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Strategy Logic (SL) is a very expressive temporal logic for specifying and verifying properties of
multi-agent systems: in SL, one can quantify over strategies, assign them to agents, and express LTL
properties of the resulting plays. Such a powerful framework has two drawbacks: first, model checking
SL has non-elementary complexity; second, the exact semantics of SL is rather intricate, and may not
correspond to what is expected. In this paper, we focus on strategy dependences in SL, by tracking
how existentially-quantified strategies in a formula may (or may not) depend on other strategies
selected in the formula, revisiting the approach of [Mogavero et al., Reasoning about strategies:
On the model-checking problem, 2014]. We explain why elementary dependences, as defined by
Mogavero et al., do not exactly capture the intended concept of behavioral strategies. We address this
discrepancy by introducing timeline dependences, and exhibit a large fragment of SL for which model
checking can be performed in 2-EXPTIME under this new semantics.

1 Introduction

Temporal logics. Since Pnueli’s seminal paper [24] in 1977, temporal logics have been widely
used in theoretical computer science, especially by the formal-verification community. Temporal logics
provide powerful languages for expressing properties of reactive systems, and enjoy efficient algorithms
for satisfiability and model checking [9]. Since the early 2000s, new temporal logics have appeared to
address open and multi-agent systems. While classical temporal logics (e.g. CTL [8, 25] and LTL [24])
could only deal with one or all the behaviours of the whole system, ATL [2] expresses properties of
(executions generated by) behaviours of individual components of the system. ATL has been extensively
studied since then, both about its expressiveness and about its verification algorithms [2, 13, 16].

Strategic interactions in ATL. Strategies in ATL are handled in a very limited way, and there are
no real strategic interactions in that logic (which, in return, enjoys a polynomial-time model-checking
algorithm). Over the last 10 years, various extensions have been defined and studied in order to allow for
more interactions [1, 7, 6, 18, 26]. Strategy Logic (SL for short) [7, 18] is such a powerful approach, in
which strategies are first-class objects; formulas can quantify (universally and existentially) over strategies,
store those strategies in variables, assign them to players, and express properties of the resulting plays.
As a simple example, the existence of a winning strategy for Player A (with objective ϕA) against any
strategy of Player B would be written as ∃σA. ∀σB. assign(A 7→ σA;B 7→ σB). ϕA. This makes the logic
both expressive and easy to use (at first sight), at the expense of a very high complexity: SL model
checking has non-elementary complexity, and satisfiability is undecidable [18, 15].
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Understanding SL. Since it enjoys decidable model checking and high expressiveness, SL is the
logic of choice for showing that some game problems are decidable (e.g. rational synthesis [12, 14, 10]
or assume-admissible synthesis [5]). For instance, the existence of an admissible strategy for player A
(i.e., a strategy that is strictly dominated by no other strategies [5]) is expressed as

∃σA. ∀σ ′A.

[
∨
∃σB. (assign(A 7→ σA,B 7→ σB).ϕA∧assign(A 7→ σ ′A,B 7→ σB).¬ϕA)

∀σ ′B. (assign(A 7→ σA,B 7→ σ ′B).ϕA∨assign(A 7→ σ ′A,B 7→ σ ′B).¬ϕA)

]

However, it has been noticed in recent works that the nice expressiveness of SL comes with unexpected
phenomena. One such phenomenon is induced by the separation of strategy quantification and strategy
assignment: are the events between strategy quantifications and strategy assignments part of the memory
of the strategy? While both options may make sense depending on the applications, only one of them
makes model checking decidable [4].

A second phenomenon—which is the main focus of the present paper—concerns strategy depen-
dences [18]: in a formula such as ∀σA. ∃σB. ξ , the existentially-quantified strategy σB may depend on
the whole strategy σA; in other terms, the action returned by strategy σB after some finite history ρ may
depend on what strategy σA would play on any other history ρ ′. Again, in some contexts, it may be
desirable that the value of strategy σB after history ρ can be computed based solely on what has been
observed along ρ (see Fig. 2 for an illustration). This approach was initiated in [18, 21], conjecturing
that large fragments of SL (subsuming ATL *) would have 2-EXPTIME model-checking algorithms with
such limited dependences.

Our contributions. We follow this line of work by performing a more thorough exploration of
strategy dependences in (a fragment of) SL. We mainly follow the framework of [21], based on a kind of
Skolemization of the formula: for instance, a formula of the form (∀xi∃yi)i. ξ is satisfied if there exists a
dependence map θ defining each existentially-quantified strategy y j based on the universally-quantified
strategies (xi)i. In order to recover the classical semantics of SL, it is only required that the strategy
θ((xi)i)(y j) (i.e. the strategy assigned to the existentially-quantified variable y j by θ((xi)i)) only depends
on (xi)i< j.

Based on this definition, other constraints can be imposed on dependence maps, in order to refine
the dependences of existentially-quantified strategies on universally-quantified ones. Elementary depen-
dences [21] only allows existentially-quantified strategy y j to depend on the values of (xi)i< j along the
current history. This gives rise to two different semantics in general, but fragments of SL have been
defined (SL[1G] in [17], SL[CG] and SL[DG] in [20]) on which the classic and elementary semantics
would coincide.

