
PaMpeR: A Proof Method Recommendation System for
Isabelle/HOL

Yutaka Nagashima1,2 and Yilun He3

1 CIIRC, CTU
2 The University of Innsbruck

3 The University of Sydney

Abstract. Deciding which sub-tool to use for a given proof state requires expertise specific
to each ITP. To mitigate this problem, we present PaMpeR, a proof method recommendation
system for Isabelle/HOL. Given a proof state, PaMpeR recommends proof methods to discharge
the proof goal and provides qualitative explanations as to why it suggests these methods.
PaMpeR generates these recommendations based on existing hand-written proof corpora, thus
transferring experienced users’ expertise to new users. Our evaluation shows that PaMpeR

correctly predicts experienced users’ proof methods invocation especially when it comes to
special purpose proof methods.

1 Introduction

Do you know when to use the induct_tac method instead of the induct method in Isabelle/HOL
[1]? Did you know the proof method called intro_classes? What about uint_arith? If you are
an experienced Isabelle user, your answer is “Sure.” But if you are new to Isabelle, your answer
might be “No. Do I have to know these Isabelle specific details? ”

Modern ITPs are equipped with many sub-tools, such as proof methods and tactics. For example,
Isabelle/HOL comes with dozens of proof methods. These sub-tools provide useful automation for
interactive theorem proving; however, it still requires proof assistant specific expertise to pick up
the right proof method to discharge a given proof goal.

This paper presents our novel approach to proof method recommendation and its implementa-
tion, PaMpeR (available on GitHub [3]). Our research hypothesis is that:

it is possible to advise which proof methods are useful to a given proof state, based only on the
meta-information about the state and information in the standard library. Furthermore, we
can extract advice by applying machine learning algorithms to existing large proof corpora.

The paper is organized as follows: Section 2 explains the basics of Isabelle/HOL and provides
the overview of PaMpeR. Section 3 expounds how PaMpeR transforms the complex data structures
representing proof states to simple data structures that are easier to handle for machine learn-
ing algorithms. Section 4 shows how our machine learning algorithm constructs regression trees
from these simple data structures. Section 5 demonstrates how users can elicit recommendations
from PaMpeR. Section 6 presents our preliminary evaluation of PaMpeR to assess the accuracy of
PaMpeR’s recommendations. Section 7 justifies our design decisions for PaMpeR. Section 8 discusses
the strengths and limitations of the current implementation and the design of a proof search tool
based on PaMpeR. Section 9 compares our work with other attempts of applying machine learning
to interactive theorem proving.

2 Background and Overview of PaMpeR

2.1 Background

Isabelle/HOL is an interactive theorem prover, mostly written in Standard ML. The consistency of
Isabelle/HOL is carefully protected by isolating its logical kernel using the module system of Stan-
dard ML. Isabelle/Isar [14] (Isar for short) is a proof language used in Isabelle/HOL. Isar provides
a human-friendly interface to specify and discharge proof obligations. Isabelle users discharge proof
obligations by applying proof methods, which are the Isar syntactic layer of LCF-style tactics.

Each proof obligation in Isabelle/HOL is stored within a proof state, which also contains locally
bound theorems for proof methods (chained facts) and the background proof context of the proof
obligation, which includes local assumptions, auxiliary definitions, and lemmas proved prior to the
the current step. Proof methods are in general sensitive not only to proof obligations but also to their
chained facts and background proof contexts: they behave differently based on information stored
in proof state. Therefore, when users decide which proof method to apply to a proof obligation,
they often have to take other information in the proof state into consideration.

Isabelle comes with many Isar keywords to define new types and constants, such as datatype,
codatatype, primrec, primcorec, inductive, and definition. For example, the fun command
is used for general recursive definitions.

These keywords not only let users define new types or constants, but they also automatically
derive auxiliary lemmas relevant to the defined objects behind the user-interface and register them
in the background proof context where each keyword is used. For example, Nipkow et al. defined a
function, sep, using the fun keyword in an old Isabelle tutorial [1] as following:

fun sep :: "’a ’a list ’a list" where

"sep a [] = []" |

"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"

Intuitively, this function inserts the first argument between any two elements in the second
argument. Following this definition, Isabelle automatically derives the following auxiliary lemma,
sep.induct, and registers it in the background proof context as well as other four automatically
derived lemmas:

sep.induct: (!!a. ?P a []) ==> (!!a x. ?P a [x]) ==> (!!a x y zs. ?P a (y # zs)

==> ?P a (x # y # zs)) ==> ?P ?a0.0 ?a1.0

where variables prefixed with ? are schematic variables and !! is the meta-logic universal quantifier.
Isabelle also attaches unique names to these automatically derived lemmas following certain naming
conventions hard-coded in Isabelle’s source code. In this example, the full name of this lemma is
fun0.sep.induct, which is a concatenation of the theory name (fun0), the delimiter (.), the name
of the constant defined (sep), followed by a hard-coded postfix (.induct), which represents the
kind of this derived lemma.

When users want to prove conjectures about sep, they can specify their conjectures using Isar
keywords such as lemma and theorem. The Isar commands, apply and by, allow users to apply
proof methods to these proof obligations. In the above example, Nipkow et al. proved the following
lemma about map and sep using the automatically derived auxiliary lemma, sep.induct, as an
argument to the proof method induct_tac as following:

full feature extractor

preprocess

decision tree construction

fast feature extractor

?

feature vector

lookup

database

large proof corpora

proof method
recommendation

preparation phase

recommendation phase

proof
state

proof
engineer

Fig. 1. Proof attempt with PaMpeR.

lemma "map f (sep x xs) = sep (f x) (map f xs)"

apply(induct_tac x xs rule: sep.induct) apply simp_all done

where simp_all is a proof method that executes simplification to all sub-goals and done is another
Isar command used to conclude a proof attempt.

