
Formal Verification of Bounds for the
LLL Basis Reduction Algorithm

Maximilian Haslbeck and René Thiemann

University of Innsbruck, Austria

Abstract. The LLL basis reduction algorithm was the first polynomial-
time algorithm to compute a reduced basis of a given lattice, and hence
also a short vector in the lattice. It thereby approximates an NP-hard
problem where the approximation quality solely depends on the dimen-
sion of the lattice, but not the lattice itself. The algorithm has several
applications in number theory, computer algebra and cryptography.
In a recent paper, we presented the first formal soundness proof of the
LLL algorithm. However, this proof did not include a formal statement
of its complexity. Therefore, in this paper we provide two formal state-
ments on the polynomial runtime. First, we formally prove a polynomial
bound on the number of arithmetic operations. And second, we show
that the numbers during the execution stay polynomial in size, so that
each arithmetic operation can be performed in polynomial time.

1 Introduction

The LLL basis reduction algorithm by Lenstra, Lenstra and Lovász [5] is a re-
markable algorithm with numerous applications. There even exists a 500-page
book solely about the LLL algorithm [7]. It lists applications in number the-
ory and cryptology, and also contains the best known polynomial factorization
algorithm that is used in today’s computer algebra systems.

The LLL algorithm plays an important role in finding short vectors in lattices:
Given some list of linearly independent integer vectors f0, . . . , fm−1 ∈ Zn, the
corresponding lattice L is the set of integer linear combinations of the fi; and
the shortest vector problem is to find some non-zero element in L which has the
minimum norm.

Example 1. Consider f1 = (1, 1 894 885 908, 0), f2 = (0, 1, 1 894 885 908), and
f3 = (0, 0, 2 147 483 648). The lattice of f1, f2, f3 has a shortest vector (−3, 17, 4).
It is the linear combination (−3, 17, 4) = −3f1+5 684 657 741f2+5 015 999 938f3.

Whereas finding a shortest vector is NP-hard [6], the LLL algorithm is a
polynomial time algorithm for approximating a shortest vector: The algorithm
is parametric by some α > 4

3 and computes a short vector, i.e., a vector whose

norm is at most α
m−1

2 times as large than the norm of any shortest vector.
In recent work we developed the first mechanized soundness proof of the LLL

algorithm [3]. It is proven in Isabelle/HOL [8] and states the functional correct-
ness. To be more precise, there exists a function reduce basis which implements

the LLL algorithm; it is proven that the result of reduce basis is indeed reduced;
and it is proven that the first vector of a reduced basis is short. However, there
is no formal statement about the complexity of reduce basis.

To this end, we extend the existing formalization in two important directions:

– We define an extended version of reduce basis – reduce basis cost – which
in addition to the result also returns the number of required arithmetic
operations. We then show that the results of reduce basis cost and reduce
basis are identical. And more importantly, we formally verify the following
polynomial upper bound on the number of arithmetic operations. Here, A is
the maximum squared norm of the input vectors, and Log is the logarithm
of A w.r.t. the basis 4α

4+α . Note that Log is polynomially bounded in the size
of the binary representation of the input vectors. The reason is that the basis
of the logarithm is larger than 1 because α > 4

3 .

lemma reduce basis cost expanded:

assumes A = max list (map (nat o sq norm) fs)

and Log A = nat d log (4 · of rat α) / (4 + of rat α)) Ae
shows cost (reduce basis cost fs) ≤(

4 ·m2 + 3 ·m + (4 ·m2 + 12 ·m) · (1 + 2 ·m · Log A)
)
· n · arith cost

– Since the cost of an arithmetic operation – arith cost – clearly depends on
the size of the numbers, we also formally prove size bounds on the numbers
that occur during the execution of the algorithm.

lemma combined size bound: assumes ...

and A = max list (map (nat o sq norm) fs)

and M = Max {abs (fs ! i $ j) | i j. i < m ∧ j < n}
and x ∈ ... (* description of numbers during run of algorithm *)

and quotient of x = (num, denom)

and number ∈ {num, denom}
shows log 2 |number| ≤ 2 · m · log 2 A + m + log 2 m

and log 2 |number| ≤ 4 · m · log 2 (M · n) + m + log 2 m

Here, x is some number that occurs during the execution of the algorithm,
number is the numerator or denominator of x , and the lemma states that
the size of number is roughly O(m · log2(M · n)) where M is the maximum
absolute value that occurs in the input fs.

