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Abstract7

This paper develops a logic programming language, ASPEP, that extends answer set programming8

language with a new epistemic operator <x where x ∈ {],⊇}. The operator are used between two9

literals in rules bodies, and thus allows for the representation of introspections of preferences in10

the presence of multiple belief sets: G <] F expresses that G is preferred to F by the cardinality11

of the sets, and G <⊇ F expresses G is preferred to F by the set-theoretic inclusion. We define12

the semantics of ASPEP, explore the relation to the languages of strong introspections, and study13

the applications of ASPEP by modeling the Monty Hall problem and the principle of majority.14
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1 Introduction18

Preferences have extensively been studied in disciplines such as economy, operations research,19

psychology, philosophy, and artificial intelligence as showed in [8], [17], [2], [14], and [7] etc.20

In [24], von Wright defined preference as a relation between states of affairs. In formal logical21

languages, states of affairs are typically represented as propositions. Follow this tradition, one22

of the important directions in artificial intelligence is the logical representation and reasoning23

of preferences. Many extensions of the languages of answer set programming (ASP) have been24

developed for handling preferences due to the strong power of ASP in expressing defaults.25

Those languages provide elegant methodologies for modeling the intractable problems with26

defaults and preferences. Examples include the ordered logic programming [19], the logic27

programming with ordered disjunction [4], the answer set optimization [5][3], the prioritized28

logic programming [18], the CR-prolog [1], the possibilistic answer set programming [16] etc.29

The preferences handled in those answer set programs are used to evaluate the preferred30

answer sets via specifying the precedence over the rules or the literals in rules heads.31

Different from the above answer set programming paradigms with preferences, our purpose32

in this paper is to represent introspections of preferences over propositions in the presence33

of multiple belief sets by proposing a new epistemic operator <x where x ∈ {],⊇}. For34

propositions F and G, F <] G expresses that F is true in more belief sets than G, and can35

be read as “F is more possible than G”. And F <⊇ G expresses that F is always true in the36

belief sets where G is true, which tells “F is antecedent to G” or “F is true whenever G is37

true” etc. We first demonstrate this motivation using an example from our family life.38
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<3>:2 Introspecting preferences in answer set programming

I Example 1. Consider three discount packages offered by an amusement resort as showed39

in Table 1(a)2. Each of them contains three attractions but only two of them are available.40

A family is allowed to buy at most one package in advance, and may determine which two41

attractions to choose according to the actual situations, such as the waiting time, physical42

situation, when they are in the resort. For instance, a family with a kid child and a teenage43

boy decide which package to buy by the following criteria: (1). The family prefer the package44

that promises more opportunities for the kid child; (2). The parents request that their teenage45

boy has an attraction to visit whenever they visit an attraction3.46

Directly, the packages information allow the family to have nine possible combinations47

of attractions as showed in the table 1(b). And the family can have the following three

Table 1 Combo of Attractions

48

conclusions via simple counting.49

(i) Both package 2 and package 3 provide more opportunities for the kid child than package50

1.51

(ii) Both package 1 and package 3 guarantee that the teenage boy has an attraction to visit52

whenever the parents visit an attraction.53

(iii) By (i) and (ii), Package 3 should be the favorite package for the family.54

It is easy to get the combinations by encoding the packages information and the purchase55

requirements in a logic program Πep containing the following rules:56

1{package(1); package(2); package(3)}157

2{attraction(a1); attraction(a2); attraction(a3)}2← package(1)58

2{attraction(b1); attraction(b2); attraction(b3)}2← package(2)59

2{attraction(c1); attraction(c2); attraction(c3)}2← package(3)60

age(kids)← attraction(a1)61

age(adults)← attraction(a2)62

age(teens)← attraction(a3)63

age(all)← attraction(b1)64

age(adults)← attraction(b2)65

age(kids)← attraction(b3)66

age(all)← attraction(c1)67

2 In the tables, ‘All’ means that there is no age limitation.
3 To avoid the boy running around without parents.
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age(teens)← attraction(c2)68

age(kids)← attraction(c3)69

age(kids)← age(all)70

age(teens)← age(all)71

age(adults)← age(all)72

age_interest(X,Y )← package(X), age(Y ).73

that has exactly nine answer sets which correspond to the nine possible combinations in74