Isabelle provides a plethora of proof methods, which serves as ammunitions when used by expe-
rienced Isabelle users; However, new Isabelle users sometimes spend hours or days trying to prove
goals using proof methods sub-optimal to their problems without knowing Isabelle has specialized
methods that are optimized for their goals.

2.2 Overview of PaMpeR

Figure 1 illustrates the overview of PaMpeR. The system consists of two phases: the upper half of
the figure shows PaMpeR’s preparation phase, and the lower half shows its recommendation phase.

In the preparation phase, PaMpeR’s feature extractor converts the proof states in existing proof
corpora such as the Archive of Formal Proofs (AFP) [9] into a database. This database describes
which proof methods have been applied to what kind of proof state, while abstracting proof states as
arrays of boolean values. This abstraction is a many-to-one mapping: it may map multiple distinct

proof states into to the same array of boolean values. Therefore, each array represents a group of
proof states sharing certain properties.

PaMpeR first preprocesses this database and generates a database for each proof method. Then,
PaMpeR applies a regression algorithm to each database and creates a regression tree for each
proof method. This regression algorithm attempts to discover combinations of features useful to
recommend which proof method to apply. Each tree corresponds to a certain proof method, and
each node in a tree corresponds to a group of proof states, and the value tagged to each leaf node
shows how likely it is that the method represented by the tree is applied to these proof states
according to the proof corpora used as training sample.

For the recommendation phase, PaMpeR offers three commands, which_method, why_method,
and rank_method. The which_method command first abstracts the state into a vector of boolean
values using PaMpeR’s feature extractor. Then, PaMpeR looks up the regression trees and presents its
recommendations in Isabelle/jEdit’s output panel. If you wonder why PaMpeR recommends certain
methods, for example auto, to your proof state, type why_method auto. Then, PaMpeR tells you
why it recommended auto to the proof state in jEdit’s output panel. If you are curious how PaMpeR

ranks a certain method, let us say intro_classes, type rank_method intro_classes. This com-
mand shows intro_classes’s rank given by PaMpeR in comparison to other proof methods. In the
following, we describe these steps in detail.

3 Processing Large Proof Corpora

The key component of PaMpeR is its feature extractor: the extractor converts proof obligations,
chained facts, and proof contexts into arrays of boolean values by applying assertions to them.

3.1 Representing a Proof State as an Array of Boolean Values

Currently we employ 60 assertions manually written in Isabelle’s implementation language, Stan-
dard ML, based on our expertise in Isabelle/HOL. List 1 shows selected assertions we used in
PaMpeR. Most of these assertions fall into two categories: assertions about proof obligations them-
selves, and assertions about the relation between proof obligations and information stored in the
corresponding proof context.

Note that PaMpeR’s assertions do not directly rely on any user-defined constants because PaMpeR’s
developers cannot access concrete definitions of user-defined constants when developing PaMpeR. For
example, we can check if the first proof obligation has a constant defined in the Set.thy file in
Isabelle/HOL, but we cannot check if that sub-goal has a constant defined in the proof script that
some user developed after we released PaMpeR.

However, by investigating how Isabelle/HOL works, we implemented assertions that can check
the meta-information of proof goal even without knowing their concrete specifications when devel-
oping PaMpeR. For example, the lemma presented in Section 2.1 has a function, sep, which was
defined with the fun keyword. PaMpeR’s feature extractor checks if the underlying proof context
contains a lemma of name sep.elims. If the context has such a lemma, PaMpeR infers that a user
defined sep using either the fun keyword or the function keyword, rather than other keywords
such as primcorec or definition.

We wrote some assertions to reflect our own expertise in Isabelle/HOL. One example is the
assertion that checks if the proof goal or chained facts involve the constant, Filter.eventually,
defined in Isabelle’s standard library. We developed such an assertion because we knew that the

List 1 List of Selected Assertions.
– Assertions about proof obligations themselves.

• constants defined in Isabelle’s standard library
∗ check if the first goal has the BNF_Def.rel_fun constant or the Fun.map_fun constant.
∗ check if the first goal has "Orderings.ord_class.less_eq", Orderings.ord_class.less, or

Groups.plus_class.plus.
∗ check if the fist goal and its chained facts have Filter.eventually

• constants defined in Isabelle’s standard library at certain locations in the first proof obligation
∗ check if the outermost constant of the first goal is the meta-logic universal quantifier
∗ check if the first goal has the HOL existential quantifier but not as the outermost constant

• terms of certain types defined in Isabelle’s standard library
∗ check if the first goal has a term of type Word.word

∗ check if the first goal has a schematic variable
• existence of constants defined in certain theory files

∗ check if the first goal has a constant defined in the Nat theory
∗ check if the first goal has a constant defined in the Real theory
∗ check if the first goal has a constant defined in the Set theory

– Assertions about the relation between proof obligations and proof contexts.
• types defined with a certain Isar keyword

∗ check if the goal has a term of a type defined with the datatype keyword
∗ check if the goal has a term of a type defined with the codatatype keyword
∗ check if the goal has a term of a type defined with the record keyword

• constants defined with a certain Isar keyword
∗ check if the goal has a constant defined with the lift_definition keyword
∗ check if the goal has a constant defined with the primcorec keyword
∗ check if the goal has a constant defined with the inductive keyword or inductive_set keyword.

proof method called eventually_elim can handle many proof obligations involving this constant.
But in some cases we were not sure which assertion can be useful to decide which method to use.
For example, we have assertions to check if a proof goal has constants defined in Set.thy, Int.thy,
or List.thy as these theory files define commonly used concepts in theorem proving. But their
effects to proof method selection were unclear before the evaluation in Section 6.