We first recall the existing formalization in Section 2, then present details on
the formal bound on the number of arithmetic operation in Section 3 and finally
illustrate the bounds on the size of the numbers in Section 4.

Our formal proofs are available in the development version of the AFP, the-
ories LLL Complexity.thy and LLL Number Bounds.thy [2]. They are based on
definitions and proofs from a textbook on computer algebra [11, Chapter 16].

2

2 The Formalized LLL Algorithm

In this section we briefly recapitulate the existing Isabelle/HOL formalization of
the LLL algorithm.

One ingredient of the LLL algorithm is the Gram–Schmidt orthogonalization
(GSO) procedure. It takes a list of linearly independent vectors f0, . . . , fm−1
from Rn or Qn as input, and returns an orthogonal basis g0, . . . , gm−1 for the
space that is spanned by the input vectors. In this case, we also write that
g0, . . . , gm−1 is the GSO of f0, . . . , fm−1. This procedure has already been for-
malized in Isabelle as a function gram schmidt when proving the existence of
Jordan normal forms [10].

The formalization of the LLL algorithm follows the pseudo-code presented
in Algorithm 1. Here, bxe = bx+ 1

2c is the integer nearest to x; u • v is the inner
product of vectors u and v, and ||u||2 = u •u is the squared Euclidean norm of u.
Moreover, the function µ is defined as follows where f and g always refer to the
current values of f and g in Algorithm 1.

µi,j :=


1 if i = j

0 if j > i
fi•gj
||gj ||2 if j < i

(1)

Algorithm 1: The LLL basis reduction algorithm, verified version

Input: A list of linearly independent vectors f0, . . . , fm−1 ∈ Zn and α > 4
3

Output: A basis that generates the same lattice as f0, . . . , fm−1 and is reduced
w.r.t. α

1 i := 0; g0, . . . , gm−1 := gram schmidt f0, . . . , fm−1

2 while i < m do
3 for j = i− 1, . . . , 0 do
4 fi := fi − bµi,je · fj
5 if i > 0 ∧ ||gi−1||2 > α · ||gi||2 then
6 g′i−1 := gi + µi,i−1 · gi−1

7 g′i := gi−1 −
fi−1•g

′
i−1

||g′i−1||
2 · g′i−1

8 (i, fi−1, fi, gi−1, gi) := (i− 1, fi, fi−1, g
′
i−1, g

′
i)

else
9 i := i+ 1

10 return f0, . . . , fm−1

Algorithm 1 has been formalized in Isabelle as follows where the presentation
in this paper hides some refinements. Throughout the paper, we are presenting
Isabelle source which reside in a context that fixes the approximation factor α,
the dimensions n and m, and the basis fsinit of the initial lattice L.

3

type synonym state = nat × int vec list × rat vec list

definition basis reduction step :: state ⇒ state where

basis reduction step = ... (* implementation of lines 3−9 *)

partial function (tailrec) basis reduction main :: state ⇒ state where

basis reduction main state = (case state of (i,fs,gs) ⇒
if i < m

then basis reduction main (basis reduction step state)

else state)

definition reduce basis :: int vec list ⇒ int vec list where

reduce basis fs = (let gs = gram schmidt (RAT fs) in

case basis reduction main (i, fs, gs) of (, fs ′,) ⇒ fs ′)

– We define an Isabelle type state, which is just a triple (i, fs, gs) which stores
the index i, the lattice basis f0, . . . , fm−1 as a list of vectors fs, and the GSO
g0, . . . , gm−1 as list of vectors gs.
Note that the triple representation is a simplified version of the actual for-
malization. In reality, we also store the norms of each gi and split the lists
fs and gs at position i so that accessing the i-th element can be done in
constant time.

– The body of the while-loop, i.e., lines 3–9 is modelled by a function basis
reduction step where we omit further details.

– The while-loop itself is modelled as partial function basis reduction main.
Note that it is not terminating, since the termination depends on valid in-
puts, e.g., it will not terminate for α = 0. Putting these assumptions into
the context might be possible for proving properties of the LLL algorithm,
but will prevent code-generation.

– The full algorithm is available as function reduce basis which starts the loop
after computing the initial GSO, and then just returns the final integer
basis f0, . . . , fm−1. Here, RAT converts a list of integer vectors into rational
vectors.