The coincidence actually only holds for SL[1G]. As we explain in this paper, elementary dependences
as defined and used in [17, 20] do not exactly capture the intuition that strategies should depend on
the “behavior [of universal strategies] on the history of interest only” [20]: indeed, they only allow
dependences on universally-quantified strategies that appear earlier in the formula, while we claim that
the behaviour of all universally-quantified strategies should be considered. We address this discrepancy
by introducing another kind of dependences, which we call timeline dependences, and which extend
elementary dependences by allowing existentially-quantified strategies to additionally depend on all
universally-quantified strategies along strict prefixes of the current history (as illustrated on Fig. 4).

We study and compare those three dependences (classic, elementary and timeline), showing that they
correspond to three distinct semantics. Because the semantics based on dependence maps is defined
in terms of the existence of a witness map, we show that the syntactic negation of a formula may not
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correspond to its semantic negation: there are cases where both a formula ϕ and its syntactic negation ¬ϕ

fail to hold (i.e., none of them has a witness map). This phenomenon is already present, but had not been
formally identified, in [18, 21]. The main contribution of the present paper is the definition of a large
(and, in a sense, maximal) fragment of SL for which syntactic and semantic negations coincide under the
timeline semantics. As an (important) side result, we show that model checking this fragment under the
timeline semantics is 2-EXPTIME-complete.

2 Definitions

2.1 Concurrent game structures

Let AP be a set of atomic propositions, V be a set of variables, and Agt be a set of agents. A concurrent
game structure is a tuple G = (Act,Q,∆, lab) where Act is a finite set of actions, Q is a finite set of states,
∆ : Q×ActAgt→ Q is the transition function, and lab : Q→ 2AP is a labelling function. An element of
ActAgt will be called a move vector. For any q ∈ Q, we let succ(q) be the set {q′ ∈ Q | ∃m ∈ ActAgt. q′ =
∆(q,m)}. For the sake of simplicity, we assume in the sequel that succ(q) 6=∅ for any q ∈ Q. A game G
is said turn-based whenever for every state q ∈ Q, there is a player own(()q) ∈ Agt (named the owner
of q) such that for any two move vectors m1 and m2 with m1(own(()q)) = m2(own(()q)), it holds
∆(q,m1) = ∆(q,m2). Figure 1 displays an example of a (turn-based) game.

Fix a state q ∈ Q. A play in G from q is an infinite sequence π = (qi)i∈N of states in Q such that
q0 = q and qi ∈ succ(qi−1) for all i > 0. We write PlayG (q) for the set of plays in G from q. In this and all
similar notations, we might omit to mention G when it is clear from the context, and q when we consider
the union over all q ∈ Q. A (strict) prefix of a play π is a finite sequence ρ = (qi)0≤i≤L, for some L ∈N.
We write Pref(π) for the set of strict prefixes of play π . Such finite prefixes are called histories, and we let
HistG (q) = Pref(PlayG (q)). We extend the notion of strict prefixes and the notation Pref to histories
in the natural way, requiring in particular that ρ /∈ Pref(ρ). A (finite) extension of a history ρ is any
history ρ ′ such that ρ ∈ Pref(ρ ′). Let ρ = (qi)i≤L be a history. We define first(ρ) = q0 and last(ρ) = qL.
Let ρ ′ = (q′j) j≤L′ be a history from last(ρ). The concatenation of ρ and ρ ′ is then defined as the path
ρ ·ρ ′ = (q′′k )k≤L+L′ such that q′′k = qk when k ≤ L and q′′k = q′k−L when L ≥ k (notice that we required
q′0 = qL).

A strategy from q is a mapping δ : HistG (q)→ Act. We write StratG (q) for the set of strategies in G
from q. Given a strategy δ ∈ Strat(q) and a history ρ from q, the translation δ−→

ρ
of δ by ρ is the strategy

δ−→
ρ

from last(ρ) defined by δ−→
ρ
(ρ ′) = δ (ρ ·ρ ′) for any ρ ′ ∈Hist(last(ρ)). A valuation from q is a partial

function χ : V ∪Agt ⇀ Strat(q). As usual, for any partial function f , we write dom( f ) for the domain
of f .

Let q ∈ Q and χ be a valuation from q. If Agt ⊆ dom(χ), then χ induces a unique play from q,
called its outcome, and defined as out(q,χ) = (qi)i∈N such that q0 = q and for every i ∈N, we have
qi+1 = ∆(qi,mi) with mi(A) = χ(A)((q j) j≤i) for every A ∈ Agt.

2.2 Strategy Logic with boolean goals

Strategy Logic (SL for short) was introduced in [7], and further extended and studied in [22, 18], as
a rich logical formalism for expressing properties of games. SL manipulates strategies as first-order
elements, assigns them to players, and expresses LTL properties on the outcomes of the resulting strategic
interactions. This results in a very expressive temporal logic, for which satisfiability is undecidable [22, 19]
and model checking is TOWER-complete [18, 3]. In this paper, we focus on a restricted fragment of SL,
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called SL[BG][ (where BG stands for boolean goals [18], and the symbol [ indicates that we do not allow
nesting of (closed) subformulas; we discuss this latter restriction below).