Table 1. We now expect to expand Πep by rules that is able to intuitively represent the75

criteria such that the result program is able to give the conclusions as showed in (i),(ii), and76

(iii). It is easy to see, for achieving the above goal, our representation and reasoning system77

should have an introspective ability that is able to look at the preferences over the beliefs78

with regard to those belief sets/answer sets.79

Specifically, this paper will address the issue of introspection of preferences illustrated in80

the above example. We develop a logic programming language, ASPEP, that extends the81

answer set programming language with a new epistemic operator <x where x ∈ {],⊇}. In82

ASPEP, the operator is used between two literals in rules bodies, and thus allows for the83

representation of introspections of preferences. Consider rules r]:84

prefer(X,Y, kid)← age_interest(X, kids) <] age_interest(Y, kids),85

package(X), package(Y )86

and r⊆:87

request(X)← age_interest(X, teens) <⊇ age_interest(X, adults), package(X)88

They are able to represent the criteria (1) and (2) in the motivation example respectively.89

The rest of the paper is organized as follows. In the next section, we review the basic90

principles underlying the answer set semantics of logic programs. In section 3, we introduce91

syntax and semantics of ASPEP. In section 4, we consider the relationship between ASPEP
92

and the strong introspection specification languages. In section 6, we explore the applications93

of ASPEP. We conclude in section 7 with some further discussion.94

2 Answer Set Programming95

Throughout this paper, we assume a finite first-order signature σ that contains no function96

constants of positive arity. There are finitely many Herbrand interpretations of σ, each of97

which is finite as well. We follow the description of ASP from [13]. A logic program over σ is98

a collection of rules of the form99

l1 or ... or lk ← lk+1, ..., lm, not lm+1, ..., not ln100

where the ls are literals of σ, not is called negation as failure, or is epistemic disjunction.101

The left-hand side of a rule is called the head and the right-hand side is called the body.102

A rule is called a fact if its body is empty and its head contains only one literal, and a103

rule is called a denial if its head is empty. A logic program is called ground if it contains104

no variables. [13] intuitively interprets that an answer set associated with a ground logic105

program is a set of beliefs (collection of ground literals) and is formed by a reasoner guided106

by three principles:107

Rule’s Satisfiability principle: Believe in the head of a rule if you believe in its body.108

Consistency principle: Do not believe in contradictions.109

Rationality Principle: Believe nothing you are not forced to believe.110

The definition of the answer set is extended to any non-ground program by identifying it111

with the ground program obtained by replacing every variable with every ground term of112

ICLP 2018



<3>:4 Introspecting preferences in answer set programming

σ. It is worthy noting that > can be removed if it is in the body of a rule, the rule can be113

removed from the program if ⊥ is in its body.114

3 The ASPEP Language115

3.1 Syntax116

An ASPEP program Π is a set of rules of the form117

l1 or ... or lk ← e1, ..., em, s1, ..., sn.118

where k ≥ 0, m ≥ 0, n ≥ 0, the ls are literals in first order logic language and are called119

objective literals here, es are extended literals which are 0-place connectives > and ⊥, or120

objective literals possibly preceded by not, ss are subjective literals of the form e <x e
′ or121

e 6<x e
′ where e and e′ are extended literals and x ∈ {],⊇}. The left-hand side of a rule is122

called the head and the right-hand side is called the body. As in usual logic programming, a123

rule is called a fact if its body is empty and its head contains only one literal, and a rule is124

called a denial if its head is empty. We use head(r) to denote the set of objective literals in125

the head of a rule r and body(r) to denote the set of extended literals and subjective literals126

in the body of r. Sometimes, we use head(r) ← body(r) to denote a rule r. The positive127

body of a rule r is composed of the extended literals containing no not in its body. We use128