The key correctness property of the LLL algorithm is present in the following
lemma:

lemma basis reduction step:

assumes LLL invariant (i, fs, gs) and i < m

and basis reduction step α (i, fs, gs) = (i ′, fs ′, gs ′)

shows LLL invariant (i ′, fs ′, gs ′)

and LLL measure (i ′, fs ′, gs ′) < LLL measure (i, fs, gs)

4

It states that the invariant is preserved in the while-loop and that in each
iteration the measure decreases. In the upcoming definition of the invariant, lin
indpt list is a predicate expressing linear independence. The predicate reduced k
gs (µ (RAT fs)) demands that the first k vectors of fs and gs are reduced, i.e.,
in particular µi,j ≤ 1

2 for all j < i < k where µi,j refers to the current values of
fs and gs.

definition LLL invariant (i, fs, gs) = (

gram schmidt (RAT fs) = gs ∧
lin indpt list (RAT fs) ∧
lattice of fs = lattice of fs init ∧
length fs = m ∧
reduced i gs (µ (RAT fs)) ∧
i ≤ m)

Based on the lemma basis reduction step, one can easily prove crucial prop-
erties of the LLL algorithm where A is the maximum squared norm of the initial
lattice basis fsinit.

1. The resulting basis is reduced and is a basis for the same lattice as the initial
basis.

2. The algorithm terminates, since the LLL measure is decreasing in each iter-
ation.

3. The number of loop iterations is bounded by LLL measure (i, fs, gs) when
invoking the algorithm on inputs (i, fs, gs), so reduce basis requires at most
LLL measure (i, fs, gs) many iterations.

4. LLL measure (i, fs, gs) ≤ m + 2 ·m ·m · log (4·α
4+α) A

These properties have all been stated and proven in the ITP paper [3]. More-
over, since every while-loop iteration requires O(m · n) many arithmetic opera-
tions, one can derive a total bound of O(m3 · n · logA) arithmetic operations.

However, this has not been done formally, moreover there is no proven bound
on the values of fi, gi and µi,j .

3 A Formally Verified Bound on the Number of
Arithmetic Operations

In this section we provide details on how lemma reduce basis cost expanded was
proven.

The first step to be able to reason about the number of arithmetic operations
is to extend the whole algorithm by annotating and collecting costs. To this end,
we use following cost model.

– We only count arithmetic operations, namely those that occur in vector
operations.

5

– We use a parameter arith cost for the cost of an arithmetic operations. It
does not distinguish between rational and integer operations.

– An inner product and squared-norm calculation has costs 2 · n · arith cost
since there are n multiplications and n−1 additions to be performed. Vector
addition and scalar multiplication has a cost of n · arith cost.

To integrate this model formally, we use a simple approach. It has the ad-
vantage that it was very easy to integrate on top of the existing formalization:
the formalization of this section requires only 450 lines and was finished within
two days.

– We use a type ′a cost = ′a× nat to represent a result of type ′a in combination
with a cost for computing the result.

– For every Isabelle function f :: ′a ⇒ ′b that is used to define the LLL algo-
rithm, we define a corresponding extended function f cost :: ′a ⇒ ′b cost.
These extended functions use pattern matching to access the costs of sub-
algorithms, and then return a pair where all costs are summed up.

– In order to state correctness, we define two selectors cost :: ′a cost ⇒ nat and
result :: ′a cost ⇒ ′a. Then soundness of f cost is split into two properties.
The first one states that the result is correct: result (f cost x) = f x , and the
second one provides a cost bound cost (f cost x) ≤

We did not use state monads – which accumulate the costs – to model the
functions f cost. The reason is that we would then always have to break the
monad abstraction in order to formally prove the cost bounds.

We illustrate our approach using two example functions where basis reduction
swap cost implements lines 6–8 of Algorithm 1, and basis reduction main cost is
an annotated version of basis reduction main as it is defined in Section 2.

fun basis reduction swap cost (i,fs,gs) = (

case compute mu cost fs gs i (i−1) of (* compute µi,i−1 *)

(mu,c1) ⇒ let (* c1: costs of sub−routine *)

gi = ...; (* extract gi from gs *)

gim1 = ...; (* extract gi−1 from gs *)

gim1 ′ = gi + mu ·v gim1; (* count 2n operations *)

...;

c2 = (2 + ...) · n · arith cost (* c2: local costs in let *)

in ((i−1, fs ′, gs ′), c1 + c2) (* sum up costs *)

function basis reduction main cost state = (case state of (i,fs,gs) ⇒
if i < m ∧ LLL invariant state (* new: enforce invariant *)

then case basis reduction step cost state of

(state1,c1) ⇒ (* c1: cost for one loop iteration *)

case basis reduction main cost state1 of

6

(state2,c2) ⇒ (* c2: cost for recursion *)

(state2, c1 + c2) (* sum costs *)

else (state,0)) (* 0 costs *)

The function basis reduction swap cost is the usual case: one invokes sub-
algorithms recursively and extracts their costs by pattern matching on pairs
(here: c1), one does some local operations and manually annotates the costs for
them (here: c2), and finally returns the pair of the computed result and the total
cost.

