
Further Scaling of Isabelle Technology

Makarius Wenzel
April 2018

http://sketis.net

Abstract

Over 32 years, Isabelle has made a long way from a small experimental proof
assistant to a versatile platform for proof document development. There has always
been a challenge to keep up with the natural growth of applications, notably the
Archive of Formal Proofs (AFP). Can we scale this technology further, towards
really big libraries of formalized mathematics? Can the underlying Scala/JVM
and Poly/ML platforms cope with the demands? Can we eventually do 10 times
more and better? In this paper I will revisit these questions particularly from the
perspective of:

• Editing: Prover IDE infrastructure and front-ends,

• Building: batch-mode tools and background services,

• Browsing: HTML views and client-server applications.

1 Introduction

(The underlying Isabelle version for this paper is f69ea1a88c1a from the repository1, as
approximation of the Isabelle2018 release (probably August 2018).)

1.1 Isabelle as framework of domain-specific formal languages

Isabelle is usually presented as a proof assistant, while historically important papers
[3, 4] classify the system as Generic Theorem Prover or Logical Framework. In the past
10 years, I have usually understood the “framework” aspect in a technological sense,
as a platform for domain-specific formal languages. The logical language is just one
(sophisticated) example for that.

There is a general tendency towards self-application: Isabelle is a platform to build
Isabelle libraries and tools, or to write books and papers about Isabelle. The Prover
IDE (PIDE) has become increasingly important for that, although it is only implicitly
present in the subsequent categories of domain-specific languages for Logic, Program-
ming, and Proof.

1https://isabelle.in.tum.de/repos/isabelle

http://sketis.net
https://isabelle.in.tum.de/repos/isabelle

Further Scaling of Isabelle Technology Makarius Wenzel

Category: Logic

Isabelle/Pure is the logical framework and bootstrap environment. The Pure logic
starts out as Minimal Higher-Order Logic, which is used to represent rules for
of Higher-order Natural Deduction declaratively. Rule composition works by
backchaining and higher-order unification.

Isabelle/HOL is the main library of theories and tools for applications. The initial
axiomatic basis resembles the original HOL by Gordon [1], but it is built as a li-
brary within Isabelle/Pure and inherits from its distinctive style. Consequently, Is-
abelle/HOL is quite different from the HOL family of provers (HOL4, HOL-Light,
etc.). End-users need to care little about logical foundations of Isabelle/HOL: they
see high-end tools for specifications and proofs (e.g. Sledgehammer).

Category: Programming

Isabelle/ML is the Isabelle tool implementation and extension language. It is based
on Poly/ML2 by David Matthews, but heavily augmented to carry the weight of
the Isabelle framework. Both Isabelle/Pure and Isabelle/ML emerge from the same
bootstrap process: the result is a meta-language for programming the logic that
is intertwined with it from a technological viewpoint, but logic and programming
remain formally separated.

Isabelle/Scala is the Isabelle system programming language. Scala3 is a functional-
object-oriented language that runs on the Java Virtual Machine. Isabelle/S-
cala connects the logical environment with the outside world of TCP servers,
database engines, GUI environments etc. while retaining the style and manner of
Isabelle/ML.

Category: Proof

Isabelle/Isar is the structured proof language of the Isabelle framework — Isar means
Intelligible semi-automated reasoning. The initial language design from 1998–2001
has been renovated and extended in 2015–20164 and augmented by the Eisbach
language for proof methods [2].

Document language for HTML output and LATEX type-setting of proof text. Nice
documents are the main result of Isabelle proof production. A proof document
documents what has been proven to the general audience, both in formal and
informal text.