body+(r) to denote the positive body of r. r is said to be safe if each variable in it appears129

in the positive body of the rule. We will use sl(Π) to denote the set of subjective literals130

appearing in Π.131

It is clear that an ASPEP program containing no subjective literals is a disjunctive logic132

program that can be dealt with by ASP solvers like DLV[9], CLASP[?].133

It is worthy of noting that, for convenient description, we will use e �x e
′ to denote the134

strict preference that can be expressed by the conjunction of e <x e
′ and e′ 6<x e, and use135

e ≈x e
′ to denote the preferential indifference that can be expressed by the conjunction of136

e �x e′ and e′ �x e, and use e ≡x e′ to denote the preferential equivalence that can be137

expressed by the conjunction of e <x e
′ and e′ <x e.138

3.2 Semantics139

We will restrict our definition of the semantics to ground programs. However, we admit140

rule schemata containing variables bearing in mind that these schemata are just convenient141

representations for the set of their ground instances. In the following definitions, l is used to142

denote a ground objective literal, e is used to denote a ground extended literal, and s is used143

to denote a ground subjective literal.144

3.2.1 Satisfiability145

Let W be a non-empty collection of consistent sets of ground objective literals, (W,w) is a146

pointed ASPEP structure of W where w ∈W . W is a model of a program Π if for each rule147

r in Π, r is satisfied by every pointed ASPEP structure of W . The notion of satisfiability148

denoted by |=ep is defined below.149

(W,w) |=ep >150

(W,w) 6|=ep ⊥151

(W,w) |=ep l if l ∈ w152

(W,w) |=ep not l if l 6∈ w153
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(W,w) |=ep e <] e′ if |{w ∈W : (W,w) |=ep e}| ≥ |{v ∈W : (W, v) |=ep e
′}|154

(W,w) |=ep e <⊇ e′ if {w ∈W : (W,w) |=ep e} ⊇ {v ∈W : (W, v) |=ep e
′}155

(W,w) |=ep e 6<x e′ if (W,w) 6|=ep e <x e′, x ∈ {],⊇}156

Then, for a rule r in Π, (W,w) |=ep r if157

∃l ∈ head(r): (W,w) |=ep l, or158

∃t ∈ body(r): (W,w) 6|=ep t.159

The satisfiability of a subjective literal does not depend on a specific belief set w in W , hence160

we can simply write W |=ep s if (W,w) |=ep s and say the subjective literal s is satisfied by161

W , and we can simply write W 6|=ep s if (W,w) 6|=ep s and say the subjective literal s is not162

satisfied by W .163

We consider the properties of the above satisfiability by some axioms of the strict164

preference relation proposed by von Wright in [24]. Let W be a non-empty collection of165

consistent sets of ground objective literals, the following properties of the satisfiability |=ep166

hold.167

�x Asymmetry. W |=ep e �x e′=⇒W |=ep e
′ �x e168

�] Inescapability. W |=ep e �] e′,W |=ep e
′′ �] e′ =⇒W |=ep e �] e′′169

�x Transitivity. W |=ep e �x e′,W |=ep e
′ �x e′′ =⇒ W |=ep e �x e′′170

�x Irreflexivity. W |=ep e �x e171

≈x Reflexivity. W |=ep e ≈x e172

≈x Symmetry. W |=ep e ≈x e′=⇒W |=ep e
′ ≈x e173

≈] Transitivity.W |=ep e ≈] e′,W |=ep e
′ ≈] e′′ =⇒ W |=ep e ≈x e′′174

�] R-Analogy. W |=ep e �] e′,W |=ep e
′ ≈] e′′ =⇒ W |=ep e �] e′′175

�] L-Analogy. W |=ep e ≈] e′,W |=ep e
′ �] e′′ =⇒ W |=ep e

′ �] e′′176

where x ∈ {],⊇}.177

In addition, let W be a non-empty collection of consistent sets of ground objective literals,178

it is easy to find that179

W |=ep e <x e180

W |=ep > <x e181

W |=ep e <x ⊥182

W |=ep e 6<⊇ enot
183

where enot is l if e is not l, and enot is not l if e is l, and >not is ⊥, and ⊥not is >.184