Syntax. Formulas in SL[BG][ are built along the following grammar

SL[BG][ 3 ϕ ::= ∃x. ϕ | ∀x. ϕ | ξ ξ ::= ¬ξ | ξ ∧ξ | ξ ∨ξ | β
β ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ψ | ψ ∧ψ | Xψ | ψ Uψ | p

where x ranges over V , σ ranges over the set V Agt of full assignments, and p ranges over AP. A goal
is a formula of the form β in the grammar above; it expresses an LTL property ψ on the outcome of the
mapping σ . Formulas in SL[BG][ are thus made of an initial block of first-order quantifiers (selecting
strategies for variables in V ), followed by a boolean combination of goals.

Free variables. With any subformula ζ of some formula ϕ ∈ SL[BG][, we associate its set of
free agents and variables, which we write free(ζ ). It contains the agents and variables that have to be
associated with a strategy in order to unequivocally evaluate ζ (as will be seen from the definition of the
semantics of SL[BG][ below). The set free(ζ ) is defined inductively:

free(p) =∅ for all p ∈ AP free(Xψ) = Agt∪ free(ψ)

free(¬α) = free(α) free(ψ1 Uψ2) = Agt∪ free(ψ1)∪ free(ψ2)

free(α1∨α2) = free(α1)∪ free(α2) free(∃x. ϕ) = free(ϕ)\{x}
free(α1∧α2) = free(α1)∪ free(α2) free(∀x. ϕ) = free(ϕ)\{x}

free(assign(σ). ϕ) = (free(ϕ)∪σ(Agt∩ free(ϕ)))\Agt

Subformula ζ is said to be closed whenever free(ζ ) = ∅. We can now comment on our choice of
considering the flat fragment of SL[BG]: the full fragment, as defined in [18], allows for nesting closed
SL[BG] formulas in place of atomic propositions. The meaning of such nesting in our setting is ambiguous,
because our semantics (in Sections 3 to 5) are defined in terms of the existence of a witness, which does not
easily propagate in formulas. In particular, as we explain later in the paper, the semantics of the negation
of a formula (there is a witness for ¬ϕ) does not coincide with the negation of the semantics (there is no
witness for ϕ); thus substituting a subformula and substituting its negation may return different results.

Semantics. Fix a state q ∈ Q, and a valuation χ : V ∪Agt→ Strat(q). We inductively define the
semantics of a subformula α of a formula of SL[BG][ at q under valuation χ , requiring free(α)⊆ dom(χ).
We omit the easy cases of boolean combinations and atomic propositions.

Given a mapping σ : Agt→ V , the semantics of strategy assignments is defined as follows:

G ,q |=χ assign(σ). ψ ⇔ G ,q |=χ[A∈Agt 7→χ(σ(A))] ψ.

Notice that, writing χ ′ = χ[A ∈ Agt 7→ χ(σ(A))], we have free(ψ)⊆ dom(χ ′) if free(α)⊆ dom(χ), so
that our inductive definition is sound.

We now consider path formulas ψ = Xψ1 and ψ = ψ1 Uψ2. Since Agt⊆ free(ψ)⊆ dom(χ), the val-
uation χ induces a unique outcome out(q,χ) = (qi)i∈N from q. For n ∈N, we write outn(q,χ) = (qi)i≤n,
and define χ−→n as the valuation obtained by shifting all the strategies in the image of χ by outn(q,χ).
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q0

q1

q2

p1

p2

ϕ = ∀y.∃z.∀xA.∀xB.
∨{assign( 7→ xA; 7→ y; 7→ z). F p1

assign( 7→ xB; 7→ y; 7→ z). F p2

Figure 1: A game and a SL[BG] formula.

Under the same conditions, we also define q−→n = last(outn(q,χ)). We then set

G ,q |=χ Xψ1 ⇔ G ,q−→1 |=χ−→1
ψ1

G ,q |=χ ψ1 Uψ2 ⇔ ∃k ∈N. G ,q−→k |=χ−→k
ψ2 and ∀0≤ j < k. G ,q−→j |=χ−→j

ψ1.

In the sequel, we use classical shorthands, such as > for p∨¬p (for any p ∈ AP), Fψ for >Uψ

(eventually ψ), and Gψ for ¬F¬ψ (always ψ). It remains to define the semantics of the strategy
quantifiers. This is actually what this paper is all about. We provide here the original semantics, and
discuss alternatives in the following sections:

G ,q |=χ ∃x.ϕ ⇔ ∃δ ∈ Strat(q). G ,q |=χ[x 7→δ ] ϕ.

Example 1. We consider the (turn-based) game G is depicted on Fig. 1. We name the players after the
shape of the state they control. The SL[BG] formula ϕ to the right of Fig. 1 has four quantified variables
and two goals. We show that this formula evaluates to true at q0: fix a strategy δy (to be played by
player ); because G is turn-based, we identify the actions of the owner of a state with the resulting
target state, so that δy(q0q1) will be either p1 or p2. We then define strategy δz (to be played by ) as
δz(q0q2) = δy(q0q1). Then clearly, for any strategy assigned to player , one of the goals of formula ϕ

holds true, so that ϕ itself evaluates to true.