2http://polyml.org
3https://www.scala-lang.org
4https://sketis.net/2016/the-isar-proof-language-in-2016

2

http://polyml.org
https://www.scala-lang.org
https://sketis.net/2016/the-isar-proof-language-in-2016

Further Scaling of Isabelle Technology Makarius Wenzel

1.2 Isabelle applications: The Archive of Formal Proofs

The Archive of Formal Proofs (AFP)5 is the main repository of Isabelle applications:
it is organized as a Scientific Journal, and may be seen as a library of formalized math-
ematics for Isabelle. AFP was founded in March 2004 and has grown to considerable
size: the amount of material (and build times) have approximately doubled in the past
3 years. Here are some statistics from 26-Mar-2018 (afp-devel version e9aaf72d221c)6:

• 275 authors

• 409 articles

• 4208 theories

• 105 theorems

• 108 bytes of text

• build time (without group slow):

– 22 h CPU time

– 65 min elapsed time on 22 cores (factor 20)

• build time (group slow without very_slow):

– 15 h CPU time

– 95 min elapsed time on 22 cores (factor 9.5)

AFP entries are updated in correspondence to ongoing Isabelle development. For exam-
ple, a minor change in Isabelle command syntax, logical notation, or rule declarations
eventually requires a full test on AFP. This also serves as a reality check of tenta-
tive changes to Isabelle and its libraries: if AFP applications turn out too difficult to
upgrade, changes are be revised or rejected.

Good response times on such tests are vital for further development and maintenance of
Isabelle and AFP. As a rule of thumb the following practical time scales have emerged:

Max. 45 min: online time for quasi-interactive builds while sitting at the computer
and doing other things. This time span is also anecdotal as the “Paris commuter’s
constant”, i.e. the practical limit of a commuter sitting patiently on a train to
wait for its arrival.

Max. 120 min: offline time for batch-builds while being absent and not watching it.
This time span coincides with the classic French lunch break.

According to the build times for AFP above, we are again at the limits of comfort (on
high-end hardware). The problem could be solved by throwing more cores at it, investing
in even better hardware. Another approach is to look systematically for possibilities of

5https://www.isa-afp.org
6See also https://devel.isa-afp.org/statistics.html

3

https://www.isa-afp.org
https://devel.isa-afp.org/statistics.html

Further Scaling of Isabelle Technology Makarius Wenzel

scaling the underlying technology. Probably both needs to be done at some point, with
regard to continued growth and prosperity of AFP.

2 Technologies contributing to Isabelle

Technology can be both beneficial and dangerous: it can become a burden for continued
development and maintenance. Great care is required to select adequate technologies
and to turn them into proper use. By default, fancy new things with a lot of publicity
around it should be questioned thoroughly.

Here follows an overview of notable technologies that contribute to Isabelle in different
states of adoption: established, emerging, experimental. The more Isabelle depends on
any of these, the more resources need to be invested to keep them alive and prospering.

2.1 Established technologies

• Isabelle/ML: based on Poly/ML (by David Matthews)

• Isabelle/Scala: based on the Java VM (by Oracle)

• Isabelle/jEdit: based on the jEdit text editor (in Java)

• Mercurial: source control management (SCM)

Isabelle/ML is a distinctive member of the ML family, with a rich library and high-
end IDE. Since April 2016, the IDE can load the Isabelle/ML/Pure bootstrap environ-
ment into itself, which greatly simplifies further development.

At the bottom of Isabelle/ML is Poly/ML by David Matthews. Started in 1985 as
one of the first implementations of Standard ML, Poly/ML and has gone through
many phases of improvements and further scaling, often specifically for Isabelle. After
decades of performance tuning, it is now hard to imagine a different ML platform to
carry the weight of Isabelle applications: it would mean a loss of one or two orders of
magnitude in performance.

Isabelle/Scala is a library for Isabelle system programming based on regular Scala,
which is hosted on the Java platform (maintained by Oracle). Isabelle/Scala contin-
ues the functional programming style of Isabelle/ML on the JVM platform. There is
an overlap of many fundamental modules with Isabelle/ML (e.g. to manage files and
processes), but the main purpose of Isabelle/Scala is to connect to the outside world
(servers, databases, GUIs etc.).

Although the main body of Isabelle/PIDE is implemented in Isabelle/Scala, its own
development model is rather old-fashioned, using a plain text-editor and command-line
invocation of batch-builds.

4

Further Scaling of Isabelle Technology Makarius Wenzel

In recent years, Isabelle/Scala has also become the implementation platform for most
Isabelle command-line tools: old-fashioned shell scripts have become very rare.