3.2.2 World Views185

We first give the definition of candidate world view for disjunctive logic programs and arbitrary186

ASPEP programs respectively. Then, we define world view for ASPEP programs by presenting187

a minimizing preferences principle.188

I Definition 2. Let Π be a disjunctive logic program, the candidate world view of Π is the189

non-empty set of all its answer sets, written as AS(Π).190

I Definition 3. Let Π be an arbitrary ASPEP program, and W is a non-empty collection of191

consistent sets of ground objective literals in the language of Π, we use ΠW to denote the192

disjunctive logic program obtained by removing the epistemic operators using the following193

reduct laws194

1. removing from Π all rules containing subjective literals not satisfied by W .195

2. removing all other occurrences of subjective literals of the form e <x e or > <x e or196

e <x ⊥ or e 6<⊇ enot.197

3. replacing all other occurrences of subjective literals of the form e <x > by e.198

4. replacing all other occurrences of subjective literals of the form ⊥ <x e by enot.199
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<3>:6 Introspecting preferences in answer set programming

5. replacing other occurrences of subjective literals of the form e1 <x e2 or e1 6<x e2 by four200

conjunctions e1, e2, and enot
1 , e2, and e1, e

not
2 , and enot

1 , enot
2 respectively.201

where enot is l if e is not l, and enot is not l if e is l, and >not is ⊥, and ⊥not is >. Then, W202

is a candidate world view of Π if W is a candidate world view of ΠW .203

We use cwv(Π) to denote the set of candidate world views of an ASPEP program Π. ΠW is204

said to be the reduct of Π with respect to W . Such a reduct process eliminates subjective205

literals so that the belief sets in the model are identified with the answer sets of the program206

obtained by the reduct process. The intuitive meanings of the reduct laws can be described207

as follows:208

The first reduct law directly comes from the notion of Rule Satisfiability and Rationality209

Principle in answer set programming which means if a rule’s body cannot be satisfied210

(believed in), the rule will contribute nothing;211

The second reduct law stems from the fact e <x e and > <x e and e <x ⊥ and e 6<⊇ enot
212

are tautologies.213

The third reduct law states that, you are forced to believe e with regard to each belief214

set due to the fact that e <x > implies e is true with regard to each answer set and the215

Rationality Principle in ASP.216

The fourth law states that, you are forced to believe enot with regard to each belief set217

due to the fact that ⊥ <x e implies e is not true with regard to each answer set.218

The last law states that, both the literals e1 and e2 in e1 <x e2 may be true or not with219

regard to each belief set.220

I Definition 4. Let Π be an arbitrary ASPEP program, and W is a non-empty collection of221

consistent sets of ground objective literals in the language of Π, W is a world view of Π if it222

satisfies the conditions below223

W ∈ cwv(Π)224

Minimizing preferences principle: @V ∈ cwv(Π)({s̄|s ∈ sl(Π) ∧ V |=ep s̄} ⊃ {s̄|s ∈225

sl(Π) ∧W |=ep s̄})226

where s̄ is e <x e
′ if s is e 6<x e

′, and s̄ is e 6<x e
′ if s is e <x e

′.227

We use wv(Π) to denote the set of world views of an ASPEP program Π.228

I Definition 5. Let Π be an ASPEP program, a ground objective literal l is true in Π229

(written by Π `ep l) if ∀W ∈ wv(Π)∀w ∈W ((W,w) |=ep l).230

I Example 6. Consider Π = Πep ∪ {r], r⊇} where Πep and r] and r⊇ are given in section 1.231

It is easy to see that Π has an unique world view containing nine belief sets:232

