address}, {time}}, so ϕ′ is not implied by Σ.

9 Conclusion and Future Work

We took first steps in investigating limits and opportunities for automated rea-
soning about key sets in databases. Key sets provide a more general and flexible
implementation of entity integrity than Codd’s notion of a primary key. We
showed that the implication problem for general key sets enjoys a binary ax-
iomatization, is coNP -complete, and lacks Armstrong relations. The implication
problem of unary key sets by arbitrary key sets enjoys a unary axiomatization, is
decidable in quadratic input time, and Armstrong relations can always be gener-
ated using hypergraph transversals such that the number of tuples is guaranteed
to be at most quadratic in the minimum number of tuples required.

15

Interesting questions arise in theory and practice. Our coNP -completeness re-
sult calls for fixed-parameter solutions. A characterization for the existence of
Armstrong relations in the general case would be interesting, and their efficient
construction whenever possible. The validation of key sets in databases is an
important practical issue, for which effective index structures need to be found.
The problem of computing all key sets that hold in a given relation is important
for data profiling [1]. Automated reasoning about foreign key sets is interesting
as they generalize referential integrity [11]. Similar to how functional and inclu-
sion dependencies and independence atoms interact [3, 9], automated reasoning
for functional, multivalued, and inclusion dependency sets is interesting [6].

References

1. Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a survey. VLDB J.
24(4), 557–581 (2015)

2. Bläsius, T., Friedrich, T., Schirneck, M.: The parameterized complexity of depen-
dency detection in relational databases. In: IPEC 2016, August 24-26, 2016. pp.
6:1–6:13 (2016)

3. Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their
interaction with functional dependencies. J. Comput. Syst. Sci. 28(1), 29–59 (1984)

4. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (Jun 1970)

5. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and gen-
erating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)

6. Hannula, M., Kontinen, J., Link, S.: On the finite and general implication problems
of independence atoms and keys. J. Comput. Syst. Sci. 82(5), 856–877 (2016)

7. Hartmann, S., Leck, U., Link, S.: On Codd families of keys over incomplete rela-
tions. Comput. J. 54(7), 1166–1180 (2011)

8. Köhler, H., Leck, U., Link, S., Zhou, X.: Possible and certain keys for SQL. VLDB
J. 25(4), 571–596 (2016)

9. Köhler, H., Link, S.: Inclusion dependencies and their interaction with functional
dependencies in SQL. J. Comput. Syst. Sci. 85, 104–131 (2017)

10. Langeveldt, W., Link, S.: Empirical evidence for the usefulness of Armstrong re-
lations in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3),
352–374 (2010)

11. Levene, M., Loizou, G.: A generalisation of entity and referential integrity in rela-
tional databases. ITA 35(2), 113–127 (2001)

12. Lucchesi, C.L., Osborn, S.L.: Candidate keys for relations. J. Comput. Syst. Sci.
17(2), 270–279 (1978)

13. Thalheim, B.: Dependencies in relational databases. Teubner (1991)
14. Thalheim, B.: On semantic issues connected with keys in relational databases

permitting null values. Elektronische Informationsverarbeitung und Kybernetik
25(1/2), 11–20 (1989)

15. Thalheim, B.: The number of keys in relational and nested relational databases.
Discrete Applied Mathematics 40(2), 265–282 (1992)

16. Wei, Z., Link, S., Liu, J.: Contextual keys. In: Mayr, H.C., Guizzardi, G., Ma, H.,
Pastor, O. (eds.) Conceptual Modeling - 36th International Conference, ER 2017,
Valencia, Spain, November 6-9, 2017, Proceedings. Lecture Notes in Computer
Science, vol. 10650, pp. 266–279. Springer (2017)

16