Isabelle/jEdit is the default front-end for the Isabelle/PIDE framework. The jEdit
text editor7 was once legendary, but its founder left the project in 2006. In the past
5 years, maintenance has continued with approximately 5 remaining enthusiasts: the
process still works somehow, but big things cannot be expected any more. My guess is
that jEdit can continue in this manner for several years, before users will notice serious
dropouts.

Luckily, Isabelle/PIDE is not tied to a particular front-end editor, and experiments
towards alternatives have happened with Isabelle/VSCode (see below), but it might
require years until this emerging editor platform can compete with Isabelle/jEdit.

Mercurial has become the standard Source Code Management (SCM) system for
Isabelle in 2008, when there was still a genuine choice between Mercurial and Git, and
not yet the social pressure towards Git seen today.

From the perspective of technology (not sociology) the reasons for Mercurial are still
unchanged: it is more friendly and fits stylistically better to Isabelle. Git might now
have more add-on tools, due to a larger community behind it, but Mercurial is still quite
active as the second. Basic Mercurial support has already become part of Isabelle/Scala,
and more will be required for proper management of theory sources wrt. formal checking
by the prover. This is not “compilation” of classic programming languages, but more
like an extension of Isabelle/PIDE interaction towards repository management. Thus
we need to provide our own setup for this task and cannot just reuse mainstream tools.

2.2 Emerging technologies

• SQL support: Isabelle/Scala with Java Database Connectivity (JDBC)

• SQLite backend: small-scale database files

• PostgreSQL backend: full-scale database server

This is all related to scalable database management, outside of the Poly/ML process
(which has its own database format for ML values stored in heap files).

SQL support in Isabelle/Scala goes back to September 2016. The rather concise mod-
ule $ISABELLE_HOME/src/Pure/General/sql.scala provides a wrapper for the stan-
dard JDBC interface, to make it look more like Scala than Java. Moreover, the full
generality of SQL and JDBC — with its many slightly incompatible backends and
different interpretation of data types — is trimmed down to what is really required

7http://www.jedit.org

5

http://www.jedit.org

Further Scaling of Isabelle Technology Makarius Wenzel

for Isabelle applications. Only two particular backends are supported: SQLite8 and
PostgreSQL9.

SQLite is a very pupular library for plain-file database management, with sequen-
tial access by a single user. It works on many platforms and devices, with supporting
libraries for major programming languages and many add-on tools (e.g. as SQLite
Browser10). Thus SQLite is sometimes positioned as a natural extension of plain-text
files, with more structure and scalability. The article “SQLite As An Application File
Format”11 explains why it is better to reuse SQLite to impose some structure on stored
data, instead of starting from scratch (or with ZIP as in OpenOffice).

Isabelle/Scala uses the standard JDBC driver for SQLite12, which is both portable
and native on the usual OS platforms: it operates directly on database files within the
running Java process.

So far the main Isabelle application is the meta information for session builds, with
timing information, hash keys for input sources and output heaps etc. More can be
anticipated for the future, e.g. full PIDE markup information stored persistently. Even
more ambitious use of SQLite could include the Poly/ML heap database information,
although that it is dependent on the OS platform and processor architecture.

PostgreSQL is a high-end database server that supports concurrent access by multiple
users, as expected for a proper DBMS. It is very easy to install and maintain as part
of the standard Ubuntu server platform (e.g. as appliance on a virtual machine).13

PostgreSQL is not as well-known than MySQL, but more robust and scalable. Database
experts on the Web often recommend PostgreSQL as a conventional database engine
with a lot of headroom for scalability, instead of going for newer approaches to “Big
Data” via “NoSQL” systems that are less convenient.

Isabelle/Scala uses the standard JDBC driver for PostgreSQL14, which talks to the
database server via a socket connection. It is also possible to forward the connection
via the SSH module of Isabelle/Scala, and thus use a remote database in a secure
manner, based on regular SSH user authentication.

So far the main application is the database of cumulative Isabelle + AFP build logs
since July 2002. Much more can be anticipated, e.g. PIDE markup of processed theory
sources that is stored for persistently for various repository versions. Thus the static
sources managed by Mercurial SCM are augmented by semantic information stored in
the database.