Subclasses of SL[BG]. Because of the high complexity and subtlety of reasoning with SL and
SL[BG], several restrictions of SL[BG] have been considered in the literature [17, 20, 21], by adding
further restrictions to boolean combinations in the grammar defining the syntax:

• SL[1G] restricts SL[BG] to a unique goal. SL[1G][ is then defined from the grammar of SL[BG][ by
setting ξ ::= β in the grammar;

• the larger fragment SL[CG] allows for conjunctions of goals. SL[CG][ corresponds to formulas
defined with ξ ::= ξ ∧ξ | β ;

• similarly, SL[DG] only allows disjunctions of goals, i.e. ξ ::= ξ ∨ξ | β ;

• finally, SL[AG] mixes conjunctions and disjunctions in a restricted way. Goals in SL[AG][ can be
combined using the following grammar: ξ ::= β ∧ξ | β ∨ξ | β .

In the sequel, we write a generic SL[BG][ formula ϕ as (Qixi)1≤i≤l. ξ (β j. ψ j) j≤n where:

• (Qixi)i≤l is a block of quantifications, with {xi | 1≤ i≤ l} ⊆ V and Qi ∈ {∃,∀}, for every 1≤ i≤ l;

• ξ (g1, ...,gn) is a boolean combination of its arguments;

• for all 1≤ j ≤ n, β j. ψ j is a goal: β j is a full assignment and ψ j is an LTL formula.
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3 Strategy dependences

We now follow the framework of [18, 21] and define the semantics of SL[BG][ in terms of dependence
maps. This approach provides a fine way of controlling how existentially-quantified strategies depend on
other strategies (in a quantifier block). Using dependence maps, we can limit such dependences.

Dependence maps. Consider an SL[BG][ formula ϕ = (Qixi)1≤i≤l. ξ (β j. ϕ j) j≤n, assuming w.l.o.g.
that {xi | 1≤ i≤ l}= V . We let V ∀ = {xi | Qi = ∀} ⊆ V be the set of universally-quantified variables
of ϕ . A function θ : StratV

∀ → StratV is a ϕ-map (or map when ϕ is clear from the context) if
θ(w)(xi)(ρ) = w(xi)(ρ) for any w ∈ StratV

∀
, any xi ∈ V ∀, and any history ρ . In other words, θ(w)

extends w to V . This general notion allows any existentially-quantified variable to depend on all
universally-quantified ones (dependence on existentially-quantified variables is implicit: all existentially-
quantified variables are assigned through a single map, hence they all depend on the others); we add
further restrictions later on. Using maps, we may then define new semantics for SL[BG][: generally
speaking, formula ϕ = (Qixi)1≤i≤l. ξ (β j. ϕ j) j≤n holds true if there exists a ϕ-map θ such that, for any
w : V ∀→ Strat, the valuation θ(w) makes ξ (β j. ϕ j) j≤n hold true.

Classic maps are dependence maps in which the order of quantification is respected:

∀w1,w2 ∈ StratV
∀
. ∀xi ∈ V \V ∀.(

∀x j ∈ V ∀∩{xk | k < i}. w1(x j) = w2(x j)
)
⇒
(
θ(w1)(xi) = θ(w2)(xi)

)
. (C)

In words, if w1 and w2 coincide on V ∀∩{x j | j < i}, then θ(w1) and θ(w2) coincide on xi.
Elementary maps [18, 17] have to satisfy a more restrictive condition: for those maps, the value of

an existentially-quantified strategy at any history ρ may only depend on the value of earlier universally-
quantified strategies along ρ . This may be written as:

∀w1,w2 ∈ StratV
∀
. ∀xi ∈ V \V ∀. ∀ρ ∈ Hist.(

∀x j ∈ V ∀∩{xk | k < i}. ∀ρ ′ ∈ Pref(ρ)∪{ρ}. w1(x j)(ρ
′) = w2(x j)(ρ

′)
)
⇒(

θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)
)
. (E)

In this case, for any history ρ , if two valuations w1 and w2 of the universally-quantified variables coincide
on the variables quantified before xi all along ρ , then θ(w1)(xi) and θ(w2)(xi) have to coincide at ρ .

The difference between both kinds of dependences is illustrated on Fig. 2: for classic maps, the
existentially-quantified strategy x2 may depend on the whole strategy x1, while it may only depend on
the value of x1 along the current history for elementary maps. Notice that a map satisfying (E) also
satisfies (C).

Satisfaction relations. Pick a formula ϕ = (Qixi)1≤i≤l. ξ
(
β j. ϕ j

)
j≤n in SL[BG][. We define:

G ,q |=C
ϕ iff ∃θ satisfying (C). ∀w ∈ StratV

∀
. G ,q |=θ(w) ξ

(
β jϕ j

)
j≤n

As explained above, this actually corresponds to the usual semantics of SL[BG][ as given in Section 2 [18,
Theorem 4.6]. When G ,q |=C ϕ , a map θ satisfying the conditions above is called a C-witness of ϕ for G
and q. Similarly, we define the elementary semantics [18] as:

G ,q |=E
ϕ iff ∃θ satisfying (E). ∀w ∈ StratV

∀
. G ,q |=θ(w) ξ

(
β jϕ j

)
j≤n
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Again, when such a map exists, it is called an E-witness. Notice that since Property (E) implies Prop-
erty (C), we have G ,q |=E ϕ ⇒ G ,q |=C ϕ for any ϕ ∈ SL[BG][. This corresponds to the intuition that it
is harder to satisfy a SL[BG][ formula when dependences are more restricted. The contrapositive statement
then raises questions about the negation of formulas.

