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We analyse the verification problem for synchronous, perfect recall multi-agent systems with im-
perfect information against a specification language that includes strategic and epistemic operators.
While the verification problem is undecidable, we show that if the agents’ actions are public, then
verification is 2EXPTIME-complete. To illustrate the formal framework we consider two epistemic
and strategic puzzles with imperfect information and public actions: the muddy children puzzle and
the classic game of battleships. This paper is based on a previous version [2] accepted for publication
at AAMAS2017.

1 Introduction

Synchronous, perfect-recall multi-agent systems (MAS) are an important class of MAS that can be
used to model a wide variety of scenarios including communication protocols, security protocols and
games [12]. Reasoning about the knowledge and the strategic ability of agents in these systems re-
mains of particular importance. Traditionally, epistemic logic [12] has been used to express the states of
knowledge of the agents, whereas ATL has provided a basis for the agents’ strategic abilities [1]. ATL
and epistemic logic have been combined in a number of ways to obtain specification languages capa-
ble of expressing both concepts (see below). A popular method for establishing properties of MAS is
verification via model checking [5].

However, verifying synchronous, perfect recall MAS under incomplete information against specifi-
cations in ATL is undecidable [1, 7] (hence it remains undecidable when epistemic modalities are added);
it is therefore of interest to identify cases in which reasoning about MAS is decidable. These restrictions
typically take three forms: restricting the syntax of the logic (e.g., by removing strategic abilities and
consider, instead, LTLK , the extension of LTL with individual-knowledge operators, as in [30]), restrict-
ing the semantics (e.g., by requiring strategy quantifiers to vary over memoryless-strategies [38]), or by
restricting the class of MAS under consideration. In this paper we follow the third option.
Contribution. We identify a class of imperfect-information concurrent game structures (iCGS) that we
call public-action iCGS (PA-iCGS). In contrast to general iCGS [7], we prove that model-checking the
full logic ATL∗K on PA-iCGS is decidable, specifically 2EXPTIME-complete. Thus, the joint complexity
of model-checking is the same as that of ATL∗ with perfect information [1]. Morever, we show that the
class models MAS in which agents have imperfect information, synchronous perfect recall, and whose
actions are public, i.e., all actions are visible to all agents. As we explain, the class PA-iCGS captures
games of imperfect information in which the agents have uncertainty about the initial configuration but
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all moves are observable to all agents. This has applications to, among others, games (e.g., Bridge,
Poker, Battleships, etc.), fair division protocols (e.g., classic cake cutting algorithms), selected broadcast
protocols [31], blackboard systems in which a public database is read and written by agents [33], auctions
and auction-based mechanisms [10].

The rest of the paper is organised as follows. In the remainder of this section we discuss related work.
In Section 2 we define iCGS with public actions and the logic ATL∗K, that we will use as specification
language, and illustrate the formalism. In Section 3 we present the main result of the paper, i.e., we show
the decidability of the verification problem, by means of an automata-theoretic approach, and analyse
the resulting complexity. We conclude in Section 4.
Related Work. In order to reason formally about multi-agent systems, temporal logics such as LTL,
CTL, CTL∗ have been extended with strategy quantifiers [1] and epistemic modalities [18]. The ex-
tended syntax has been combined with a number of different assumptions on the underlying MAS:
perfect vs. imperfect information, perfect vs. imperfect recall, state-based vs. history-based seman-
tics [1, 18, 14, 38, 19, 6, 15, 32]. Assuming imperfect information and perfect recall, as we do in
this paper, often results in intractable model-checking. For instance, the model-checking problem for
ATL in this setting is undecidable [7], as is the model-checking problem for the extension LTLK,C of LTL
with epistemic operators, including common knowledge [30]. Given this difficulty, finding decidable or
tractable fragments remains of interest.

As expected, restricting the logic lowers the complexity. We list some notable examples: the model-
checking problem for LTLK with only individual knowledge is non-elementary complete [30], model-
checking ATL with only “communicating coalitions” (i.e., coalitions use their distributed knowledge in-
stead of their individual knowledge) is decidable and non-elementary [6, 15]; and model-checking ATL
in which all coalitions operate with a single indistinguishability relation reduces ATL to its singleton-
coalition fragment [21]. Also, restricting the class of structures (iCGS) over which these languages are
interpreted lowers the complexity. Such restrictions typically take one of two forms: i) on the observa-
tion or information sets of the agents; ii) on the the architectures that govern communication. Notable
examples of (i) may require that: all agents have the same observation sets [25]; that the information sets
form a hierarchy [34], or that, over time, they infinitely often form a hierarchy [3]. A notable example
of (ii) are characterisations of the architectures for which distributed synthesis is decidable [13, 37], thus
generalising earlier results on linear architectures [34, 22].

More closely related to the present contribution are broadcast environments (which restrict the under-
lying iCGS) and that can capture epistemic puzzles and games of imperfect information such as Bridge.
In particular, [31] studies the synthesis problem for MAS in broadcast environments and specifications
given by linear-temporal logic with individual-knowledge operators. The main differences between this
work and ours is as follows: our logic can express the synthesis problem as a model checking problem
(use formulas of the form 〈〈A〉〉ψ where ψ is a path-formula that does not contain strategic quantifiers),
as well as alternating strategic quantifiers mentioning overlapping coalitions; PA-iCGS can be viewed
as a special case of broadcasting systems (in broadcasting systems each agent has the same observation
of the environment, which can be take to be the last joint-action); the interpretation of the epistemic
operators in their work are restricted to histories consistent with the strategies being synthesised, while
in our work histories need only start in an initial state.