8https://www.sqlite.org
9https://www.postgresql.org

10http://sqlitebrowser.org
11https://www.sqlite.org/appfileformat.html
12https://bitbucket.org/xerial/sqlite-jdbc/downloads
13https://help.ubuntu.com/lts/serverguide/postgresql.html
14https://jdbc.postgresql.org

6

https://www.sqlite.org
https://www.postgresql.org
http://sqlitebrowser.org
https://www.sqlite.org/appfileformat.html
https://bitbucket.org/xerial/sqlite-jdbc/downloads
https://help.ubuntu.com/lts/serverguide/postgresql.html
https://jdbc.postgresql.org

Further Scaling of Isabelle Technology Makarius Wenzel

2.3 Experimental technologies

• VSCode: new text editor based on Node.js + Chromium (Electron)

• Scala.js: Scala compiler for JavaScript

Both are related to the JavaScript platform. In 2008 the Isabelle/ML world has been
extended towards the Java platform, with the help of Scala. That could be continued
by a third leg towards Web technology.

Visual Studio Code (VSCode) is a fast growing open-source project by MicroSoft,
with the very liberal MIT license.15 Despite its name, there is no technological con-
nection to the Visual Studio product: VSCode is a reimplementation in TypeScript on
the Node.js + Chromium platform (which is called “Electron”16 as a spin-off from the
Atom editor project).

VSCode aims to redefine the traditional notion of “programmer’s text editor” (e.g. as
seen in jEdit) towards a new kind of application of semantic editing with “language
smartness”. Such backends to VSCode may be implemented as regular editor extensions
(in TypeScript), or via the new “Language Server Protocol”17.

These VSCode concepts are very close to Isabelle/PIDE, so it is rather obvious to
connect the two. I have already delivered a 1.0 release of Isabelle/VSCode as part of
Isabelle2017 (October 2017), although it can hardly compete with Isabelle/jEdit 9.0 in
that release.

Scala.js is a version of the Scala compiler that targets JavaScript instead of JVM
bytecode. There is also some emulation of basic library modules from the Java API.
The current release18 positions Scala.js rather modestly at version 0.6.x. I have not
tried it out myself yet, but got promising reports from some early adopters.

Scala.js opens a perspective to migrate Isabelle/Scala from the JVM towards JavaScript
in the future, but right now this is merely speculative. Note that substantial parts
of Isabelle/Scala refer to specific system operations from the Java API — this was
actually the main point when adding Scala to the portfolio Isabelle technology. Many
special tricks in Isabelle/Scala would have to be repeated for the browser or Node.js
environment.

As a start, one might try to get some Scala modules for PIDE front-ends onto the
JavaScript platform, for regular browser applications or within VSCode.

15https://code.visualstudio.com
16https://electronjs.org
17https://github.com/Microsoft/language-server-protocol
18https://www.scala-js.org

7

https://code.visualstudio.com
https://electronjs.org
https://github.com/Microsoft/language-server-protocol
https://www.scala-js.org

Further Scaling of Isabelle Technology Makarius Wenzel

3 Further scaling

The quest for further scaling is now turned around: we look at particular application
areas of Isabelle, in order to see a potential for improvements:

1. Editing: Prover IDE infrastructure and front-ends,

2. Building: batch-mode tools and background services,

3. Browsing: HTML views and client-server applications.

3.1 Editing: Prover IDE

After download of the main Isabelle application, users first encounter the Isabelle/jEdit
front-end (see figure 1, and figure 2 on page 16). Isabelle/jEdit is the main example
application of the Isabelle/PIDE framework, and presently the default user-interface.

Figure 1: The Isabelle/jEdit Prover IDE

8

Further Scaling of Isabelle Technology Makarius Wenzel

The Prover IDE provides an impression of direct editing of formal document content,
while the prover is continuously checking in the background. This resembles an ad-
vanced “spell-checker” for documents of formalized mathematics, or any other language
that is embedded into Isabelle theories. There is even a conventional spell-checker for
comments written in English.

Continuous checking within the editor works on whole projects (sessions), which may
consist of hundreds of theory files, with a typical size of 50–500 KB for each theory.