More importantly, we did not know numerical estimates on which assertion is more useful than
others when developing these assertions. For instance, we guessed that the assertion to check the use
of the constant Filter.eventually to be useful to recommend the use of the eventually_elim

method, but we did not have means of comparing the accuracy of this guess with other hints
prior to this project. To obtain numerical assessments for proof method prediction, we applied the
multi-output regression algorithm described in Section 4.

Unfortunately, not all assertions we developed turned out to be applicable to construct a
database from large proof corpora. And we had to abandon some assertions that involve expensive
operations, as they took more memory space than we could afford when applied to many proof
states appearing in proof corpora. Even though small-scale experiments indicated that some of
these abandoned assertions are useful to predict the use of certain proof methods, we could not
even build a database from the standard library using these assertions and decided PaMpeR serves
better without them.

The preliminary evaluation in Section 6 corroborates that it is possible to derive meaningful
advice about proof methods. This implies that at least some parts of the expertise necessary to
select appropriate proof methods are based on the meta-information about proof states or the
information available within Isabelle’s standard library, and our assertion-based feature extractor
preserves at least some parts of the essence of proof states while converting them into simpler
format.

3.2 Database Extraction

The first part of the preparation phase is to build a database from existing proof corpora. We
modified the proof method application commands, apply and by, in Isabelle and implemented a
logging mechanism to build the database. The modified apply and by take the following steps to
generate the database:
1. apply assertions to the current proof state,
2. represent the proof state as an array of boolean values,
3. record which method is used to that array,
4. apply the method as the standard apply or by command, accordingly.

This step requires a slight modification to the Isabelle source code to allow us to overwrite the
definition of these command. This way, we build its database by running the target proof scripts.

The current version of PaMpeR available at Github [3] is based on the database extracted from
Isabelle’s standard library, but the database extraction mechanism is not specific to this library. In
case users prefer to optimise PaMpeR’s recommendation for their own proof scripts, they can take
the same approach following the instructions at Github [3]; although this process tends to require
significant computational resources.

This overwriting of apply and by is the only modification we made to Isabelle’s source code,
and we did so only to build the database for our machine learning algorithm. As long as users
choose to use the off-the-shelf default learning results, they can use PaMpeR without ever modifying
Isabelle’s source code. In that case, they only have to include the theory file PaMpeR.thy into their
own theory file using the Isar keyword import just as a normal theory file to use PaMpeR.

Note that logging mechanism ignores the apply commands that contain composite proof meth-
ods to avoid data pollution. When multiple proof methods are combined within a single command,
the naive logging approach would record proof steps that are backtracked to produce the final result.

One exemplary data point in an extracted database would look as the following:

induct, [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, ...]

where induct is the name of method applied to this proof state and the nth element in the list
shows the result of the nth assertion of the feature extractor when applied to the proof state.

The default database construction from Isabelle standard library took about 462 CPU hours
on our server machine, producing a database consisting of 139413 data points. Unfortunately, this
database is heavily imbalanced: some proof methods are used far more often than others. For
example, we have 26985 data points for the auto method, an aggressive general purpose proof
method, while we have only 30 data points for the coinduction method, a proof method to apply
co-induction. We discuss how this imbalance influenced the quality of PaMpeR’s recommendation in
Section 6.

4 Machine Learning Databases

In this section, we explain the multi-output regression tree construction algorithm we implemented
in Standard ML for PaMpeR. We chose a multi-output algorithm because there are in general multiple
valid proof methods for each proof obligation, and we chose a regression algorithm rather than
classification algorithm because we would like to provide numerical estimations about how likely
each method would be useful to a given proof obligation.

4.1 Preprocess the Database

We first preprocess the database generated in Section 3.2. This process produces a separate database
for each proof method from the raw database, which describes the use of all proof methods appearing
in the target proof corpora.

For example, if our preprocessor finds the example line discussed in Section 3.2, it considers that
an ideal user represented by the proof corpora decided to use the induct method but not other
methods, such as auto or coinduction, and produces the following line in the database for induct:

used, [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, ...]

and the following line in the databases for other proof methods appearing in the proof corpora:

not, [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, ...]

Note that the resulting databases do not always represent a provably correct choice of proof
methods but a conservative estimate. In principle, there could be multiple equally valid proof
methods for a single proof state, but existing proof corpora describe only one way of attacking it.
For example, Nipkow et al. applied the induct_tac method to the lemma in Section 2.1, but we
can prove this lemma with another method for mathematical induction (induction) as following:

lemma "map f (sep x xs) = sep (f x) (map f xs)"

apply(induction x xs rule: sep.induct) apply simp_all done

For this reason, this preprocessing may misjudge some methods to be inappropriate to a proof
state represented by a feature vector in some cases. Unfortunately, exploring all the possible com-
binations of proof methods for each case is computational infeasible: some proof methods work well
only when they are followed by other proof methods or they are applied with certain arguments,
and the combination of these proof methods and arguments explodes quickly.

On the other hand, we can reasonably expect that the proof method appearing in our train-
ing sample is the right choice to the proof state represented by the feature vector, since Isabelle
mechanically checks the proof scripts. Furthermore, we built the default recommendation using Is-
abelle’s standard library, which was developed by experienced Isabelle developers. This allowed us
to avoid low quality proof scripts that Isabelle can merely process but are inappropriate. Therefore,
we consider the approximation PaMpeR’s preprocessor makes to be a realistic point of compromise
and show the effectiveness of this approach in Section 6.

4.2 Regression Tree Construction

After preprocessing, we apply our regression tree construction algorithm to each created database
separately. We implemented our tree construction algorithm from scratch in Standard ML for better
flexibility and tool integration.