Actions that constitute public announcements have been studied in depth (Dynamic Epistemic Logic,
Public Announcement Logic, epistemic protocols [8]). However, this line of research differs semantically
and syntactically from our work. In particular, in these works modal operators are model transformers,
and coalitions are not explictly named in the language.

This paper is based on a previous version [2] presented at AAMAS2017.
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2 Games with Public Actions and Strategic-Epistemic Logic

In this section we define the game model and the logic. The model is the subclass of imperfect informa-
tion concurrent game structures (iCGS) that only have public actions (PA-iCGS). The logic is ATL∗K,
an extension of Alternating Time Temporal Logic (ATL∗) which includes strategic operators (〈〈A〉〉 for
A ⊆ Ag) as well as epistemic operators for individual-knowledge (Ka for a ∈ Ag), common-knowledge
(CA for A⊆ Ag), and distributed-knowledge (DA for A⊆ Ag).
Notation. For an infinite or non-empty finite sequence u ∈ Xω ∪ X+ write ui for the ith element of
u, i.e., u = u0u1 · · · . The empty sequence is denoted ε . The length of a finite sequence u ∈ X∗ is
denoted |u|, its last (resp. first) element is denoted last(u) (resp. f irst(u)). Further, we assume that
last(ε) = f irst(ε) = ε . For i < |u| write u≤i for the prefix u0 · · ·ui. For a vector v ∈∏i Xi we denote the
ith co-ordinate of v by v(i). In particular, for F ∈∏i(Xi)

Y we may write F(i) ∈ (Xi)
Y and F(i)(y) ∈ Xi.

2.1 iCGS with only Public Actions

We begin with the standard definition of imperfect information concurrent game structures [4, 7].

Definition 1 (iCGS). An imperfect information concurrent game structure (iCGS) is a tuple S= 〈Ag,AP,
{Acta}a∈Ag,S,S0,δ ,{∼a}a∈Ag,λ 〉, where:

• Ag is the finite non-empty set of agent names;

• AP is the finite non-empty set of atomic propositions;

• Acta is the finite non-empty set of actions for a ∈ Ag;

• S is the finite non-empty set of states;

• S0 ⊆ S is the non-empty set of initial states;

• δ : S×ACT→ S is the transition function, where the set ACT of joint-actions is the set of all
functions J : Ag→

⋃
a Acta such that J(a) ∈ Acta. The transition function assigns to every state s

and joint-action J, a successor state δ (s,J);

• ∼a⊆ S2 is the indistinguishability relation for agent a, which is an equivalence relation; the equiv-
alence class [s]a of s ∈ S under ∼a is called the observation set of agent a;

• λ : AP→ 2S is the labeling function that assigns to each atom p the set of states λ (p) in which p
holds.

Perfect-information is treated as a special case:

Definition 2 (perfect-information). A concurrent game structure (CGS) is an iCGS for which ∼a=
{(s,s) : s ∈ S} for all a ∈ Ag.

We now give a brief and to-the-point definition of what it means for an iCGS to only have public
actions, i.e., all actions are visible to all agents. This determines a subclass of iCGS that we call PA-
iCGS.

Definition 3 (PA-iCGS). An iCGS only has public actions if for every agent a ∈ Ag, states s,s′ ∈ S, and
joint actions J,J′ ∈ ACT, if J 6= J′ and s ∼a s′ then δ (s,J) 6∼a δ (s′,J′). We write PA-iCGS for the class
of iCGS that only have public actions.
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This definition says that if an agent a cannot distinguish between two states, but different joint actions
are performed in each of these states (because, for instance, some other agent can distinguish them), then
the agent can distinguish between the resulting successor states.

One way to generate an iCGS only having public actions is to ensure that i) the state records the
last joint-action played, thus S is of the form T × (ACT∪{ε}), where ε refers to the situation that no
actions have yet been played, and ii) the indistinguishability relations ∼a satisfy that if (t,J) ∼a (t ′,J′)
then J = J′. Similar conditions have been considered in the literature, e.g., recording contexts in [12].

In the remainder of this section we define what it means for an agent to have synchronous perfect-
recall [12].
Synchronous perfect-recall under imperfect information. A path in S is a non-empty infinite or
finite sequence π0π1 · · · ∈ Sω ∪ S+ such that for all i there exists a joint-action J(i) ∈ ACT such that
πi+1 ∈ δ (πi,J(i)). Paths that start with initial states are called histories if they are finite and computations
if they are infinite. The set of computations in S is written comp(S), and the set of computations in S
that start with history h is written comp(S,h). We define hist(S) and hist(S,h) similarly.