The syntactic vs. semantic negations. If ϕ = (Qixi)1≤i≤lξ (β jϕ j) j≤n is an SL[BG][ formula, its
syntactic negation ¬ϕ is the formula (Qixi)i≤l(¬ξ )(β jϕ j) j≤n, where Qi = ∃ if Qi = ∀ and Qi = ∀
if Qi = ∃. Looking at the definitions of |=C and |=E , it could be the case that e.g. G ,q |=C ϕ and
G ,q |=C ¬ϕ: this only requires the existence of two adequate maps. However, since |=C and |= coincide,
and since G ,q |= ϕ ⇔ G ,q 6|= ¬ϕ in the usual semantics, we get G ,q |=C ϕ ⇔ G ,q 6|=C ¬ϕ . Also,
since G ,q |=E ϕ ⇒ G ,q |=C ϕ , we also get G ,q |=E ϕ ⇒ G ,q 6|=E ¬ϕ . As we now show, the converse
implication holds for SL[1G][, but may fail to hold for SL[BG][.

Proposition 1. There exist a (one-player) game G with initial state q0 and a formula ϕ ∈ SL[BG][ such
that G ,q0 6|=E ϕ and G ,q0 6|=E ¬ϕ .

Proof. Consider the formula and the one-player game of Fig. 3. We start by proving that G ,q0 6|=E ϕ .
For a contradiction, assume that a witness map θ satisfying (E) exists, and pick any valuation w for
the universal variable x. First, for the first goal in the conjunction to be fulfilled, the strategy assigned
to y must play to B from q0. We abbreviate this as θ(w)(y)(q0) = B in the sequel. Now, consider two
valuations w1 and w2 such that w1(x)(q0) = w2(x)(q0) = A and w1(x)(q0 ·B) = w2(x)(q0 ·B), but such
that w1(x)(q0 ·A) = p1 and w2(x)(q0 ·A) = p2. In order to fulfill the second goal under both valuations w1
and w2, we must have θ(w1)(y)(q0 ·B) = p1 and θ(w2)(y)(q0 ·B) = p2. But this violates Property (E):
since w1(x) and w2(x) coincide on q0 and on q0 ·B, we must have θ(w1)(y)(q0 ·B) = θ(w2)(y)(q0 ·B).

We now prove that G ,q0 6|=E ¬ϕ . Indeed, following the previous discussion, we easily get that
G ,q0 |=C ϕ , by letting θ(w)(y)(q0)=B and θ(w)(y)(q0 ·B)=w(x)(q0 ·A) if w(x)(q0)=A, and θ(w)(y)(q0 ·
B) = w(x)(q0 ·B) if w(x)(q0) = B. As explained above, this entails G ,q0 6|=C ¬ϕ , and G ,q0 6|=E ¬ϕ .

Proposition 2. For any game G with initial state q0, and any formula ϕ ∈ SL[1G][, it holds G ,q0 |=E

ϕ ⇔ G ,q0 6|=E ¬ϕ .

Sketch of proof. This result follows from [18, Corollary 4.21], which states that |=C and |=E coincide
on SL[1G]. Because it is central in our approach, we sketch a direct proof here using similar ingredients:
it consists in encoding the problem whether G ,q0 |=E ϕ into a two-player turn-based game with a
parity-winning objective.

The construction is as follows: the interaction between existential and universal quantifications of
the formula is integrated into the game structure, replacing each state of G with a tree-shaped subgame
where Player P∃ selects existentially-quantified actions and Player P∀ selects universally-quantified ones.

∀x1∀x1 ∃x2 ∀x3 ∀x1∀x1 ∃x2 ∀x3

Figure 2: Classical (left) vs elementary (right) dependences for a formula ∀x1. ∃x2. ∀x3. ξ
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q0

A

p1 p2

B

p1 p2

ϕ = ∀x.∃y.
∧{assign( 7→ y). FB

assign( 7→ x). F p1⇔ assign( 7→ y). F p1

Figure 3: A game G and an SL[BG][ formula ϕ such that G ,q0 6|=E ϕ and G ,q0 6|=E ¬ϕ .

The unique goal of the formula is then incorporated into the game via a deterministic parity automaton,
yielding a two-player turn-based parity game. We then show that G ,q0 |=E ϕ if, and only if, Player P∃ has
a winning strategy in the resulting turn-based parity game, while G ,q0 |=E ¬ϕ if, and only if, Player P∀ has
a winning strategy. Those equivalences hold for the elementary semantics because memoryless strategies
are sufficient in parity games. Proposition 2 then follows by determinacy of those games [11, 23].

Note that the construction of the parity game gives an effective algorithm for the model-checking
problem of SL[1G][, which runs in time doubly-exponential in the size of the formula, and polynomial
in the size of the game structure; we recover the result of [18] for that problem.

Comparison of |=C and |=E . A consequence of Prop. 2 is that |=C and |=E coincide on SL[1G][

(Corollary 4.21 of [18]). However, when considering larger fragments, the satisfaction relations are
distinct (see the proof of Prop. 1 for a candidate formula in SL[CG][):

Proposition 3. The relations |=C and |=E differ on SL[CG][, as well as on SL[DG][.