In general, the goal of the regression tree construction is to partition the feature space described
in each database into partitions of sub-spaces that lead to the minimal Residual Sum of Squares
(RSS) 4 while avoiding over-fitting. Intuitively, RSS denotes the discrepancy between the data and
estimation based on a model. The RSS in our problem is defined as follows:

RSS =

J∑
j=1

∑
i∈Rj

(usedi – ûsedRj)
2 (1)

where Rj stands for the jth sub-space, to which certain data points (represented as lines in database)
belong. The value of usedi is 1.0 if the data point represented by the subscript i says the method
was applied to the feature vector, and it is 0.0 if the data point represented by the subscript i says
otherwise. ûsedRj is the average value of used among the data points pertaining to the sub-space
Rj .

Computing the RSS for every possible partition of the database under consideration is compu-
tational infeasible. Therefore, PaMpeR’s tree construction takes a top-down, greedy approach, called
recursive binary splitting [5], as is often the case in many other implementations of decision tree
algorithms.

In recursive binary splitting, we start constructing the regression tree from the root node, which
corresponds to the entire dataset for a given method. First, we select a feature in such a way we can
achieve the greatest reduction in RSS at this particular step. We find such feature by computing
the reduction of the RSS by each feature by one level. For each feature, we split the database into
two sub-spaces, Rused(j) and Rnot(j) as follows:

Rused(j) = {used|usedj = 1.0} and Rnot(j) = {used|usedj = 0.0} (2)

where j stands for the number representing each feature. Then, for each feature represented by j,
we compute the following value:∑

i:xi∈Rused(j)

(usedi – ûsedRused(j))2 +
∑

i:xi∈Rnot(j)

(usedi – ûsedRnot(j))
2 (3)

and choose the feature j which minimizes this value.
Second, we repeat this partition procedure to each emerging sub-node of the regression tree

under construction until the depth of tree hits our pre-defined upper limit.
After reaching the maximum depth, we compute the average value of used(j) in the correspond-

ing sub-space R for each leaf node. We consider this value as the expectation that the method is
useful to proof states abstracted to the combination of feature values to that leaf node.

PaMpeR records these regression trees in a text file, regression_trees.txt, so that users can
avoid the computationally intensive data extraction and regression tree construction processes unless
they want to optimize the learning results based on their own proof corpora.
4 RSS is also known as the sum of squared residuals (SSR).

Note that if we add more assertions to our feature extractor in future, the complexity of this
algorithm increases linearly with the number of assertions given a fixed depth of regression tree,
since the partition only takes the best step at each level instead of exploring all the combinations
of partitions.

5 Recommendation Phase

Once finishing building regression trees for each proof method appeared in the given proof corpora,
one can extract recommendations from PaMpeR. By default, PaMpeR uses the regression trees built
from Isabelle ’s standard library. When imported to users’ theory file, PaMpeR automatically reads
these trees using the read_regression_trees command in PaMpeR.thy.

PaMpeR provides three new commands to provide two kinds of information: the which_method

command tells which proof methods are likely to be useful for a given proof state; the why_method

command takes a name of proof method and tells why PaMpeR would recommend the proof method
for the proof state; and the rank_method command shows the rank of a given method to the proof
state in comparison to other proof methods.. In the following, we explain how these two commands
produce recommendations from the regression trees produced in the preparation phase.

5.1 Faster Feature Extractor

Before applying the machine learning algorithm, we were not sure which assertion produces valuable
features, but after applying the machine learning algorithm, we have an estimate which assertions
are not useful, by checking which features are used to branch each regression tree.

To reduce the waiting time of PaMpeR’s users, the build_fast_feature_extractor command in
PaMpeR.thy constructs a faster feature extractor from the regression trees built in the preparation
phase and the full feature extractor. It builds the faster feature extractor by removing assertions
that do not result in a branch in the regression trees.

5.2 The which_method command.

When users invoke the which_method command, PaMpeR applies the fast feature extractor to convert
the ongoing proof state into a feature vector, which consists of those features that are deemed to
be important to make a recommendation. The speed of this faster feature vector depends on both
the regression trees and what each proof state contains. As a rule of thumb, if the proof goal has
less terms, it tends to spend less time.

Then, PaMpeR looks up the corresponding node in each regression tree and decides the expecta-
tion that the method is the right choice for the proof state represented by the feature vector. PaMpeR
computes this value for each proof method it encountered in the training proof corpora, by looking
up a node in each regression tree. Finally, PaMpeR compares these expectations and shows the 15
most promising proof methods with their expectations in Isabelle/jEdit’s output panel. In the on-
going example from Section 2.1, one can learn which method to use by typing the which_method

command as following:

lemma "map f (sep x xs) = sep (f x) (map f xs)

which_method

Then, PaMpeR shows the following message in the output panel for the top 15 methods 5:

A promising method is simp with expectation of 0.461477173134

A promising method is auto with expectation of 0.163514167155

A promising method is rule with expectation of 0.111671840746

A promising method is induction with expectation of 0.106437454279

A promising method is induct with expectation of 0.0527912621359...

Attentive readers might have noticed that PaMpeR’s recommendations are not identical to the model
answer provided by Nipkow et al.. This, however, does not immediately mean PaMpeR’s recommen-
dation is not valuable: in fact, PaMpeR recommended the induction method at the fourth place,
and induction is also a valid method for this proof goal as discussed in Section 4.1.

5.3 The why_method command.

Our rather straightforward machine learning algorithm makes PaMpeR’s recommendation explain-
able. If you wonder why PaMpeR recommends a certain method, for example coinduction, to your
proof obligation, type why_method coinduction in the proof script. PaMpeR first checks features
used to evaluate the expectation for the method and their feature values. Second, PaMpeR shows
qualitative explanations tagged to both these features and their values in jEdit’s output. If you
wonder why PaMpeR recommended induction in the above example, type the following:

lemma "map f (sep x xs) = sep (f x) (map f xs)

why_method induction

Then, you will see this message in jEdit’s output panel:

Because the underlying proof context has a pinduct rule associated to one of the

constants appearing in the first subgoal. Note that these rules are automatically

derived by the function or fun keyword.