We use the following notation: if∼ is a binary relation on S we define the extension of∼ to histories
as the binary relation ≡ on hist(S) define by h ≡ h′ iff |h| = |h′| (i.e., synchronicity) and h j ∼ h′j for
all j ≤ |h| (i.e., perfect recall). We give three particular instantiations. If ∼a is the indistinguishability
relation for agent a, then we say that two histories h,h′ are indistinguishable to agent a, if h ≡a h′.
For A ⊆ Ag, let ∼C

A= (∪a∈A ∼a)
∗, where ∗ denotes the reflexive transitive closure (wrt. composition of

relations), and its extension to histories is denoted ≡C
A. For A⊆ Ag, let ∼D

A= ∩a∈A ∼a, and its extension
to histories is denoted ≡D

A .
Strategies. A deterministic memoryfull strategy, or simply a strategy, for agent a is a function σa :
hist(S)→ Acta. A strategy σa is uniform if for all h ≡a h′, we have σ(h) = σ(h′). The set of uniform
strategies is denoted Σ(S). All strategies in the rest of the paper are uniform (although sometimes we
will stress this fact and write “uniform strategy”). For A ⊆ Ag, let σA : A→ Σ(S) denote a function
that associates a uniform strategy σa with each agent a ∈ A. We write σA(a) = σa, and call σA a joint
strategy. For h∈ hist(S) write out(S,h,σA), called the outcomes of σA from h, for the set of computations
π ∈ cmp(S,h) such that π is consistent with σA, that is, π ∈ out(S,h,σA) iff i) π≤|h|−1 = h; ii) for every
position i ≥ |h|, there exists a joint-action J(i) ∈ ACT such that πi+1 ∈ δ (πi,J(i)), and for every a ∈ A,
J(i)(a) = σA(a)(π≤i). We may drop S and write simply out(h,σA). Notice that, if A = /0, then out(h,σA)
is the set of all paths starting with h (this is because σA is the empty function and (ii) above places no
additional restrictions on the computations).

2.2 The Logic ATL∗K

In this section we define the logic ATL∗K. Its syntax has been called ATEL* (cf. [18]), and we interpret
it on iCGS with history-based semantics and imperfect information.
Syntax. Fix a finite set AP of atomic propositions (atoms) and a finite set Ag of agents. The history (ϕ)
and path (ψ) formulas over AP and Ag are built using the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ϕ | Kaϕ |CAϕ | DAϕ | 〈〈A〉〉ψ
ψ ::= ϕ | ¬ψ | ψ ∧ψ | Xψ | ψ Uψ

where p ∈ AP, a ∈ Ag, and A⊆ Ag.
The class of ATL∗K formulas is the set of history formulas generated by the grammar. The temporal

operators are X (read “next”) and U (read “until”). The strategy quantifier is 〈〈A〉〉 (“the agents in A can
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enforce ψ”), and the epistemic operators are Ka (“agent a knows that”), CA (“it is common-knowledge
amongst A that”), and DA (“the agents in A distributively know that”). Intuitively, CAφ means that every
agent a ∈ A knows φ , and a knows that everybody in A knows φ , and so on. On the other hand, DAφ

means that if all agents in A pool their knowledge, then they know φ . We introduce operators [[A]], G,
and F as standard.
Semantics. Fix an iCGS S. We simultaneously define, by induction on the formulas, (S,h) |= ϕ where
h ∈ hist(S) and ϕ is a history formula, and (S,π,m) |= ψ where π ∈ cmp(S), m ≥ 0, and ψ is a path
formula:
(S,h) |= p iff last(h) ∈ λ (p), for p ∈ AP.
(S,h) |= ¬ϕ iff (S,h) 6|= ϕ .
(S,h) |= ϕ1∧ϕ2 iff (S,h) |= ϕi for i ∈ {1,2}.
(S,h) |= 〈〈A〉〉ψ iff for some joint strategy σA ∈ Σ(S), (S,π, |h|−1) |= ψ for all π ∈ out(h,σA).
(S,h) |= Kaϕ iff for every history h′ ∈ hist(S), h′ ≡a h implies (S,h′) |= ϕ .
(S,h) |=CAϕ iff for every history h′ ∈ hist(S), h′ ≡C

A h implies (S,h′) |= ϕ .
(S,h) |= DAϕ iff for every history h′ ∈ hist(S), h′ ≡D

A h implies (S,h′) |= ϕ .
(S,π,m) |= ϕ iff (S,π≤m) |= ϕ , for ϕ a history formula.
(S,π,m) |= ¬ψ iff (S,π,m) 6|= ψ .
(S,π,m) |= ψ1∧ψ2 iff (S,π,m) |= ψi for i ∈ {1,2}
(S,π,m) |= Xψ iff (S,π,m+1) |= ψ .
(S,π,m) |= ψ1Uψ2 iff for some j ≥ m, (S,π, j) |= ψ2, and for all k with m≤ k < j, (S,π,k) |= ψ1.

For a history formula ϕ , write S |= ϕ to mean that (S,s) |= ϕ for every s ∈ S0.
We isolate some important fragments.

1. The fragment ATLK,C,D consists of history formulas ϕ defined by the grammar above, except with
the following path formulas: ψ ::= Xϕ | ϕ Uϕ

2. The fragment ATL (resp. ATL∗) consists of formulas of ATLK,C,D (resp. ATL∗K) that do not
mention epistemic operators.

3. The CTL operator E (resp. A) is definable in ATL∗ by [[ /0]] (resp. 〈〈 /0〉〉). In particular, CTL∗K,C,D
is a syntactic fragment of ATL∗K. The fragment of CTL∗K,C,D consisting of formulas of the form
Aψ , where ψ is a path formula, is denoted LTLK. Finally, LTL is the fragment of LTLK that does
not mention epistemic operators.