Remark 1. Proposition 3 contradicts the claim in [20] that |=E and |=C coincide on SL[CG] (and SL[DG]).
Indeed, in [20], the satisfaction relation for SL[DG] and SL[CG] is encoded into a two-player game in
pretty much the same way as we did in the proof of Prop. 2. While this indeed rules out dependences
outside the current history, it also gives information to Player P∃ about the values (over prefixes of the
current history) of strategies that are universally-quantified later in the quantification block. This proof
technique works with SL[1G][ because the single goal can be encoded as a parity objective, for which
memoryless strategies exist, so that the extra information is not crucial. In the next section, we investigate
the role of this extra information for larger fragments of SL[BG][.

4 Timeline dependences

Following the discussion above, we introduce a new type of dependences between strategies (which we
call timeline dependences). They allow strategies to also observe (and depend on) all other universally-
quantified strategies on the strict prefix of the current history. For instance, for a block of quanti-
fiers ∀x1. ∃x2. ∀x3, the value of x2 after history ρ may depend on the value of x1 on ρ and its prefixes
(as for elementary maps), but also on the value of x3 on the (strict) prefixes of ρ . Such dependences
are depicted on Fig. 4. We believe that such dependences are relevant in many situations, especially
for reactive synthesis, since in this framework strategies really base their decisions on what they could
observe along the current history.
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∀x1∀x1 ∃x2 ∀x3 ∀x1∀x1 ∃x2 ∀x3∀x3

Figure 4: Elementary (left) vs timeline (right) dependences for a formula ∀x1. ∃x2. ∀x3. ξ

q0

a

b

p1

p2

Figure 5: |=E and |=T differ on SL[CG][

q0

a

b

p1

p2

Figure 6: |=E and |=T differ on SL[DG][

Formally, a map θ is a timeline map if it satisfies the following condition:

∀w1,w2 ∈ StratV
∀
. ∀xi ∈ V \V ∀. ∀ρ ∈ Hist.(

∀x j ∈ V ∀∩{xk | k < i}. ∀ρ ′ ∈ Pref(ρ)∪{ρ}. w1(x j)(ρ) = w2(x j)(ρ)
∧∀x j ∈ V ∀. ∀ρ ′ ∈ Pref(ρ). w1(x j)(ρ) = w2(x j)(ρ)

)
⇒(

θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)
)
. (T)

Using those maps, we introduce the timeline semantics of SL[BG][:

G ,q |=T
ϕ iff ∃θ satisfying (T). ∀w ∈ StratV

∀
. G ,q |=θ(w) ξ

(
β jϕ j

)
j≤n

Such a map, if any, is called a T-witness of ϕ for G and q. As in the previous section, it is easily seen that
Property (E) implies Property (T), so that an E-witness is also a T-witness, and G ,q |=E ϕ ⇒ G ,q |=T ϕ

for any formula ϕ ∈ SL[BG][.
Example 2. Consider again the game of Fig 1 in Section 2. We have seen that G ,q0 |=C ϕ in Section 2,
and that G ,q0 6|=E ϕ in the proof of Prop. 3. With timeline dependences, we have G ,q0 |=T ϕ . Indeed, now
θ(w)(z)(q0 ·q2) may depend on w(xA)(q0) and w(xB)(q0): we could then have e.g. θ(w)(z)(q0 ·q2) = p1
when w(xA)(q0) = q2, and θ(w)(z)(q0 ·q2) = p2 when w(xA)(q0) = q1. It is easily checked that this map
is a T -witness of ϕ for q0.

Comparison of |=E and |=T . As explained at the end of Section 3, the proof of Prop. 2 actually
shows the following result:
Proposition 4. For any game G with initial state q0, and any formula ϕ ∈ SL[1G][, it holds G ,q0 |=E

ϕ ⇔ G ,q0 |=T ϕ .
We now prove that this does not extend to SL[CG][ and SL[DG][:

Proposition 5. The relations |=E and |=T differ on SL[CG][, as well as on SL[DG][.

Proof. For SL[CG][, we consider the game structure of Fig. 5, and formula

ϕC = ∃y. ∀xA. ∃xB.
∧{assign( 7→ y; 7→ xA). F p1

assign( 7→ y; 7→ xB). F p2
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We first notice that G ,q0 6|=E ϕC: indeed, in order to satisfy the first goal under any choice of xA, the
strategy for y has to point to p1 from both a and b. But then no choice of xB will make the second goal
true.

On the other hand, considering the timeline semantics, strategy y after q0 ·a and q0 ·b may depend
on the choice of xA in q0. When w(xA)(q0) = a, we let θ(w)(y)(q0 · a) = p1 and θ(w)(y)(q0 · b) = p2
and θ(w)(xB)(q0) = b, which makes both goals hold true. Conversely, if w(xA)(q0) = b, then we let
θ(w)(y)(q0 ·b) = p1 and θ(w)(y)(q0 ·a) = p2 and θ(w)(xB)(q0) = a.