{prefer(2,1),prefer(3,1),request(1),request(3),package(1),age_interest(1,kids),233

age_interest(1,adults),...}234

{prefer(2,1),prefer(3,1),request(1),request(3),package(1),age_interest(1,kids),235

age_interest(1,teens),...}236

{prefer(2,1),prefer(3,1),request(1),request(3),package(1),age_interest(1,adults),237

age_interest(1,teens),...}238

{prefer(2,1),prefer(3,1),request(1),request(3),package(2),age_interest(2,kids),239

age_interest(2,adults),age_interest(2,teens),...}240

{prefer(2,1),prefer(3,1),request(1),request(3),package(2),age_interest(2,kids),241

age_interest(2,adults),age_interest(2,teens),...}242

{prefer(2,1),prefer(3,1),request(1),request(3),package(2),age_interest(2,adults),243

age_interest(2,kids),...}244

{prefer(2,1),prefer(3,1),request(1),request(3),package(3),age_interest(3,kids),245
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age_interest(3,adults),age_interest(3,teens),...}246

{prefer(2,1),prefer(3,1),request(1),request(3),package(3),age_interest(3,kids),247

age_interest(3,adults),age_interest(3,teens),...}248

{prefer(2,1),prefer(3,1),request(1),request(3),age_interest(3,teens), age_interest(1,kids),...}249

Then we have Π `ep prefer(2, 1) and Π `ep prefer(3, 1) corresponding to the conclusion (i),250

and Π `ep request(3) and Π `ep request(1) corresponding to the conclusion (ii), and it is251

easy to verify that if we add to Π another rule:252

buy(X)← request(X), not prefer(Y,X), package(X), package(Y ), X! = Y253

that states a simple ordered-based choice strategy, then we can get Π `ep buy(3) corresponding254

to the conclusion (iii) in section 1.255

4 Relation to Strong Introspection Specifications256

Several languages have been developed by extending the languages of answer set programming257

(ASP) using epistemic operators to handle introspections. The need for such extension of ASP258

was early recognized and addressed by Gelfond in [10], where Gelfond proposed an extension259

of ASP with two modal operators K and M and their negations (ASPKM). Informally, K p260

expresses “p is known”(p is true in all belief sets of the agent), M p means “p may be true”(p261

is true in some belief sets of the agent). It has been proved that ASPKM is potential in262

dealing with some important issues in the field of knowledge representation and reasoning,263

for instance the correct representation of incomplete information in the presence of multiple264

belief sets [11], commonsense reasoning [11], formalization for conformant planning [15], and265

meta-reasoning [23] etc. Recently, there is increasing research in this direction to address266

the long-standing problems of unintended world views due to recursion through modalities267

that were introduced by Gelfond [10], e.g. [12][15][6]. Very recently, Shen and Eiter [21]268

introduced general logic programs possible containing epistemic negation NOT (ASPNOT),269

and defined its world views by minimizing the knowledge. ASPNOT can not only express K p270

and M p formulas by not NOT p and NOT not p, but also offer a solution to the problems of271

unintended world views. In this section we show that ASPKM logic programs in [15] where272

the most recent version of ASPKM is defined, and a special kind of ASPNOT programs can273

be viewed as ASPEP programs.274

4.1 Relation to ASPKM
275

An ASPKM program is a set of rules of the form h1 or ... or hk ← b1, ..., bm where k ≥ 0,276

m ≥ 0, hi is an objective literal, and bi is an objective literal possible preceded by a negation277

as failure operator not, a modal operator K or M, or a combination operator not K or278

not M. For distinguishment, we call the world view of the ASPKM program KM-world279

view. Let W be a non-empty collection of consistent sets of ground objective literals, W is280

a KM-world view of an ASPKM program Π if W = AS(ΠW ) where ΠW is a disjunctive281

logic program obtained using Modal Reduct as showed in Table 2.282

In ASPKM, the notion of satisfiability is defined from |=km relationship below.283

< W,w >|=km l if l ∈ w284

< W,w >|=km not l if l 6∈ w285

< W,w >|=km Kl if ∀v ∈W : l ∈ v286

< W,w >|=km not Kl if ∃v ∈W : l 6∈ v287

< W,w >|=km Ml if ∃v ∈W : l ∈ v288
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<3>:8 Introspecting preferences in answer set programming