Remark 1. The definition of the semantics of 〈〈A〉〉ψ is the “objective” semantics of 〈〈A〉〉, and captures
the idea that a designer is reasoning about the existence of strategies. On the other hand, “subjec-
tive” semantics capture the idea that agents themselves are reasoning about the existence of strate-
gies [38]. To obtain the subjective interpretation of ATL∗K replace “for all π ∈ out(h,σA)” by “for all
π ∈

⋃
a∈A,h′≡ah out(h

′,σA)” in the semantics (S,h) |= 〈〈A〉〉ψ . Subjective semantics expresses, intuitively,
that the agents A know that a given strategy will guarantee a certain outcome. We remark that in this
case Ka is definable in terms of 〈〈A〉〉, i.e., 〈〈a〉〉ϕ Uϕ .
Model Checking. We state the main decision problem of this work.
Definition 4 (Model Checking). Let C be a class of iCGS and F a sublanguage of ATL∗K. Model
checking C against F specifications is the following decision problem: given S ∈ C and ϕ ∈ F as
input, decide whether S |= ϕ .

Model checking is undecidable in general. Actually, it is undecidable even if C consists of all iCGS
with |Ag| = 3 and F consists of the single formula 〈〈{1,2}〉〉G p, see [7]. In Section 3 we prove that
model checking PA-iCGS against ATL∗K specifications is decidable.
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Discussion. We emphasize that PA-iCGS are not only of theoretical interest, but they are indeed a family
of systems relevant from the viewpoint of modelisation and verification of real-life scenarios.

Firstly, notice that several card and boards games can be characterised as games of imperfect infor-
mation, in which only a bounded amount of private communication/actions (possibly none) is performed.
Such examples of games include poker, bridge, battleship, in which the imperfect information pertains
to the inital deal of cards/pawns, while all moves are visible to any player.

Further, several epistemic puzzles fall within the category of PA-iCGS, such as muddy children,
Russian cards, consecutive numbers, sum and products [9]. We refer to [2] for a formalisation of the
muddy children puzzle in the framework of iCGS with only public actions, which can be recast as a
PA-iCGS.

Moreover, we observe that broadcast/public actions are amongst the most well-studied communica-
tion patterns in distributed computing, because of their relevance and ubiquity. For instance, broadcast
is the default communication mode for Twitter. In this respect, PA-iCGS are closely related to (and able
to capture) the broadcasting systems in [26], as well as planning via public actions [11].

3 Decidability of PA-iCGS

In this section we state that model checking PA-iCGS against ATL∗K specifications is decidable. This
should be contrasted with the fact that model checking arbitrary iCGS against ATL specifications is
undecidable [7].

Theorem 5. Model checking PA-iCGS against ATL∗K specifications is 2EXPTIME-complete.

The rest of this section contains the proof of this theorem. We use an automata-based marking
algorithm. Such algorithms have been successfuly applied to a number of logics, including CTL∗ [23]
and ATL∗ [1] in the perfect information setting. Before giving the proof, we introduce an encoding µ of
histories.

Definition 6. Let S be an iCGS. Let µ : S0×ACT∗→ hist(S) denote the function mapping (s0,u) to the
history starting at the initial state s0 that results from the sequence of joint actions u ∈ ACT∗. That is,
µ(s0,u) is the history h such that h0 = s0, h j = δ (h j−1,u j−1) for 1≤ j ≤ |u|.

For PA-iCGS, the encoding is actually a bijection:

Remark 2. Let S be a PA-iCGS. Since each∼a is reflexive, δ (s, ·) : ACT→ S is injective for every s ∈ S.
Thus, µ : S0×ACT∗→ hist(S) is a bijection. In particular, for every h ∈ hist(S) and s ∈ S0 there exists
a unique u ∈ ACT∗ such that µ(s,u) = h. This bijection allows us to encode histories of S by (unique)
elements of S0×ACT∗.

An immediate consequence of having only public actions, but one that forms the foundation of our
decidability proof, is that the moment different joint actions are taken, two histories become distinguish-
able.

Lemma 1. Let S be a PA-iCGS. For all a ∈ Ag, u,u′ ∈ ACT∗ and s,s′ ∈ S0, if µ(s,u) ≡a µ(s′,u′) then
u = u′.

Proof. If µ(s,u)≡a µ(s′,u′) then |u|= |u′| and, for all 0≤ j ≤ |u|, µ(s,u) j ∼a µ(s′,u′) j. By the defini-
tion of having only public actions, u j = u′j for all j < |u|.
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We are ready to proceed with the proof.
Automata theory. Since our proof uses an automata-theoretic approach we now fix notations of word
and tree automata. We remark that we only make use of standard properties of automata operating on
finite words, infinite words, and infinite trees [24].

A deterministic finite-word automaton (DFW) is a tuple M = (Σ,S,s0,ρ,F) where Σ is the input
alphabet, S is the finite set of states, s0 ∈ S the initial state, ρ : S×Σ→ S the deterministic transition
function, and F ⊆ S the set of final states. The run of M on u ∈ Σ∗ is the finite sequence s0s1 · · ·s|u| where
ρ(si,ui) = si+1 for all i < |u|. The automaton accepts a word u ∈ Σ∗ iff the run of M on u ends in a final
state. A DFW is empty if it accepts no word. A set of strings X ⊆ Σ∗ is called regular if there is a DFW M
that accepts u ∈ Σ∗ iff u ∈ X .