Isabelle users can get started with a solid consumer laptop with 4 CPU cores and 8 GB
memory, but this is barely sufficient for medium-sized sessions like HOL-Analysis. For
resource requirements and scalability of interactive PIDE sessions, the following main
factors are relevant:

The Isabelle/ML process for the prover back-end. It runs in 32 bit mode by de-
fault, even though a proper 64 bit platform is now required for the Isabelle ap-
plication. Thus ML can access a total of approx. 3.5 GB stack + heap space: the
process starts with 500 MB and expands or shrinks the address space according to
the current demands; this is a consequence of normal memory management and
garbage collection. When the heap becomes critically full, memory is reclaimed by
sharing substructures of immutable ML values: this is possible thanks to the clean
mathematical semantics of ML. Situations of heavy-duty memory management
can cause notable pauses during interaction, usually in the range seconds up to
half a minute.

For very big applications, the 32 bit model is no longer feasible. Running the ML
process in 64 bit mode requires almost double as much memory, due to uniform
representation of values and pointers as one machine word. So 64 bit ML presently
makes only sense for hardware with at least 16–32 GB memory.

The Isabelle/Scala process for the Prover IDE front-end. The jEdit editor
runs on the same Java Virtual Machine (JVM). The PIDE markup for theory con-
tent that is produced by the prover is stored in Isabelle/Scala as one big markup
tree. Whenever the editor renders text or reacts to mouse events, it needs to re-
trieve that information in real-time (1–10 ms). This works well up to a certain
session size, but when the heap of the JVM fills up, it can become unresponsive
or even unstable.

By default, the heap size for the Isabelle/jEdit application is restricted to 0.5–
2.5 GB. This is a concession to average users with average hardware, in order
to get started without manual configuration. Increasing the JVM heap boundary
requires a restart of the application, see also chapter 7 “Known problems and
workarounds” in the Isabelle/jEdit manual [6]. For medium-sized sessions like
HOL-Analysis the default JVM heap sizes should be doubled.

Further scaling of the Prover IDE aims at:

9

Further Scaling of Isabelle Technology Makarius Wenzel

• semantic editing of AFP as one big proof document,

• continuous feedback for active sessions,

• markup rendering for passive sessions.

Active sessions are those that may be edited in the current session context, while passive
sessions are merely opened as part of the background libraries (e.g. when following a
hyperlink to the defining position of a formal entity).

Here are some approaches towards these aims:

• jEdit GUI panels according to session graph structure (Sidekick, Hypersearch,
Status with errors / warnings),

• swapping PIDE markup from the JVM heap to an external database (SQLite,
PostgreSQL),

• or: internal conversion of PIDE markup (in XML) into XZ-compressed blobs,

• support for skipped proofs and forked proofs: more parallelism,

• PIDE markup for Mercurial changesets,

• management of repository changesets vs. PIDE edits.

Recall that PIDE is centered around first-class edits with formal markup [7]. Thus it
is natural to connect this with Mercurial changesets, to scale the editor model towards
the persistent history of the SCM. This should also allow to edit multiple versions in
the same editor session.

3.2 Building: batch-mode

Building sessions for the Prover IDE is implicit: users do not have to worry about
it. After startup of Isabelle/jEdit there is a check if the specified session heap file is up-
to-date wrt. its sources, otherwise it is built on the spot. This can take approx. 3 min for
the default HOL session. Users can also switch Isabelle/jEdit to a different base session,
e.g. HOL-Analysis or HOL-Probability: it requires a restart of the application, or a
slightly tricky reload of the Isabelle plugin within jEdit (in order to trigger the batch-
build process again and load the specified session image).

Further scaling could mean to reduce wait-times, by allowing multiple sessions to be
built independently in the IDE: it would allow the user to continue working with the
active session. It could also help to provide a GUI panel with options for the build
process: e.g. to trim sessions to what is required in the IDE right now, not what is
statically specified in session ROOT entries.

10

Further Scaling of Isabelle Technology Makarius Wenzel

Command-line build is the main operation for Isabelle + AFP library management:
it works via isabelle build from the terminal, or via the Isabelle/Scala function
Build.build (e.g. in the Scala Console of Isabelle/jEdit). There are also some options
for batch-mode document preparation, but in the longer run it is better to make this
independent of the actual build process (e.g. by using a stored database of PIDE markup
to generate LATEX).