Of course, one should validate the definitions, i.e., carefully inspect whether
the formal cost definitions really match the intended cost model. However, veri-
fication of the desired soundness properties is then just a simple exercise.

lemma basis reduction swap cost:

result (basis reduction swap cost state) = basis reduction swap state

cost (basis reduction swap cost state) ≤ 12 · n · arith cost

The function basis reduction main cost is a bit more interesting. Note that
the corresponding function basis reduction main was defined as a tail-recursive
partial function. However, basis reduction main cost is no longer tail-recursive
since it has to adjust the costs from c2 to c1 + c2. As a consequence, basis
reduction main cost cannot be defined via partial function, and instead we use
the function command which requires a termination proof.

Recall that it depends on the input arguments whether the main loop is
terminating or not. Therefore, to actually ensure termination we add the con-
dition that the state must satisfy the invariant. Then we prove termination by
a decrease of LLL measure by using lemma basis reduction step. In order to get
rid of the second precondition of the lemma – basis reduction step α (i, fs, gs) =
(i ′, fs ′, gs ′) – we utilize the soundness lemma for basis reduction step cost which
includes the property result (basis reduction step cost state) = basis reduction
step state.

Although the reasoning for basis reduction main cost is a bit more compli-
cated than the one for basis reduction swap cost, the final statement is similar
easy. In the statement, body cost and num loops are constants which encapsulate
arithmetic expressions for the bounds.

lemma basis reduction main cost: assumes LLL invariant state

shows result (basis reduction main cost state) = basis reduction main state

and cost (basis reduction main cost state) ≤ body cost · num loops

In the same way we also define the final function reduce basis cost and prove
its soundness and cost bound, e.g. the lemma reduce basis cost expanded from
the introduction. As final remark in this section, we do not want to hide that
this lemma – our first main result – has some (obvious) assumptions that have
not been mentioned in the introduction: α > 4

3 , m 6= 0 , length fs = m, and lin
inpdt list (RAT fs).

7

4 Bounds on the Numbers in the LLL Algorithm

Whereas the previous section provides a formally verified upper bound on the
number of arithmetic operations, in this section we consider the costs of each
individual arithmetic operation. To be more precise, we formally derive bounds
on the fi, gi, and µi,j . Whereas the bounds for gi will be valid throughout the
whole execution of the algorithm, the bounds for the fi depend on whether we
are inside the or outside the for-loop in lines 3–4: within the for-loop the value
of the ||fi|| can get slightly larger than outside the loop.

To formally verify bounds on the numbers, we first define a stronger invariant
which includes the conditions f bound outside fs and g bound gs.

definition f bound outside k fs = (∀ i < m. ||fs ! i||2 ≤
(if outside ∨ k 6= i then A · m else 4m−1 · Am ·m2))

definition g bound gs = (∀ i < m. ||gs ! i||2 ≤ A)

definition LLL bound invariant outside (i,fs,gs) =

(LLL invariant i fs ∧ f bound outside i fs ∧ g bound gs)

Note that LLL bound invariant does not enforce a bound on the µi,j , since
such a bound can be derived from the bounds on fs and gs. Here, we use the
Gramian determinant which is the determinant of the Gramian matrix M . Given
a set of vectors v1, . . . , vn the entries of M are Mij = vi • vj . There are multiple
ways to define and describe the Gramian matrix and determinant in Isabelle:

definition Gramian matrix fs k = (let M = mat k n (λ(i, j). (fs ! i) $ j) in M ·MT

definition Gramian determinant fs k = det (Gramian matrix fs k)

lemma assumes k < m

shows Gramian matrix fs k = mat k k (λ(i, j). fs ! i • fs ! j)

lemma Gramian determinant:

assumes LLL invariant (i, fs, gs) and k ≤ m

shows Gramian determinant fs k = (
∏

j<k. ||gs ! j||2)

Apart from our use case, the Gramian determinant also appears when proving
the termination of the LLL algorithm, since it is used to define LLL measure.