We also make use of automata operating on infinite words α ∈ Σω : a deterministic parity word
automata (DPW) is a tuple P = (Σ,S,s0,ρ,c) where all components are as for DFW except that c : S→ Z
is the colouring function. The run of P on α ∈Σω is the infinite sequence s0s1 · · · such that ρ(si,αi)= si+1
for all i. The automaton accepts a word α iff the smallest color k for which there are infinitely many i
with c(si) = k is even (where s0s1 · · · is the run of M on α).

We also make use of automata operating on trees. A deterministic parity tree automata (DPT) is a
tuple T = (Σ,D,S,s0,ρ,c) where all components are as for a DPW except that D is the finite set of direc-
tions, and ρ : S×Σ→ SD. The automaton operates on Σ-labelled D-ary branching trees, i.e., functions
f : D∗→ Σ. A branch of t is an infinite sequence β ∈Dω . The run of T in input t is the Q-labeled D-ary
branching tree g : D∗ → Q such that g(ε) = s0 and g(ud) = ρ(g(u), t(u)). The automaton accepts the
tree f iff for every β ∈ Dω , the smallest color k for which there are infinitely i with g(βi) = k is even.

The classes of DFW and DPW are effectively closed under the Boolean operations (complementation
and intersection). Also, DFW, DPW and DPT can be effectively tested for emptiness. Finally, we make
use of the following important fact connecting linear temporal logic with automata:

Proposition 1 ([39, 36]). Every LTL formula ψ over atoms AP can be effectively converted into a DPW

Pψ with input alphabet 2AP that accepts a word α ∈ 2AP iff α |= ψ . Moreover, the DPW has double-
exponentially many states and single-exponentially many colours.

Proof outline. We proceed by induction on the formula ϕ to be checked. We build a DFW that accepts
all encodings of histories h such that (S,h) |= ϕ . Precisely, we build a DFW Ms

ϕ that accepts a sequence
of joint actions u ∈ ACT∗ iff (S,µ(s,u)) |= ϕ . The atomic case is immediate, and the Boolean cases
follow from the effective closure of DFW under complementation and intersection. The ϕ = Kaϕ ′ case
is done by simulating the DFW Mt

ϕ ′ for t ∈ S0, and recording whether or not µ(s,u)∼a µ(t,u); the other
knowledge operators are similar. The strategic operator ϕ = 〈〈A〉〉ψ is done as follows: first we show that
we can assume ψ is an LTL formula, and then we build a DPW for the formula ψ; we build the DFW that
simulates the DPW, and when the input ends we use a tree automaton to decide if there is a joint strategy
that ensures that the DPW accepts all computations consistent with that joint strategy.
GENERALISATION OF THE LABELING FUNCTION. We first generalise the labeling function of iCGS
so that atoms are regular sets of histories (instead of state labelings).

Definition 7. A generalised iCGS is a tuple S = 〈Ag,AP,{Acta}a∈Ag,S,S0,δ ,{∼a}a∈Ag,Λ〉 where all
entries are as for iCGS, except that λ : AP→ 2S is replaced by a function Λ : AP→ 2hist(S) such that
Λ(p) ⊆ hist(S) is a regular set of histories, i.e., there exists a DFW over the alphabet S accepting h ∈
hist(S) iff h ∈ Λ(p).

Then, we redefine the atomic case of the semantics of ATL∗K: (S,h) |= p iff h∈Λ(p). It is immediate
that generalised iCGS are indeed more general than iCGS:
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Lemma 2. Let S be an iCGS with labeling function λ . The generalised iCGS S′ with labeling Λ(p) =
{h ∈ hist(S) : last(h) ∈ λ (p)} has the property that S |= ϕ iff S′ |= ϕ (for all formulas ϕ of ATL∗K).

Proof. First, note that Λ(p) is regular since a DFW can read the history h and store in its state whether or
not the last state it read is in λ (p) or not. Second, the fact that S |=ϕ iff S′ |=ϕ holds by a straightforward
induction on the structure of ϕ .

A generalised PA-iCGS is a generalised iCGS that only has public actions, i.e., it satisfies the con-
dition in Definition 3 (which does not depend on the labeling). For the rest of the proof we view S as a
generalised PA-iCGS.
INDUCTIVE STATEMENT. Let S be a generalised PA-iCGS. For every history formula ϕ and initial
state s ∈ S0 we will build a DFW Ms

ϕ such that for every u ∈ ACT∗, Ms
ϕ accepts u iff (S,µ(s,u)) |= ϕ.

From this it is easy to get the decidability stated in the theorem: simply check that ε is accepted by
every Ms

ϕ with s ∈ S0. We build the DFW Ms
ϕ , simultaneously for all s ∈ S0, by induction on ϕ .