For SL[DG][, we consider the game of Fig. 6, and easily prove that formula ϕD below has a T-witness
but no E-witness:

ϕD = ∃y. ∀xA. ∀xB. ∀z.
∨{assign( 7→ y; 7→ xA; 7→ z). F p1

assign( 7→ y; 7→ xB; 7→ z). F p2

The syntactic vs. semantic negations. While both semantics differ, we now prove that the situation
w.r.t. the syntactic vs. semantic negations is similar. First, following Prop. 4 and 2, the two negations
coincide on SL[1G][ under the timeline semantics. Moreover:

Proposition 6. For any formula ϕ in SL[BG][, for any game G and any state q0, we have G ,q0 |=T ϕ ⇒
G ,q0 6|=T ¬ϕ .

Sketch of proof. Write ϕ = (Qixi)1≤i≤lξ (β jϕ j) j≤n. For a contradiction, assume that there exist two
maps θ and θ witnessing G ,q0 |=T ϕ and G ,q0 |=T ¬ϕ , respectively. Then for any strategy valuations w
and w for V ∀ and V ∃, we have that G ,q0 |=θ(w) ξ (β jϕ j) j and G ,q0 |=θ(w) ¬ξ (β jϕ j) j. We can then
inductively (on histories and on the sequence of quantified variables) build a strategy valuation χ on V
such that θ(χ|V ∀) = θ(χ|V ∃) = χ . Then under valuation χ , both ξ (β jϕ j) j and ¬ξ (β jϕ j) j hold in q0,
which is impossible.

Proposition 7. There exists a formula ϕ ∈ SL[BG][, a (turn-based) game G and a state q0 such that
G ,q0 6|=T ϕ and G ,q0 6|=T ¬ϕ .

5 The fragment SL[EG][

We now focus on the timeline semantics |=T . We exhibit a fragment SL[EG][ of SL[BG][, containing
SL[CG][ and SL[DG][, for which the syntactic and semantic negations coincide, and for which we prove
model-checking is in 2-EXPTIME:

Theorem 8. For any ϕ ∈ SL[EG][ and any state q0, it holds: G ,q0 |=T ϕ ⇔ G ,q0 6|=T ¬ϕ . Moreover,
model checking SL[EG][ for the timeline semantics is 2-EXPTIME-complete.

5.1 Semi-stable sets.

For n ∈N, we let {0,1}n be the set of mappings from [1,n] to {0,1}. We write 0n (or 0 if the size n is
clear) for the function that maps all integers in [1,n] to 0, and 1n (or 1) for the function that maps [1,n]
to 1. For f ,g ∈ {0,1}n, we define:

f : i 7→ 1− f (i) f fg : i 7→min{ f (i),g(i)} f gg : i 7→max{ f (i),g(i)}.
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We then introduce the notion of semi-stable sets, on which the definition of SL[EG][ relies: a set
Fn ⊆ {0,1}n is semi-stable if for any f and g in Fn, and any s ∈ {0,1}n, it holds that ( f f s)g (gf s) ∈
Fn or (gf s)g ( f f s) ∈ Fn.

Example 3. Obviously, the set {0,1}n is semi-stable, as well as the empty set. For n = 2, the set
{(0,1),(1,0)} is easily seen not to be semi-stable: taking f = (0,1) and g = (1,0) with s = (1,0), we get
( f f s)g (gf s) = (0,0) and (gf s)g ( f f s) = (1,1). Similarly, {(0,0),(1,1)} is not semi-stable.
Any other subset of {0,1}2 is semi-stable.

We then define

SL[EG][ 3 ϕ ::= ∀x.ϕ | ∃x.ϕ | ξ ξ ::= Fn((βi)1≤i≤n)

β ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ψ | Xψ | ψ Uψ | p

where Fn ranges over semi-stable subsets of {0,1}n, for all n ∈N. The semantics of the operator Fn is
defined as

G ,q |=χ Fn((βi)i≤n) ⇔ ∃ f ∈ Fn. ∀1≤ i≤ n. ( f (i) = 1 iff G ,q |=χ βi).

Notice that if Fn would range over all subsets of {0,1}n, then this definition would exactly correspond
to SL[BG][. Similarly, the case where Fn = {1n} corresponds to SL[CG][, while Fn = {0,1}n \{0n} gives
rise to SL[DG][.

Example 4. Consider the following formula, expressing the existence of a Nash equilibrium for two
players with respective LTL objectives ψ1 and ψ2:

∃x1.∃x2.∀y1.∀y2.
∧{(assign(A1 7→ y1;A2 7→ x2).ψ1)⇒ (assign(A1 7→ x1;A2 7→ x2).ψ1)

(assign(A1 7→ x1;A2 7→ y2).ψ2)⇒ (assign(A1 7→ x1;A2 7→ x2).ψ2)

This formula has four goals, and it corresponds to the set

F4 = {(a,b,c,d) ∈ {0,1}4 | a≤ b and c≤ d}

Taking f = (1,1,0,0) and g = (0,0,1,1), with s = (1,0,1,0) we have ( f f s)g (gf s) = (1,0,0,1) and
(gf s)g ( f f s) = (0,1,1,0), none of which is in F4. Hence our formula is not (syntactically) in SL[EG][.