The implicit IDE build process actually uses the same Build.build function inter-
nally. Here are typical examples for command-line invocation of isabelle build and
isabelle jedit that may shorten wait-times when working with big sessions, by fine-
tuning the session context of the IDE:

• explicit build of session images and PDF documents:

isabelle build -b HOL-Analysis

isabelle build -b HOL-Probability

• implicit build of PIDE session images:

isabelle jedit -S Deep_Learning -A HOL-Probability

isabelle jedit -S Deep_Learning -A HOL

The isabelle build tool provides numerous command-line options, see chapter 2 of
the Isabelle System Manual [5]. That is particularly relevant for building many sessions
simultaneously, using multiple build processes (option -jN) each with multiple threads
(option -o threads=M). On high-end multicore hardware (e.g. 24 cores), this allows
to build the full Archive of Formal Proofs in approx. 1 h elapsed time, when excluding
the slow group.

Note that advanced applications of isabelle build should avoid fancy shell
scripting, but use the underlying Isabelle/Scala functions directly: Build.build,
Sessions.load_structure, Sessions.deps etc. This already improves performance,
because an already running Isabelle/Scala process is faster in processing the build de-
pendencies. Repeated JVM cold-starts and renewed “just-in-time compilation” should
be avoided.

Batch-builds are traditionally perceived as a closed process, to produce the required
heap images for a PIDE session, or to test sessions from a library. For further scaling,
it would be convenient to allow transitions between interaction and batch-builds in two
directions:

1. A failed batch-build could be turned directly into an editing session, without
starting it again.

2. A finished IDE session could be saved as a heap image, for re-use in other IDE
sessions or batch-builds.

11

Further Scaling of Isabelle Technology Makarius Wenzel

This requires significant changes of how Isabelle manages session images, but the un-
derlying Poly/ML system already supports such mixed modes of operation.

Off-line build of historic versions works via Admin/build_history and the
corresponding Isabelle/Scala function Build_History.build_history. There is also
Build_History.remote_build_history to invoke Admin/build_history remotely
over an SSH connection.

The key idea is to use a recent Isabelle version to manage the build process of historic
versions from the repository, back to the changeset with the tag build_history_base

(20126dd9772c from 08-Jan-2013). It means that there is no rush to test incoming
repository changes immediately: tests may be postponed or repeated later on. This re-
moves some burden from the nightly-build infrastructure for Isabelle + AFP: temporary
failure of this service does not lead to gaps in long-term performance measurements;
missing versions will be run eventually.

The build_history tool also supports correlated multicore builds of the same ver-
sions on the same hardware (e.g. for threads = 1, 2, 4, 8). Thus it provides routine
performance figures for further scaling of multicore performance.

Actual build jobs are run remotely via SSH, using internal SSH module of Isabelle/Scala.
This makes it easy to invoke remote processes that return results (build logs) in a
controlled manner, without assuming shared file-spaces.

Build log data is passively archived as log files (with formats slightly changing over
the years) and actively managed in one big single PostgreSQL database. The cumulative
database of Isabelle + AFP since 2002 has an approx. size of 5 GB, but note that
detailed ML statistics are stored as blobs with XZ compression.

Database access is presently limited to the Isabelle cronjob that oversees nightly builds,
which are very important for long-term performance measurement. A static snapshot of
build log data from the past 30 days is published as https://isabelle.sketis.net/devel/
build log.db — it can be inspected e.g. with SQLite Browser or used by other tools
using a suitable SQLite library.

Further scaling could mean to publish relevant performance data via an HTTP server
that is implemented in Isabelle/Scala: it would provide limited access to some of the
data, but not arbitrary database connections to anybody on the Web. A future version
of isabelle build could query the server about previous timing of sessions, even
individual theories. This could be used for advanced scheduling of multiple process that
run multiple threads, without asking the user to guess magic command-line parameters.

Build status reports and visualization is the final stage of the nightly Isabelle
cronjob. Its results are published on https://isabelle.sketis.net/devel/build status.
The Isabelle/Scala implementation uses SSH port-forwarding for the PostgreSQL

12

https://isabelle.sketis.net/devel/build_log.db
https://isabelle.sketis.net/devel/build_log.db
https://isabelle.sketis.net/devel/build_status

Further Scaling of Isabelle Technology Makarius Wenzel

server and generate static HTML pages with some gnuplot charts (see the function
Build_Status.build_status).