ϕ is an atom. Say ϕ = p ∈ AP and let s ∈ S0. The required DFW Ms
ϕ should accept u ∈ ACT∗ iff µ(s,u)

is accepted by the DFW Λ(p). To do this we define Ms
ϕ to simulate S and the DFW R = (S,Q,q0,ρ,F) for

Λ(p) in parallel, i.e., by taking a product of S and R. Formally, define Ms
ϕ = (ACT,S×Q,(ι ,q0),τ,F ′)

where the transition function τ maps state (s,q) and input a∈ACT to state (δ (s,a),ρ(q,s)), and the final
states F ′ are of the form (s,q) where ρ(q,s) ∈ F .
ϕ is a Boolean combination. Let s ∈ S0. The Boolean combinations follow from the effective closure of
DFW under complementation and intersection. Indeed, Ms

¬ϕ is formed by complementing the final states
of Ms

ϕ , and Ms
ϕ1∧ϕ2

is the product of the Ms
ϕi

s.
ϕ is of the form Kaϕ ′. Let s ∈ S0. By induction, we have DFW Mt

ϕ ′ for t ∈ S0. The required DFW should
accept a string u iff, for every t ∈ S0, if µ(s,u)≡a µ(t,u) then Mt

ϕ ′ accepts u.
To do this, the DFW will simulate, in parallel, each Mt

ϕ ′ for t ∈ S0. This is done by forming their
product, i.e., the states of the product are q : S0→ Q where Q is the union of the state sets of the Mt

ϕ ′ for
t ∈ S0, and there is a transition in the product from q to q′ on input J ∈ ACT if for each t ∈ S0 there is a
transition in Mt

ϕ ′ from q(t) to q′(t) on input J. Instrument this product by recording, on input u ∈ ACT∗

a function fu : S0→ S and a set Gu ⊆ S0 with the following properties:

• fu(t) = last(µ(t,u))

• t ∈ Gu iff for every prefix v of u, fv(s) ∼a fv(t) (thus, initially Gε = {t ∈ S0 : t ∼a s}, and the
moment fv(s) 6∼a fv(t) we remove t from Gv).

A state 〈 f ,G,q〉 is final if, for every t ∈ G it is also the case that q(t) is a final state of Mt
ϕ .

ϕ is of the form CAϕ ′. This is identical to the Ka case except replace ∼a by ∼C
A and replace ≡a by ≡C

A.
ϕ is of the form DAϕ ′. This is identical to the Ka case except replace ∼a by ∼D

A and replace ≡a by ≡D
A .

ϕ is of the form 〈〈A〉〉ψ . We proceed in two steps. First, we show how to linearise path formulas, and
then we show how to encode strategies as trees so that we can build the promised DFW.
Linearising path formulas. One can think of an ATL∗K path formula ψ as an LTL formula lin(ψ)
over a fresh set of atoms max(ψ), the maximal history subformulas of ψ . This translation of ATL∗K
path formulas to LTL formulas does not make use of the assumption that the iCGS S only has public
actions, and it is analogous to the translation of ATL∗ (or CTL∗) path formulas to LTL formulas over
maximal state subformulas [23, 1]. Specifically, let max(ψ) be the set of history subformulas of ψ that
are maximal, i.e., a history formula ϕ ∈max(ψ) iff it occurs in ψ and that occurence is not a subformula
of any other occurence of a history subformula of ψ . If ψ is a path formula, define lin(ψ) to be the LTL
formula where for each ϕ ∈ max(ψ) there is a fresh atom ϕ such that every occurence of ϕ in ψ is
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replaced by ϕ . For example, consider ψ = (pU〈〈A〉〉Ka p)∨X¬CA p. The history subformulas of ψ are
{p,〈〈A〉〉Ka p,Ka p,¬CA p,CA p}. Then max(ψ) = {p,〈〈A〉〉Ka p,¬CA p}.1 Thus lin(ψ) is the LTL formula(

p U 〈〈A〉〉Ka p
)
∨X ¬CA p over the atoms ϕ for ϕ ∈ max(ψ). Since, by induction, we have built

DFW for each boxed atom, for the remainder of the proof we assume that ψ is an LTL formula.
Construction of Ms

〈〈A〉〉ψ for an LTL formula ψ . We will build a DPW Eψ,s over ACT that accepts α ∈
ACTω iff (S,µ(s,α)) |=ψ . The promised DFW Ms

〈〈A〉〉ψ reads u∈ACT∗ and simulates Eψ,s. Suppose after
reading u the state of Eψ,s is q. Then Ms

〈〈A〉〉ψ accepts, i.e., q is defined to be a final state of Ms
〈〈A〉〉ψ , iff there

exists uniform σA such that for every α ∈ACTω , if µ(s,u ·α)∈ out(S,µ(s,u),σA) then α is accepted by
Eψ,s starting from state q (and thus (S,µ(s,u)) |= 〈〈A〉〉ψ , as required). These latter realisability problems
(one for each q) are solved offline by constructing DPT Fψ,s,q and testing them for non-emptiness. We
now show how to build the automata Eψ,s and Fψ,s,q.
Construction of DPW Eψ,s. To build Eψ,s, begin by writing AP(ψ) for the finite set of atoms appearing in
ψ . First, for each p ∈ AP(ψ), let Dp be a DFW for the regular set {u ∈ ACT∗ : µ(s,u) ∈ Λ(p)}. Second,
by Proposition 1, every LTL formula ψ can be converted into a DPW Dψ over alphabet 2AP that accepts
all word models of that formula. Let Qψ be the states and ∆ψ : Qψ ×2AP(ψ)→ Qψ the transition of the
DPW. Now, the DPW Eψ,s simulates Dψ and each DFW Dp. The automaton does this by storing and
updating a state qu ∈Qψ and a function fu such that fu(p) is the state of Dp (i.e., fu : AP(ψ)→Q where
Q is the union of states of the Dps). Transitions of Eψ,s are as follows: from state 〈qu, fu〉 and input
d ∈ACT the next state 〈qud , fud〉 satisfies that qud = ∆ψ(qi,Z) where p∈ Z iff fu(p) is a final state of Dp,
and fud(p) is the state resulting from applying the transition function of Dp to the state fu(p) and input
d. Define the colour of 〈q, f 〉 to be the same as the colour in Dψ of the state q, and 〈q, f 〉 is an initial
state if q is an initial state in Dψ . The following is straightforward to prove:

Lemma 3. The DPW Eψ,s accepts α ∈ ACTω if and only if (S,µ(s,α)) |= ψ .

Construction of DPT Fψ,s,q. To solve the synthesis problem we will encode strategies as trees and use
tree-automata. Encode a strategy σ of agent a by the ACT-branching tree Tσ : ACT∗→ (Acta)S0 where,
for u ∈ ACT∗, Tσ (u)(t) = σ(µ(t,u)). By Lemma 1, σ is uniform iff Tσ satisfies the property

µ(t,u)≡a µ(t ′,u)⇒ Tσ (u)(t) = Tσ (u)(t ′) (1)

Lemma 4. The set of encodings Tσ of uniform strategies σ of agent a is recognised by a DPT.

Proof. To do this, it is sufficient to build a DPT that accepts a tree T iff T has property (1). Informally,
for every pair of different states t, t ′ ∈ S0, the DPT keeps a bit that is initialised to 1 (signifying that it
must verify that T (u)(t) = T (u)(t ′)), and as soon as it finds that µ(t,u) 6≡a µ(t ′,u) it sets the bit to 0,
which signals that it no longer has to ensure Tσ (u)(t) = Tσ (u)(t ′).

Encode a set of uniform strategies σA (for A ⊆ Ag) as the convolution TσA of their individual en-
codings, i.e., TσA : ACT∗ → ∏a∈A(Acta)S0 where TσA(u)(a) = Tσa(u). Running the automata for σa in
parallel yields:

Lemma 5. For every A⊆ Ag, the set of encodings of joint uniform strategies σA is recognised by a DPT.

Finally, in order to solve the synthesis problem for state q, we define a DPT Fψ,s,q that accepts TσA iff
for every α ∈ ACTω , if µ(s,α) is consistent with σA then α is accepted by Eψ,s starting from q.

1Note that although p has a non-maximal occurence in ψ , it is included in max(ψ) since it has at least one occurence which
is maximal, i.e., on the left-side of U.
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The DPT Fψ,s,q works as follows: it reads TσA as input and, on every branch α ∈ ACTω of the tree,
simulates Eψ,s starting from q, and accepts that branch if both Eψ,s is accepting and µ(s,α) is consistent
with σA. This can be done by a tree-automaton because a) Eψ,s is deterministic and thus it can be run
on all paths of the tree (i.e., this step would not be possible if Eψ,s were a non-deterministic automaton);
and b) checking if µ(s,α) is consistent with σA is simply a matter of checking that α0(a) = σA(a)(s) and
αi+1(a) = σA(a)(µ(s,α≤i)), for every i ∈ N and a ∈ A.
Final states of DFW Ms

〈〈A〉〉ψ . Finally, define the state q of Ms
〈〈A〉〉ψ to be a final state iff the DPT Fψ,s,q is

non-empty (a decidable condition).
This completes the construction of Ms

〈〈A〉〉ϕ , and the proof of decidability.
To deal with the subjective semantics in Remark 1 proceed as follows. For u ∈ ACT∗ let T s

u ⊆ S0 be
the set of t such that there exists a ∈ A with t ≡a s. The DFW Ms

〈〈A〉〉ψ simulates Eψ,t for all t ∈ T s
ε . After

reading u, each automaton Eψ,t for t ∈ T s
u is in some state, say qt . The DFW is required to accept u iff

there exists a joint strategy σA such that for every α ∈ACT∗ and t ∈ T s
u , if µ(t,u ·α)∈ out(S,µ(t,u),σA)

then α is accepted by Eψ,t starting from qt . In order to decide the right-hand side we build the DPT Fψ,t,qt

for t ∈ T s
u (as we did above for s). Then we check if the intersection of the automata Fψ,t,qt (for t ∈ T s

u ) is
non-empty.

3.1 Complexity

In this section we analyse the complexity of our decision procedure for a fixed number of agents. atoms.
We then establish the lower bound by a reduction from a problem known to be 2EXPTIME-hard.

First, we calculate ||ϕ||, the number of states of the deterministic finite-word automaton (DFW) Ms
ϕ

built in the proof of Theorem 5, for each case:

1. Atomic: ||p||= O(1) for p ∈ AP.

2. Negation: ||¬ϕ||= ||ϕ||.
3. Conjunction: ||ϕ ∧ϕ ′||= ||ϕ||× ||ϕ ′||.
4. Epistemic: ||Kaϕ||= (2×|S|× ||ϕ||)|S|, and the same for ||CAϕ|| and ||DAϕ||.
5. Strategic: ||〈〈A〉〉ψ||= 22O(|lin(ψ)|)×||ψ̃|||AP(lin(ψ))|×O(2|S|

2
) where lin(ψ) is the linearisation of ψ ,

ψ̃ is the largest history subformula of ψ , and AP(·) is the set of atomic predicates occuring in its
argument.