Because it is not true that the context has locally defined assumptions.

The first reason corresponds to the first branching at the root node in the regression tree for the
induction method, and the second reason corresponds to the second branching in the tree. Since we
are using a greedy method to construct regression trees, the first reason tends to be more important
than the second reason, as you might have noticed from this example.

5.4 The rank_method command.

Sometimes users already have a guess as to which proof method would be useful to their proof state,
but they want to know how PaMpeR the proof method in mind. Continuing with the above example,
if you want to know how PaMpeR ranks conduction for this proof state, type the following:

lemma "map f (sep x xs) = sep (f x) (map f xs)

rank_method coinduction

Then, PaMpeR warns you:

coinduction 90 out of 159

indicating that PaMpeR does not consider coinduction to be the right choice for this proof obliga-
tion, before you waste your time on emerging sub-goals appearing after applying coinduction.
5 Note that we truncated the message due to the space restriction here.

6 Preliminary Evaluation

We conducted a cross-validation to assess the accuracy of PaMpeR’s which_method command. For
this evaluation, we used Isabelle’s standard library as training dataset and 65 articles in the AFP
as testing set. We built the training dataset and evaluation dataset separately and removed the
occurrences of method invocations that appear in the training dataset from the evaluation dataset,
thus avoiding evaluating the accuracy of PaMpeR using data points used for training.

First, we extracted a database from the training dataset. Second, we built regression trees from
this database. Then, we evaluated how often PaMpeR’s recommendation matches the proof method
invocation recorded in the testing dataset.

Since there are often multiple equally valid proof methods for each proof state, it is only reason-
able to expect that which_method command should be able to recommend the proof method used
in the testing set as one of the most important methods for the given proof method invocation. For
this reason, for each proof method, we measured how often each proof method used in the testing
dataset appears among the top n methods in PaMpeR’s recommendations.

Table 1 shows the two parts of the evaluation results. The upper part shows the results for the
15 proof methods that are most frequently used in the training data in the descending order. The
lower part shows the results for proof methods that are less frequently used in the training data
but PaMpeR managed to recommend among the top 15 proof methods at more than 30% of chance.

For example, the top row for simp should be interpreted as following: The simp method was
used 38251 times in the training data. This amounts to 27.4% of all proof method invocations in the
training data that are recorded by PaMpeR . In the testing set, simp was used 36643 times, which
amounts to 24.3% of proof method invocations in the testing data that are recorded by PaMpeR.
For 60% out of 36643 simp invocations, PaMpeR predicted that simp is the most promising method
for the corresponding proof states. For 98% out of 36643 simp invocations, PaMpeR recommended
that simp is either the most promising method or the second most promising method for the
corresponding proof states.

Table 2 shows the results for selected exemplary proof methods that are less frequently used in
the training data but for which PaMpeR failed to recommend them among the top 15 proof methods
at more than 30% of chance. Due to the space restriction, we leave the complete table at our Github
repository [3] together with the details of this evaluation.

The overall results of this evaluation are as follows: PaMpeR learnt 159 proof methods from
Isabelle’s standard library. The AFP articles used 89 methods out of these 159 methods. For 38
proof methods, PaMpeR recommended these as one of the top 15 methods, at more than 50% of
chance in the testing data. For 44 proof methods, PaMpeR recommended these as one of the top
15 methods, more than 30% of chance in the testing data. For all the 15 most frequently applied
methods, PaMpeR managed to recommend them as one of the 15 most promising methods more
than 50% of chance.

These two tables show that PaMpeR provides valuable recommendations when proof states
are best handled by special purpose proof methods, such as unfold_locales, transfer, arith,
standard, and so on; however, PaMpeR’s recommendations tend to differ from the AFP authors’
choice when they chose less commonly used general purpose proof methods, such as fast and
clarimp, as shown in Table 2. This is mainly due to the fact that in many cases multiple general
purpose proof methods can handle the same proof obligation equally well.

PaMpeR’s straightforward regression tree construction does not severely suffer from the imbal-
ance among proof method invocation, even though class imbalance often causes problems in other

Table 1. Evaluation of PaMpeR.

proof method training % test % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

simp 38251 27.4 36643 24.3 60 98 99 99 99 100 100 100 100 100 100 100 100 100 100
auto 26985 19.4 39996 26.5 54 84 94 96 97 98 99 100 100 100 100 100 100 100 100
rule 16547 11.9 15040 10.0 5 7 44 84 96 100 100 100 100 100 100 100 100 100 100
blast 8500 6.1 8003 5.3 0 21 21 31 53 81 94 98 99 100 100 100 100 100 100
metis 5147 3.7 6757 4.5 0 0 0 17 28 37 39 46 58 72 82 88 91 93 96
intro 3063 2.2 2234 1.5 0 0 0 2 10 11 19 42 70 83 89 92 93 94 94
erule 2734 2.0 1463 1.0 0 0 2 8 18 28 38 44 56 61 63 65 65 66 66
induct 2672 1.9 3609 2.4 0 6 8 9 13 19 48 66 74 77 78 78 80 86 92
rule_tac 2586 1.9 1018 0.7 0 21 23 28 30 31 32 34 38 40 41 41 42 46 51
force 2397 1.7 2861 1.9 0 0 0 0 0 3 12 23 34 44 51 67 78 88 93
cases 2381 1.7 3383 2.2 0 0 0 0 0 19 46 65 72 75 75 77 79 82 85
subst 2369 1.7 2746 1.8 0 0 0 0 2 6 14 26 37 42 46 50 55 61 65
simp_all 2088 1.5 2477 1.6 0 0 0 0 0 0 0 1 9 24 44 56 71 81 88
drule 1672 1.2 763 0.5 0 0 0 0 4 5 8 10 20 37 54 72 86 94 97
drule_tac 1563 1.1 208 0.1 0 0 0 1 1 1 1 12 25 37 54 67 74 76 78