Further scaling could mean more dynamic reports, e.g. by an HTTP server or in the
Prover IDE. Easily accessible build status reports might also motivate users to trim
down sessions in AFP that are more heavy than actually required (due to redundant
imports are too detailed hierarchies of session images).

3.3 Browsing: client-server applications

In contrast to editing and building, browsing may be characterized as read-only ac-
cess to existing content of the library, usually with a more light-weight front-end than
a full-scale IDE, and potentially with better rendering quality than plain text. Cur-
rent HTML browsers have the potential to deliver this, but Isabelle only provides
rather old-fashioned static HTML so far, which resembles the syntax highlighting
in Isabelle/jEdit, e.g. see https://isabelle.in.tum.de/dist/library/HOL/HOL-Analysis/
Sigma Algebra.html.

Isabelle/jEdit already provides an action isabelle.preview that does similar HTML
rendering of the current theory buffer. It uses semantic markup of PIDE and thus
provides more details of nested languages. This is implemented via an HTTP server
within the Prover IDE: the preview command opens a standard web-browser on a URL
that points to the internal document model.

An alternative is the experimental Isabelle/VSCode front-end for Isabelle/PIDE, which
has been published with Isabelle2017 (October 2017) for the first time19. Visual Studio
Code is based on the Electron platform, which consists of the Chromium web-browser
with Node.js runtime system. The resulting application is a plain-text editor with some
extra styles and text markup, but it is also possible to produce HTML5 previews on
the spot, see figure 3 on page 17 (again with the same old-fashioned HTML output of
Isabelle).

This means, VSCode is an editor and a browser at the same time. The rendering quality
in Isabelle/VSCode is still below Isabelle/jEdit, but the underlying Chromium platform
has the potential to approach the typesetting quality of mathematical textbooks or
journals, together with semantic markup and hyperlinks as usual for websites.

Extrapolating current possibilities for browsing a bit further leads to interesting appli-
cation scenarios:

1. Remote HTTP service for Isabelle/PIDE, with regular web-browser as local client:
strictly for browsing HTML + CSS + JavaScript, but no editing. The server
retrieves PIDE markup for theories from a database that has been produced by

19https://marketplace.visualstudio.com/items?itemName=makarius.Isabelle2017

13

https://isabelle.in.tum.de/dist/library/HOL/HOL-Analysis/Sigma_Algebra.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Analysis/Sigma_Algebra.html
https://marketplace.visualstudio.com/items?itemName=makarius.Isabelle2017

Further Scaling of Isabelle Technology Makarius Wenzel

batch-builds beforehand. The server does not require a prover process. The client
does not require an editor.

2. Remote Isabelle/PIDE service with a custom display protocol — similar to the
Language Server Protocol of VSCode — with various local editor front-ends:

(a) Local Isabelle/jEdit without Isabelle/ML and without the full Isabelle/Scala
markup tree. The user merely has a medium-sized JVM application (2 CPU
cores, 2 GB memory) with semantic markup restricted to the open theory
buffers in the editor. Full markup information is managed by the Isabelle/ML
prover process and the Isabelle/Scala PIDE process, which are running on the
server (several CPU cores and several GB memory).

(b) Local Isabelle/VSCode with minimal Isabelle/Scala process to connect to the
PIDE server as above, with similar resource requirements. Here the local ap-
plication still consists of two runtime environments: VSCode on Node.js /
JavaScript and Isabelle/Scala on the Java VM, but the heavy Java IDE front-
end is missing.

(c) Local Isabelle/VSCode without the Isabelle/Scala JVM process. Everything
runs within the Node.js environment of VSCode. The required Scala mod-
ules for communication with the Isabelle/PIDE server could be translated to
JavaScript via Scala.js20. This approach has the potential to reduce local re-
source requirements by 50% (1 CPU core, 1 GB memory) and require less disk
space by omitting the local JVM installation.