Table 2 Modal Reduct in ASPKM

< W,w >|=km not Ml if ∀v ∈W : l 6∈ v289

I Definition 7. Given an ASPKM program Ω, an ASPEP program is called a KM-EP-Image290

of Ω, denoted by KM − EP − I(Ω), if it is obtained by291

- Replacing all occurrences of literals of the form K l in Π by l <] >.292

- Replacing all occurrences of literals of the form M l in Π by not l 6<] > and not not l4293

respectively.294

- Replacing all occurrences of literals of the form not K l in Π by l 6<] > and not l295

respectively.296

- Replacing all occurrences of literals of the form not M l in Π by not l <] >.297

I Theorem 8. Let Ω be an ASPKM program, and Π be the ES-EP-Image of Ω, and W be a298

non-empty collection of consistent sets of ground objective literals, W is a candidate world299

view of Π iff W is a KM-world view of Ω.300

I Example 9. Consider an ASPKM program Ω: p← M p. Ω has an unique KM-world view301

{{p}}. Its ES-EP-Image Π contains two rules302

p← not p 6<] > p← not not p303

Then, the reduct Π{{p}} contains five rules304

p← p,> p← not p,> p← p,⊥ p← not p,⊥ p← not not p305

, which has only one answer set {p}. While the reduct Π{{}} contains only one rule306

p← not not p which has two answer sets {} and {p}. Then, {{p}} is the unique candidate307

world view of Π.308

4.2 Relation to ASPNOT
309

Here, we consider the ASPNOT program that is a set of the rules of the form l1 or ... or lk ←310

e1, ..., em, s1, ..., sn where k ≥ 0, m ≥ 0, n ≥ 0, li is an objective literal, ei is an extended311

literal, si is a subjective literal of the form NOT e or not NOT e. For distinguishment, we312

call the world view of an ASPNOT program NOT-world view. Let W be a non-empty313

collection of consistent sets of ground objective literals, W is a candidate NOT-world view314

of an ASPNOT program Π if W = AS(ΠW ) where ΠW is a general logic program obtained315

using Epistemic Reduct by (1) replacing every NOT F that is satisfied by W with >, and316

4 Here, we view not not l as a representation of not l′ where we have l′ ← not l and l′ is a fresh literal. It
is worthwhile to note that CLINGO is able to deal with not not.
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(2) replacing every NOT F that is not satisfied by W with not F . In ASPNOT, the notion of317

satisfiability of a subjective formula NOT F is defined from |=NOT relationship318

< W,w >|=NOT NOT F if ∃v ∈W : v 6|=GLP F319

where the satisfaction denoted by |=GLP is as the satisfaction of a formula defined in general320

logic programming introduced in [22]. W is a NOT-world view of an ASPNOT program Π321

if it is a candidate NOT-world view satisfying maximal set of literals of the form NOT e322

appearing in Π.323

I Definition 10. Given an ASPNOT program Ω, an ASPEP program is called a NOT-EP-324

Image of Ω, denoted by NOT-EP-I(Ω), if it is obtained by325

- Replacing all occurrences of literals of the form not NOT e in Ω by e <] >.326

- Replacing all occurrences of literals of the form NOT e in Ω by e 6<] > and not e327

respectively.328

I Theorem 11. Let Ω be an ASPNOT program, and Π be the NOT-EP-Image of Ω, and W329

be a non-empty collection of consistent sets of ground objective literals, W is a world view of330

Π iff W is a NOT-world view of Ω.331

I Example 12. Consider an ASPNOT program from [21] that contains two rules332

innocent(john)|guilty(john) innocent(john)← NOT guility(john)333

Ω has an unique NOT-world view {{innocent(john)}}. The NOT-EP-Image of Ω has three334

rules335

innocent(john)|guilty(john)336

innocent(john)← guilty(john) 6<] >337

innocent(john)← not guility(john)338

and a unique world view {{innocent(john)}}.339

5 Applications340

Consider the relationship between ASPEP and the languages of strong introspections men-341

tioned in section 5, ASPEP is potential in dealing with some important issues. In this section,342

we illustrate the use of ASPEP in modeling problems with introspective preferences.343