With the definition of the Gramian determinant and bounds on the vectors
in fs we can derive bounds on all µi,j where j < i:

lemma mu bound Gramian determinant:

assumes j < i and i < m

shows (µ fs i j)2 ≤ Gramian determinant fs j · ||fs ! i||2

8

The proof of this fact is rather straightforward and follows closely the one
from [11, Chapter 16]. The proof uses Cauchy’s inequality (||u • v||2 ≤ ||u||2 · ||v||2)
which we had to show for our vector library.

Bounds on the Gramian determinants can be directly derived from the lemma
Gramian determinant and g bound gs:

lemma Gramian determinant bound:

assumes LLL invariant (i, fs, gs) and g bound gs and k < m

shows Gramian determinant fs k ≤ Ak

Note that f bound outside fs clearly gives a bound on the sizes of the values
in each vector fi. However, the situation is less clear for g bound gs: even if ||gi||2
is bounded, this does not imply a bound on the numerators and denominators
of each number. The same is true for all µi,j .

To derive bounds on the numerators and denominators appearing in the LLL
algorithm, Cramer’s lemma becomes important. Although this lemma is already
available in the Isabelle distribution, there are two obstacles before we can use
it in our proof.

lemma cramer lemma distribution: fixes A :: realˆ ′nˆ ′n

shows det (replace col hma A (A ·v x) k) = x $ k · det A

The first problem is that Cramer’s lemma is available in HOL-analysis which
uses Harrison’s technique to represent vector dimensions via type variables [4].
In contrast, the whole LLL algorithm is formalized using the matrix- and vector-
library of the AFP-entry [9] where the dimension is a natural number.

To solve this first problem, we mainly use a recent connection that permits to
transfer theorems between the two matrix libraries [1, Section 4]. In our applica-
tion, it just requires one additional transfer-rule to establish a link between the
two constants in the two libraries that replace a row by a matrix. This transfer-
rule is easy to prove, and afterwards Cramer’s lemma can be transferred imme-
diately: The following Isabelle source contains the full proof for lemma cramer
lemma real .

lemma HMA M replace col[transfer rule]:

(HMA M ===> HMA V ===> HMA I ===> HMA M)

replace col replace col hma (* simple proof, not displayed *)

lemma cramer lemma real: fixes A :: real mat

assumes A ∈ carrier mat n n and x ∈ carrier vec n and k < n

shows det (replace col A (A ·v x) k) = x $ k · det A
using assms cramer lemma distribution[untransferred, cancel card constraint]

by auto

9

The second problem is that Cramer’s lemma in HOL-analysis is only avail-
able for real-valued vectors and matrices, but we need it for rational numbers.
Here, we use existing homomorphism lemmas for determinants and matrix mul-
tiplication, to obtain Cramer’s lemma for rational matrices. The resulting lemma
is exactly like cramer lemma real , except that A :: rat mat.

The gi are defined recursively with gi = fi −
∑
j<i µijgj with the definition

of µij from 1. We can then prove that there exists a definition of gi which
is not based on the other vectors from gs and only on vectors from fs. We
label the parameters in these new equations with λij and attain the definition
gi = fi −

∑
j<i λijfj . Each gi is orthogonal to every fl with l < i and therefore

fl • gi = fl • fi −
∑
j<i λij(fl • fj) = 0. So the λij form a solution to a system of

linear equations: f1 • f1 . . . f1 • fi−1
...

. . .
...

fi−1 • f1 . . . fi−1 • fi−1


︸ ︷︷ ︸

=M=Gramian determinant fs i

·

 λi1
...

λi(i−1)


︸ ︷︷ ︸

=L

=

 f1 • fi
...

fi−1 • fi


︸ ︷︷ ︸

=F

The coefficient matrix M on the left hand side where Mij = fi • fj is exactly
the Gramian matrix of fs and i . With Cramer’s lemma we deduce

λij · Gramian determinant fs i = L $ j · det M
= det (replace col M (M ·v L) j)
= det (replace col M F j)

The matrix replace col M F j only has inner products of the vectors in fs
as entries and these are of course integers. Then the determinant is also an
integer and λij · Gramian determinant fs i ∈ Z. Unfolding the definition of gi
where gi = fi −