The last case requires some explanation. The deterministic parity tree automaton (DPT) accepting the set
of all joint-strategies σA has size O(2|S|

2
), and has two colours. The deterministic parity word automaton

(DPW) Dψ has double-exponentially many states and single-exponentially many colours (in the size of
lin(ψ)) [39, 36]. The DPW Eψ,s has 22O(|lin(ψ)|) ×||ψ̃||AP(ψ) many states. The DPT Fψ,s,q has 22O(|lin(ψ)|) ×
||ψ̃||AP(ψ)×O(2|S|

2
) many states and 2O(|lin(ψ)|) many colours. This gives the stated value of ||〈〈A〉〉ψ||.

Second, we calculate the time for constructing the DFW Ms
ϕ . In the first four cases this cost is

polynomial in the size of the DFW, i.e., ||ϕ||. For the strategy case we incur a cost to calculate the final
states, i.e., solving the emptiness of the DPT Fψ,s,q. The cost of solving the emptiness of a DPT with n
states and m colours is at most nO(m) [20]. Thus, the time for constructing Ms

ϕ is at most nO(m) where

n = 22O(|lin(ψ)|)×||ψ̃||AP(lin(ψ))×O(2|S|
2
) and m = 2O(|lin(ψ)|).

Finally, let z = |S|+ |ϕ|. The time for constructing Ms
ϕ of each step of the procedure can be bounded

above by 22O(z) ×|Λ|2O(z)
where |Λ| is the size of the largest DFW representing atoms of the generalised

PA-iCGS (a maximum exists since AP is finite). Since there are at most z such steps, the time for
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constructing, and thus the size, of the resulting DFW is 22O(z2)
. Testing if ε is accepted by this automaton

has no additional cost. Thus, our algorithm runs in 2EXPTIME.
Lower-Bound. To prove the lower bound in Theorem 5 we reduce from a known 2EXPTIME-hard
problem, i.e., model checking a CGS with Ag = {a,b} against a formula of the form 〈〈{a}〉〉ψ for an
LTL formula ψ [34, 35]. One can translate a two-player CGS S into a polynomially larger CGS S′

with public actions such that S |= ϕ iff S′ |= ϕ . Indeed, the agents, actions, and atoms are the same,
S′ = S× (ACT∪{ε}), S′0 = S0×{ε}, δ ′((s,d),d′) = (δ (s,d′),d′), and λ ′(p) = {(s,d) : s ∈ λ (p)} (note
that because S has two-players, |ACT|= |Act1|× |Act2|, and thus |S′| is polynomial in the size of S).

4 Conclusions

In this paper we put forward a class of CGS with imperfect information, namely the iCGS only having
public actions, which admit a decidable model checking problem, even in the presence of perfect recall.
This is in contrast with the fact that even realisability of safety properties on arbitrary iCGS is undecid-
able [7]. Specifically, we considered a rich formal language to express complex strategic and epistemic
properties of agents in MAS. This is the extension ATL∗K of the alternating-time temporal logic ATL∗,
with operators for individual, common, and distributed knowledge. We provided these languages with a
semantics in terms of iCGS, according to the objective interpretation of ATL modalities (the results also
hold if we use the subjective semantics). Most importantly, we identified a subclass of iCGS—those hav-
ing only public actions, or PA-iCGS—for which we were able to prove that the model-checking problem
is decidable. The interest of these results lies in the fact that PA-iCGS capture many important MAS sce-
narios, including certain games of imperfect information, epistemic puzzles, blackboard systems, face to
face communication, etc. Indeed, all scenarios mentioned in previous work on broadcast environments
[28, 31] can be captured by PA-iCGS. A number of extensions of ATL∗ have been proposed in order
to express classic solutions concepts (like Nash Equilibria) [16, 17, 29, 32]. The decidability of model
checking PA-iCGS against epistemic extensions of these strategy logics is currently unexplored.

Notwithstanding their generality, there are many features of MAS that are not naturally expressed
within PA-iCGS or broadcast environments. We discuss some of them:
Asynchronous recall. Social media like Twitter make use of public actions, but are more naturally mod-
eled as asynchronous MAS (rather than synchronous systems, as we do).
Bounded-recall. Games like Bridge and Stratego are interesting to play in part because humans have to
remember some of the history of a play, a feature that might be modeled by bounded recall (rather than
perfect recall). However, restricting agents to finite-memory strategies also results in undecidability on
arbitrary iCGS [40]. On the other hand, our proof implies that if a formula 〈〈A〉〉ψ is true then there
are finite-memory strategies witnessing this fact, and if a formula Kaϕ is true then there is a finite-state
machine that accepts exactly the histories making Kaϕ true. This suggests that our results can be used to
model agents of bounded-recall.
Probabilities. Several scenarios, such as card games and security protocols, involve probability either at
the level of the iCGS or at the level of strategies.

In future work we plan to investigate the points raised above, as well as to develop optimal model
checking algorithms for fragments of ATL∗K and to implement them in an extension of the MCMAS
tool for MAS verification [27].
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