fastforce 1315 0.9 2663 1.8 0 0 0 0 0 0 0 0 2 9 14 22 36 51 65
unfold 1261 0.9 1525 1.0 0 0 0 0 2 5 7 7 7 9 18 31 47 60 67
transfer 1161 0.8 1418 0.9 0 49 56 56 56 56 56 56 58 62 72 80 88 92 92
fact 1146 0.8 2354 1.6 0 4 4 4 4 4 4 8 17 31 48 53 53 53 53
case_tac 934 0.7 918 0.6 0 0 0 2 7 8 10 12 15 16 20 41 54 61 68
subgoal_tac 870 0.6 329 0.2 0 0 0 0 0 0 0 0 0 5 9 21 33 44 51
meson 685 0.5 333 0.2 0 0 0 0 0 0 0 0 0 0 5 13 25 43 48
assumption 665 0.5 459 0.3 5 6 6 17 33 42 47 48 48 48 48 48 48 49 49
induction 644 0.5 916 0.6 0 0 0 9 18 23 27 27 27 27 27 27 28 34 36
arith 594 0.4 428 0.3 0 0 0 0 0 0 32 48 49 49 50 50 50 50 50
erule_tac 481 0.3 214 0.1 0 0 0 0 0 0 0 1 17 23 33 41 49 49 50
safe 458 0.3 523 0.3 0 3 9 13 13 13 13 13 14 20 24 30 30 34 40
standard 415 0.3 246 0.2 44 54 55 59 70 76 76 77 78 78 78 78 78 78 78
unfold_locales 176 0.1 1117 0.7 0 0 0 0 8 14 32 39 41 43 47 50 54 54 55
eventually_elim 153 0.1 297 0.2 0 0 27 46 61 84 97 99 99 100 100 100 100 100 100
intro_classes 116 0.1 236 0.2 70 74 91 100 100 100 100 100 100 100 100 100 100 100 100
contradiction 78 0.1 46 0.0 0 0 0 0 0 0 0 0 0 0 70 70 74 74 74
transfer_prover 68 0.0 114 0.1 59 61 69 93 96 96 96 96 96 96 96 96 96 96 96
relation 65 0.0 63 0.0 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84
pat_completeness 57 0.0 115 0.1 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
countable_datatype 37 0.0 12 0.0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100
eval 35 0.0 111 0.1 0 0 0 0 0 0 0 0 0 0 12 27 52 52 53
uint_arith 32 0.0 185 0.1 63 69 69 69 69 69 69 69 69 69 69 69 69 69 69
coinduction 30 0.0 118 0.1 0 13 32 33 33 33 33 33 33 33 33 33 33 33 33
coinduct 20 0.0 61 0.0 0 0 0 0 0 0 0 30 33 33 33 33 33 33 33
atomize 20 0.0 9 0.0 0 0 0 44 100 100 100 100 100 100 100 100 100 100 100
moura 10 0.0 7 0.0 0 0 0 0 0 0 0 0 0 0 14 57 100 100 100
lexicographic_order 7 0.0 17 0.0 0 0 0 6 6 6 6 6 29 65 65 65 65 65 65
transfer_step 4 0.0 5 0.0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 2. Evaluation results for some proof methods, for which the which_method command did not produce
valuable recommendations.

proof method training % test % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fast 1047 0.8 1311 0.9 0 0 0 8 10 10 11 11 11 11 12 12 13 14 15
clarsimp 861 0.6 2311 1.5 0 4 4 4 4 4 4 4 4 4 4 5 7 8 11
tactic 468 0.3 30 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3
induct_tac 335 0.2 116 0.1 0 0 0 0 2 6 7 7 7 7 7 7 7 7 7
nominal_induct 280 0.2 24 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
linarith 235 0.2 104 0.1 0 0 0 0 14 15 15 15 16 19 19 19 19 19 19
rename_tac 221 0.2 258 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rotate_tac 120 0.1 6 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
smt 116 0.1 129 0.1 0 0 0 12 16 20 20 20 20 20 20 20 20 20 20
sos 72 0.1 7 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ind_cases 72 0.1 18 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
normalization 68 0.0 40 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vector 60 0.0 73 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vcg 11 0.0 198 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

domains such as fraud detection and medical diagnosis. For example, PaMpeR managed to produce
valuable recommendations for relation, transfer_prover, pat_completeness, uint_arith, and
transfer_step, even though none of them is used more than 0.1% of times in the training set.

The reason the imbalance did not cause serious problems to PaMpeR is that many of these rarely
used methods are specialised proof methods, for which we can write assertions that can abstract
the essence of the problem very well. Another reason is the fact that commonly used proof methods
tend to hold up each other’s share, since they address similar problems, lowering expectations
for commonly used general purpose methods where both specialised methods and general purpose
methods can discharge proof obligations.

On the other hand, PaMpeR did not produce valuable recommendations to some special purpose
proof methods, such as nominal_induct, normalization, and vcg. For normalization, we did
not manage to develop assertions that capture the properties shared by the proof obligations that
normalization can handle well. For nominal_induct and vcg, we were unaware of their presence
in Isabelle’s standard library and assertions for these methods remain as our future work.

Some of the seemingly poor results in Table 2 do not directly imply the inaccuracy of PaMpeR.
For instance, the tactic method is just an interface between Standard ML and Isar and does not
have semantic meaning itself; predicting such methods is not a very meaningful task for PaMpeR.