∑
j<i λijfj in Gramian determinant fs i ·v gi leaves us with sums

and differences only consisting of integers. We have therefore proven the following
lemma:

lemma

assumes LLL invariant (k, gs, fs)

and i < m and j < n

shows (Gramian determinant fs i ·v gs ! i) $ j ∈ Z

In the following we define dj = Gramian determinant fs j. Considering lemma

Gramian determinant we have
dj+1

dj
= ||gj ||2 and with the previous lemma we

deduce and state in Isabelle:

dj+1µi,j = dj+1
fi • gj
||gj ||2

= dj+1
fi • gj
dj+1/dj

= dj(fi • gj) = fi • (dj ·v gj) ∈ Z

10

lemma

assumes LLL invariant (k, gs, fs)

and i < m and j < n

shows Gramian determinant fs (Suc j) · µ fs i j ∈ Z

These lemmas now allow us to derive bounds on the numerators and denom-
inators of all gi and µi,j . As the Gramian determinants are integers and as they
are a multiple of the denominators of an gi or an µi,j , the denominators of the
gi and µi,j must be bounded by the Gramian determinants. In combination with
upper bounds for the rational numbers, we can easiliy derive an upper bound
on the numerator. We can state these properties in Isabelle:

lemma quotient of bounds:

fixes i::int

assumes quotient of r = (num, denom) and i · r ∈ Z and 0 < i and |r| ≤ b

shows |num| ≤ i · b and denom ≤ i

lemma LLL invariant g bound:

assumes LLL bound invariant outside (k, fs, gs) and i < m and j < n

and quotient of (gs ! i $ j) = (num, denom)

shows |num| ≤ Am and |denom| ≤ Am

lemma LLL invariant mu bound:

assumes LLL bound invariant outside (k, fs, gs) and i < m and j < n

and quotient of (µ fs i j) = (num, denom)

shows |num| ≤ 2m ·m · A2m and |denom| ≤ Am

Based on these bounds on the numerators and denominator, it was an easy
task to derive the size-bounds on the numerators and denominators that are
stated in the introduction in Lemma combined size bound .

At this point we have proven that we can infer polynomial size bounds from
LLL bound invariant. Moreover, the Isabelle sources also contain formal proofs
for the one remaining task, namely to show that LLL bound invariant is indeed an
invariant that is maintained throughout the execution of the algorithm: during
the execution of the for-loop in lines 3–4, LLL bound invariant False (i, fs, gs) is
satisfied; and outside the for-loop, LLL bound invariant True (i, fs, gs) is satisfied.

Acknowledgments

This research was supported by the Austrian Science Fund (FWF) project Y757.
The authors are listed in alphabetical order regardless of individual contributions
or seniority.

11

References

1. J. Divasón, S. Joosten, O. Kunčar, R. Thiemann, and A. Yamada. Efficient certi-
fication of complexity proofs: Formalizing the Perron–Frobenius theorem (invited
talk paper). In Proceedings of the 7th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2018, pages 2–13. ACM, 2018.

2. J. Divasón, M. Haslbeck, S. Joosten, R. Thiemann, and A. Yamada. A verified LLL
algorithm. Archive of Formal Proofs, Feb. 2018. http://isa-afp.org/entries/

LLL_Basis_Reduction.html, Formal proof development.
3. J. Divasón, S. Joosten, R. Thiemann, and A. Yamada. A formalization of the LLL

basis reduction algorithm. In ITP 2018, LNCS, 2018. To appear.
4. J. Harrison. The HOL light theory of Euclidean space. J. Autom. Reasoning,

50(2):173–190, 2013.
5. A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational

coefficients. Mathematische Annalen, 261:515–534, 1982.
6. D. Micciancio. The shortest vector in a lattice is hard to approximate to within

some constant. SIAM J. Comput., 30(6):2008–2035, 2000.
7. P. Q. Nguyen and B. Vallée, editors. The LLL Algorithm – Survey and Applications.

Information Security and Cryptography. Springer, 2010.
8. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
9. R. Thiemann and A. Yamada. Matrices, Jordan normal forms, and spectral radius

theory. Archive of Formal Proofs, Aug. 2015.
10. R. Thiemann and A. Yamada. Formalizing Jordan normal forms in Isabelle/HOL.

In CPP 2016, pages 88–99. ACM, 2016.
11. J. von zur Gathen and J. Gerhard. Modern computer algebra (3rd ed.). Cambridge

University Press, 2013.

12

http://isa-afp.org/entries/LLL_Basis_Reduction.html
http://isa-afp.org/entries/LLL_Basis_Reduction.html

	Formal Verification of Bounds for the LLL Basis Reduction Algorithm
	Maximilian Haslbeck and René Thiemann