5.1 Describing the Principle of Majority344

The principle of majority (PM) is a widely used epistemic commonsense in the fields of345

information fusion, decision making, social choice, etc, where incomplete information usually346

causes multiple belief sets, and queries are usually answered by the principle of majority. For347

example, consider the behavior of common birds modeled by a program PM as below:348

pigeon(X) or raven(X) or swallow(X) sparrow(X)← commonBird(X)349

behavior(X,migratory)← swallow(X)350

behavior(X, resident)← pigeon(X)351

behavior(X, resident)← raven(X)352

behavior(X, resident)← sparrow(X)353

Then, given a fact ft:354

commonBird(tom)355

and answer the query behavior(tom,?) by the principle of majority described by the following356
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rules rr, rm, and ru:357

behavior(X, resident)← behavior(X, resident) �] behavior(X,migratory), bird(X)358

behavior(X,migratory)← behavior(X,migratory) �] behavior(X, resident), bird(X)359

behavior(X,unknown)← behavior(X,migratory) ≈] behavior(X, resident), bird(X)360

They express that a bird X is a resident(migratory) bird if X being resident(migratory) is361

strictly more possible than X being migratory(resident), otherwise it is unknown. It is easy362

to see that the program PM ∪ {ft, rr, rm, ru} gives answer behavior(tom, resident) to the363

query, that is364

PM ∪ {ft, rr, rm, ru} `ep behavior(tom, resident)365

5.2 Modeling the Monty Hall Problem366

We will use ASPEP to solve the Monty Hall problem from [20]: One of the three boxes labeled367

1, 2, and 3 contains the keys to that new 1975 Lincoln Continental. The other two are empty.368

If you choose the box containing the keys, you win the car. A contestant is asked to select369

one of three boxes. Once the player has made a selection, Monty is obligated to open one of370

the remaining boxes which does not contain the key. The contestant is then asked if he would371

like to switch his selection to the other unopened box, or stay with his original choice. Here372

is the problem:does it matters if the contentant switches? The answer is YES.373

One of many solutions of the Monty Hall Problem is by arithmetic [20], where nine374

possible states are given as showed in Table 3, and the idea in the solution can be described375

naturally as: Constestant switches if SWITCH can bring more wins than STAY, Constestant376

stays if STAY can bring more wins than SWITCH.

Table 3 Possible Results of MHP

377

Encode the definition of the problem using a disjunctive logic program MHP below.378

box(1)379

box(2)380

box(3)381

1{choose_box(X) : box(X)}1382

1{key_in_box(X) : box(X)}1383

can_open_box(X)← box(X), not choose_box(X), not key_in_box(X)384

win_by_switch← choose_box(X), not key_in_box(X)385

win_by_stay ← choose_box(X), key_in_box(X)386

Represent the idea in the solution by two rules r1 :387

switch← win_by_switch <] win_by_stay, win_by_stay 6<] win_by_switch388
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and r2:389

stay ← win_by_stay <] win_by_switch, win_by_switch 6<] win_by_stay390

Then, we have the following result that gives a correct answer for the problem.391

I Theorem 13. MHP ∪ {r1, r2} `ep switch and MHP ∪ {r1, r2} 0ep stay.392

6 Conclusion and Future Work393

We present a logic programming formalism capable of reasoning that combines nonmonotonic394

reasoning, epistemic preferential reasoning, which is built on the existing efficient answer395

set solvers. This makes it an elegant way to formalize some problems with defaults and396

introspections of preferences.397

A limitation of the work in this paper is that we do not consider the relationships between398

ASPEP and other well developed formalisms of preferences.399

As a next goal, we will consider the introspection of other typs of preferences which are400

considered in the AI field[8][17]. Our future work also includes the mathematical properties401

of ASPEP programs, the methodologies for modeling with ASPEP, and the efficient solver of402

ASPEP programs.403
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