7 Design Decisions: No Modification to Isabelle’s Source Code

Developing assertions involves careful engineering work, which requires familiarity with Isabelle’s
internal APIs. As described above, our assertions infer the meta information about proof obligation
by looking up automatically derived theorems stored in proof states, and PaMpeR deduces which
definitional mechanism was used to specify the proof obligation. Alternatively, we could have mod-
ified each definitional mechanism in Isabelle and added a logging mechanism to all of them. This
approach is what we purposefully avoided, since it inevitably involves modifications to many parts

of Isabelle’s source code and it has to store an extra persistent state within proof state to keep
redundant information, which our assertions can infer without it. For software that is expected to
be trustworthy such as Isabelle and involves many developers, such large scale modifications should
be best avoided unless there is no other way around. We claim that our approach takes advantage
of existing Isabelle mechanisms while respecting its modular design.

The drawback of our approach is that it relies on the naming conventions hard-coded in Is-
abelle/HOL. If Isabelle developers modify these naming conventions in future, PaMpeR’s feature
extractor loses the original intention and produces less valuable databases. To detect such change
of naming convention, we developed two Isar commands, assert_nth_true and assert_nth_false,
for unit testing assertions. For instance, Isabelle can process the following proof script only if the
fourth assertion returns true when applied to the conjecture and the fifth assertion returns false,
otherwise these unit test commands force Isabelle to fail.

lemma "map f (sep x xs) = sep (f x) (map f xs)

assert_nth_true 4

assert_nth_false 5

We inserted these commands into several parts of our test suite comprising of selected articles
from the AFP. This way, we can detect problems automatically, when assertions start producing
unexpected results due to a possible future change of Isabelle’s naming convention.

8 Discussion and Future Work

Before the advent of PaMpeR, new Isabelle/HOL users have to go through various documentations
and the archive of mailing lists to learn how to prove lemmas in Isabelle/HOL independently.

Choosing the right methods was a difficult task for new ITP users especially when they should
choose special-purpose proof methods, since new users tend not to know even the existence of
those rarely used proof methods. Some proof methods are strongly related to certain definitional
mechanisms in Isabelle. Therefore, when Isabelle experts use such definitional mechanisms, they
can often guess which proof methods they should use later. But this is not an easy task for new
Isabelle users. This is becoming truer nowadays, since large scale theorem proving projects are
slowly becoming popular and new ITP users often have to take over proof scripts developed by
others and they also have to discharge proof obligations specified by others. PaMpeR partially solved
this problem by systematically transferring experienced users knowledge to less experienced users.
We plan to keep improving PaMpeR by incorporating other Isabelle users intuitions as assertions.

Our manually written feature extractor may seem to be naive compared to the recent success
in machine learning research: in some problem domains, such as image recognition and the game
of Go, deep neural networks extract features of the subject matters via expensive training. Indeed,
others have applied deep neural networks to theorem proving, but only with limited success [7].

The two major problems of automatic feature extraction for theorem proving is the lack of
enormous database needed to train deep neural networks and the expressive nature of the under-
lying language, i.e. logic. The second problem, the expressive nature of logic, contributes to the
first problem: self-respecting proof engineers tend to replace multiple similar propositions with one
proposition from which one can easily conclude similar propositions, aiming at a succinct presen-
tation of the underlying concept. What is worse, when working on modern ITPs, it is often not
enough to reason about a proof goal, but one also has to take its proof context into consideration.

A proof context usually contains numerous auxiliary lemmas and nested definitions, and each of
them is a syntax tree, making the effective automatic feature extraction harder.

Furthermore, whenever a proof author defines a new constant or prove a new lemma Isabelle/HOL
changes the underlying proof context, which affects how one should attack proof obligations defined
within this proof context. And proof authors do add new definitions because they use ITPs as spec-
ification tools as well as tools for theorem proving. Some of these changes are minor modifications
to proof states that do not severely affect how to discharge proof obligations in the following proof
scripts, but in general changing proof contexts results in, sometimes unexpected, problems.

For this reason, even though the ITP community has large proof corpora, we are essentially
dealing with different problems in each line of each proof corpus. For example, even the AFP has
396 articles consisting of more than 100,000 lemmas, only 4 articles are used by more than 10
articles in the AFP, indicating that many proof authors work on their own specifications, creating
new problems. This results in an important difference that lies between theorem proving in an
expressive logic and other machine learning domains, such as image recognition where one can
collects numerous instances of similar objects. For instance, it is reasonable to expect that we can
collect billions of pictures of cats to abstract the features of cats automatically, but it is not realistic
to achieve millions of formalizations of the same concept, say Green’s Theorem, in Isabelle/HOL
to extract the feature of Green’s theorem.

We addressed this problem with human-machine cooperation, the philosophy that underpins
ITPs. Even though it is hard to extract features automatically, experienced ITP users know that
they can discharge many proof goals with shallow reasoning. We encoded experienced Isabelle users’
expertise as assertions to simulate their shallow reasoning. Since these assertions are carefully hand-
written in Isabelle/ML, they can extract features of proof states (including both proof goal, chained
facts, and its context) despite the above mentioned problems.

Currently PaMpeR recommends only which methods to use and shows why it suggests that
method. This is enough for many special purpose methods which do not take parameters. For other
methods, such as induct, it is often indispensable to pass the correct parameters to guide methods.
If you prefer to know which arguments to pass to the proof method PaMpeR recommends, we would
advise to use PSL [6], the proof strategy language for Isabelle/HOL, which attempts to find the
right combination of arguments through an iterative deepening depth first search based on rough
ideas about which method to use.

Moreover, none of PaMpeR’s assertions takes the sequence of proof method applications into
account: even though they can check the information contained in the background proof context,
the parse-then-consume style of Isabelle/Isar makes it difficult for PaMpeR to trace which methods
have been applied to reach the current proof state.