The web-client from point 1 above could in principle be generalized towards an editor (or
IDE) that runs within common web-browsers, but I consider this merely a theoretical
possibility due to the “HTML browser hell”. There are too many different browsers
in different versions, and diverging interpretations of various web-standards. Projects
for web-based IDEs exist, but are still lagging behind “real” desktop applications in
functionality and robustness.

In contrast, point 2(c) has better prospects to achieve a browser-based IDE: there is only
one Chromium engine in VSCode, and the whole application may be packaged for end-
users to deliver exactly one well-defined version.21 Thus it becomes a web-application
that is delivered like a traditional desktop application, where everything is properly
integrated and tested. Microsoft distributes VSCode under the slogan: “Code editing.
Redefined. Free. Open Source. Runs everywhere.”, which raises the expectation that it
should work smoothly on all platforms, like standard tefox or Chromium browsers.

20https://www.scala-js.org
21The Isabelle/VSCode 1.0 experiment has already suffered from ongoing changes of VSCode and

add-on modules. Despite official version schemes for Node.js modules, small changes can have big
impact. Long-term experience with Isabelle/jEdit shows that all vital components need to be bundled
as one static application, for end-users to download and run without further ado.

14

https://www.scala-js.org

Further Scaling of Isabelle Technology Makarius Wenzel

4 Conclusion

Scaling Isabelle technology is not new. That demand has been with us from early
on, when Isabelle applications grew beyond small academic experiments. I have felt the
weight and burden of AFP for the first time in 2006, when it was tiny compared to today.
Thanks to continued improvements of the Poly/ML platform by David Matthews, and
reorganization of Isabelle system technology around it, we have so far managed to cope
with the wealth of user contributions.

It is definitely possible to continue scaling the Isabelle technology in the near future,
but that requires action to be taken in various areas as I have sketched in this paper.
Some further details are given in the the document “Scaling Isabelle Proof Document
Processing” from December 201722, notably section 3 “Technical approaches to scaling”
— this work was financially supported by Mu Operator GmbH, Frankfurt am Main.

References

[1] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

[2] D. Matichuk, T. C. Murray, and M. Wenzel. Eisbach: A proof method language for Isabelle.
J. Autom. Reasoning, 56(3):261–282, 2016.

[3] L. C. Paulson. The foundation of a generic theorem prover. Journal of Automated Reasoning,
5(3):363–397, 1989.

[4] L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic and
Computer Science, pages 361–386. Academic Press, 1990.

[5] M. Wenzel. The Isabelle System Manual. http://isabelle.in.tum.de/doc/system.pdf.

[6] M. Wenzel. Isabelle/jEdit. http://isabelle.in.tum.de/doc/jedit.pdf.

[7] M. Wenzel. Asynchronous user interaction and tool integration in Isabelle/PIDE. In
G. Klein and R. Gamboa, editors, 5th International Conference on Interactive Theorem
Proving, ITP 2014, volume 8558 of Lecture Notes in Computer Science. Springer, 2014.

22https://sketis.net/2017/scaling-isabelle-proof-document-processing

15

http://isabelle.in.tum.de/doc/system.pdf
http://isabelle.in.tum.de/doc/jedit.pdf
https://sketis.net/2017/scaling-isabelle-proof-document-processing

Further Scaling of Isabelle Technology Makarius Wenzel

F
igu

re
2
:

S
ession

H
O
L
-
A
n
a
l
y
s
i
s

w
ith

in
Isab

elle/jE
d

it
(M

L
p
ro

cess:
2.8

G
B

,
J
V

M
p

ro
cess:

3.5
G

B
)

16

Further Scaling of Isabelle Technology Makarius Wenzel

F
ig

u
re

3
:

Is
ab

el
le

/
V

S
C

o
d

e
P

ro
ve

r
ID

E
w

it
h

b
u

il
t-

in
H

T
M

L
p

re
v
ie

w
(C

h
ro

m
iu

m
)

17

	Introduction
	Isabelle as framework of domain-specific formal languages
	Isabelle applications: The Archive of Formal Proofs

	Technologies contributing to Isabelle
	Established technologies
	Emerging technologies
	Experimental technologies

	Further scaling
	Editing: Prover IDE
	Building: batch-mode
	Browsing: client-server applications

	Conclusion