The definition of SL[EG] may look artificial. The main reason why we work with SL[EG] is that it is
maximal for the first claim of Theorem 8 (see Prop. 11). But as the next result shows, it is actually a large
fragment encompassing SL[AG] (hence also SL[CG] and SL[DG]):

Proposition 9. SL[EG][ contains SL[AG][. The inclusion is strict (syntactically).

5.2 Defining quasi-orders from semi-stable sets.

For Fn ⊆ {0,1}n, we write Fn for the complement of Fn. Fix such a set Fn, and pick s ∈ {0,1}n. For any
h ∈ {0,1}n, we define

Fn(h,s) = {h′ ∈ {0,1}n | (hf s)g (h′f s) ∈ Fn}
Fn(h,s) = {h′ ∈ {0,1}n | (hf s)g (h′f s) ∈ Fn}

Trivially Fn(h,s)∩Fn(h,s) = /0 and Fn(h,s)∪Fn(h,s) = {0,1}n. If we assume Fn to be semi-stable, then
the family (Fn(h,s))h∈{0,1}n enjoys the following property:
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Lemma 10. Fix a semi-stable set Fn and s∈ {0,1}n. For any h1,h2 ∈ {0,1}n, either Fn(h1,s)⊆Fn(h2,s)
or Fn(h2,s)⊆ Fn(h1,s).

Given a semi-stable set Fn and s ∈ {0,1}n, we can use the inclusion relation of Lemma 10 to define a
relation �Fn

s (written �s when Fn is clear) over the elements of {0,1}n. It is defined as follows: h1 �s h2
if, and only if, Fn(h1,s)⊆ Fn(h2,s).

This relation is a quasi-order: its reflexiveness and transitivity both follow from the reflexiveness and
transitivity of the inclusion relation ⊆. By Lemma 10, this quasi-order is total. Intuitively, �s orders the
elements of {0,1}n based on how “easy” it is to complete their restriction to s so that the completion
belongs to Fn. In particular, only the indices on which s take value 1 are used to check whether h1 �s h2:
given h1,h2 ∈ {0,1}n such that (h1 f s) = (h2 f s), we have F(h1,s) = F(h2,s), and h1 ≡s h2.

Example 5. Consider the set F3 = {(1,0,0),(1,1,0),(1,0,1),
(0,1,1),(1,1,1)} represented on the figure opposite, and which
can be shown to be semi-stable. Fix s = (1,1,0). Then F3((0,1,?),s) =
{0,1}2 × {1}, while F3((1,1,?),s) = F3((1,0,?),s) = {0,1}3 and
F3((0,0,?),s) = /0. It follows that (0,0,?) �s (0,1,?) �s (1,0,?) ≡s

(1,1,?). (0,0,0)

(0,1,0) (0,0,1)(1,0,0)

(1,1,0) (1,0,1) (0,1,1)

(1,1,1) F3

5.3 Sketch of proof of Theorem 8

The approach we used in Prop 2 does not extend in general to formulas with several goals. Consider
for instance formula (Qixi)i≤l(β1.ψ1⇔ β2.ψ2): if at some points the two goals give rise to two different
outcomes (hence to two different subgames), the winning objectives in one subgame depends on what is
achieved in the other subgame.

SL[EG][ has been designed to prevent such situations: when two (or more) outcomes are available at a
given position, each subgame can be assigned an independent winning objective. This objective can be
obtained from the quasi-orders �s associated with the SL[EG][ formula being considered. Consider again
Example 5: associating the set F3 with three goals β1, β2 and β3, we get a formula in SL[EG][. Assume that
the moves selected by the players give rise to the same transition for β1 and β2, and to a different transition
for β3; then in the subgame reached when following the transition of β1 and β2 (hence with s = (1,1,0)),
the optimal way of fulfilling goals β1 and β2 is given by (0,0,?) �s (0,1,?) �s (1,0,?) ≡s (1,1,?),
independently of what may happen in the subgame reached by following the transition given by β3.

We exploit this idea in our proof: first, in order to keep track of the truth values of the LTL formulas ψi

of each goal, we define a family of parity automata, one for each subset of goals of the formula under
scrutiny. A subgame, as considered above, is characterized by a state q of the original concurrent game,
a state dp of each of the parity automata, and a vector s ∈ {0,1}n defining which goals are still active.
For each subgame, we can compute, by induction on s, the optimal set of goals that can be fulfilled from
that configuration. The optimal strategies of both players in each subgame can be used to define (partial)
optimal timeline dependence maps. We can then combine these partial maps together to get optimal
dependence maps θ and θ ; using similar arguments as for the proof of Prop. 6, we get a valuation χ such
that θ(χ|V ∀) = χ = θ(χ|V ∃), from which we deduce that exactly one of ϕ and ¬ϕ holds.

5.4 Maximality of SL[EG][

Finally, we prove that SL[EG][ is, in a sense, maximal for the first property of Theorem 8:

Proposition 11. For any non-semi-stable boolean set Fn ⊆ {0,1}n, there exists a SL[BG][ formula ϕ

built on Fn, a game G and a state q0 such that G ,q0 6|=T ¬ϕ and G ,q0 6|=T ϕ .
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Whether SL[EG][ is also maximal for having a 2-EXPTIME model-checking algorithm remains open.
Actually, we do not know if SL[BG][ model checking is decidable under the timeline semantics. These
questions will be part of our future works on this topic.
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