We envision a more powerful proof automation tool backed by PaMpeR and our proof strategy
language, PSL. We use PaMpeR’s recommendation to navigate the search of PSL, changing PSL’s
evaluation strategy from the IDDFS to the best-first search. PSL provides a mechanism to generate
variants of proof methods with different combinations of parameters to find the right combination
of parameters for a given goal through a search. PSL’s automatic removal of backtracked proof steps
eliminates the data pollution problem discussed in Section 3.2. PSL’s framework to write history-
sensitive proof methods allows us to write history-sensitive assertions, so that PaMpeR can take the
sequence of proof methods into account.

9 Conclusion and Related Work

We presented the design and implementation of PaMpeR. In the preparation phase, PaMpeR learns
which method to use from existing proof corpora using regression tree construction algorithm. In the
recommendation phase, PaMpeR recommends which proof methods to use to a given proof obligation
and explains why it suggests that method. Our evaluation showed that PaMpeR tends to provide
valuable recommendations especially for specialised proof methods, which new Isabelle users tend
not to be aware of. We also identified problems that arise when applying machine learning to proof
method recommendation and proposed our solution to them.

Related Work. ML4PG [8] extends a proof editor, Proof General, to collect proof statistics about
shapes of goals, sequence of applied tactics, and proof tree structures. It also clusters the gathered
data using machine learning algorithms in MATLAB and Weka and provides proof hints during
proof developments. Based on learning, ML4PG lists similar proof obligations proved so far, from
which users can infer how to attack the proof obligation at hand, while PaMpeR directly works
on proof methods. Compared to ML4PG, PaMpeR’s feature extractor is implemented within Is-
abelle/ML, which made it possible to investigate not only proof obligations themselves but also
their surrounding proof context.

Gauthier developed et al. TacticToe for HOL4. It selects proved lemmas similar to the current
proof obligation using premise selection and applies tactics used to these similar obligations to
discharge the current proof obligation. Compared to TacticToe, the abstraction via assertions allows
PaMpeR to provide valuable recommendations even when similar obligations do not exist in the
problem domain.

Several people applied machine learning techniques to improve the so-called Hammer-style tools.
For Isabelle/HOL, both MePo [12] and MaSh [13] decreased the quantity of facts passed to the
automatic provers while increasing their quality to improve Sledgehammers performance. Their
approaches attempt to choose facts that are likely to be useful to the given proof obligation, while
PaMpeR suggests proof methods that are likely to be useful to the goal.

MePo judges the relevance of facts by checking the occurrence of symbols appearing in proof
obligations and available facts, while MaSh computes the relevance using sparse naive Bayes and
k Nearest Neighbours. They detect similarities between proof obligations and available facts by
checking mostly formalization-specific information and only two piece of meta information, while
PaMpeR discards most of problem specific information and focus on meta information of proof
obligations: the choice of relevant fact is a problem specific question, while the choice of proof
method largely depends on which Isabelle’s subsystem is used to specify a proof obligation.

The original version of MaSh was using machine learning libraries in Python, and Blanchette
et al. ported them from Python to Standard ML for better efficiency and reliability. Similarly, an
early version of PaMpeR was also using a Python library [2] until we implemented the regression
tree construction algorithm in Standard ML for better tool integration and flexibility. Both MaSh
and PaMpeR record learning results in persistent states outside the main memory, so that users can
preserve the learning results even after shutting down Isabelle.

Acknowledgements This work was supported by the European Regional Development Fund
under the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466).

References

1. Nipkow, T., Paulson C. P., and Wenzel M. Isabelle/HOL - A Proof Assistant for Higher-Order Logic,
Lecture Notes in Computer Science, Springer, 2002

2. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V. VanderPlas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
Duchesnay, E. Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, volume
12, 2011

3. Nagashima, Y. PSL and PaMpeR (2017),
https://github.com/data61/PSL/tree/PaMpeR/PaMpeR

4. Nagashima, Y. PSL and PaMpeR (2017),
https://github.com/data61/PSL/wiki/PMRS-Assertion

5. James, G., Witten, D., Hastie, T., Tibshirani R. An Introduction to Statistical Learning with Applica-
tions in R

6. Nagashima, Y., Kumar, R. A Proof Strategy Language and Proof Script Generation for Isabelle, arXiv,
(2016)

7. Irving,G., Szegedy, C., Alemi, A. A., Eén, N., Chollet, F., Urban, J. DeepMath - Deep Sequence Models
for Premise Selection, Annual Conference on Neural Information Processing Systems (2016)

8. Komendantskaya, E., Heras, J., and Grov, G. Machine Learning in Proof General: Interfacing Interfaces,
Proceedings 10th International Workshop On User Interfaces for Theorem Provers, UITP 2012, Bremen,
Germany, July 11th, 2012.

9. Gerwin Klein, Tobias Nipkow, Larry Paulson, René Thiemann, Archive of Formal Proofs,
https://www.isa-afp.org/

10. Dmitriy Traytel, A Codatatype of Formal Languages, Archive of Formal Proofs
11. TacticToe: Learning to reason with HOL4 Tactics, Gauthier, T., Kaliszyk, C., Urban, J., LPAR-21.

21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning
12. Jia Meng, L C. Paulson, Lightweight relevance filtering for machine-generated resolution problems, J.

Applied Logic (2009)
13. Blanchette, J., Greenaway, D., Kaliszyk C., Kühlwein, D., Urban, J., A Learning-Based Fact Selector

for Isabelle/HOL, J. Autom. Reasoning (2016)
14. Markus Wenzel, Isar - A Generic Interpretative Approach to Readable Formal Proof Documents,

TPHOLs’99, Nice, France, September (1999)

