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Abstract. This paper presents the tool CodeLazy for Isabelle/HOL.
It hooks into Isabelle’s code generator such that the generated code
evaluates a user-specified set of type constructors lazily, even in target
languages with eager evaluation. The lazy type must be algebraic, i.e.,
values must be built from constructors and a corresponding case operator
decomposes them. Every datatype and codatatype is algebraic and thus
eligible for lazification.
Lazification is transparent to the user: definitions, theorems, and the
reasoning in HOL need not be changed. Instead, CodeLazy transforms
the code equations for functions on lazy types when code is generated.
It thus makes code-generation-based Isabelle tools like evaluation and
quickcheck available for codatatypes, where eager evaluation frequently
causes non-termination. The transformations preserve the code generator’s
correctness guarantees as they are checked by Isabelle’s kernel.

1 Introduction

Over the last six years, Isabelle/HOL has become the HOL-based prover with the
best support for codatatypes [2–5], which are frequently used for modelling infinite
data. Alas, Isabelle features based on code generation have been lagging behind in
this respect: Interactive evaluation with the value command does not terminate
for infinite data as it compiles to the eager target language Standard ML3 and so
does quickcheck when the claim involves infinite data. This constitutes a serious
obstacle as evaluation provides important early feedback on and intuition about
the formalised model.

For example, lazy lists are modelled as the following codatatype with the
constructors LNil for the empty list, written [], and LCons for consing, written
infix as ·. The selectors lhd and ltl return the head and tail of a non-empty lazy list.

codatatype ′a llist = LNil | LCons (lhd : ′a) (ltl : 〈 ′a llist〉)

? Most of this work was done while the first author was at the Institute of Information
Security at ETH Zurich.

3 The first author recently extended the value command with compilation to the lazy
language Haskell [9], but this does not help, as pretty printing of results remains
eager and therefore does not terminate for infinite data structures.



Suppose that we have defined two functions on lazy lists: up n produces the list
of ascending numbers starting with n and xs ! n returns the n-th element of the
list xs.

primcorec up :: nat ⇒ nat llist where 〈up n = n · up (n + 1 )〉

fun lnth :: 〈 ′a llist ⇒ nat ⇒ ′a〉 (infixl ! 100 ) where
〈(x · xs) ! 0 = x 〉

| 〈(x · xs) ! (Suc n) = xs ! n〉

We now want to prove the following lemma. However, a typo slipped in and we
have actually written a wrong statement:

lemma lnth-up: 〈up n ! m = m + m〉

Quickcheck, which is run automatically on all lemmas, is unable to spot the error
because it tries to construct the infinite list up n for some choice of n until it
runs out of memory or hits the timeout. And if we try to manually evaluate the
two sides, we are out of luck again. The value command does not terminate for
the same reason.

value 〈up 5 ! 10 〉

Our tool CodeLazy addresses these issues: Quickcheck finds a counterex-
ample and value terminates. Moreover, laziness is not restricted to interactive
development tools like Quickcheck and value. It is equally useful when proving
theorems by evaluation and in generated application code. Not only codatatypes
benefit; laziness also simplifies data-driven programming with finite data.

CodeLazy hooks into Isabelle’s code generator such that the generated
code lazily evaluates a user-specified set of type constructors such as llist, even
in target languages with eager evaluation. It changes the representation of a
lazy type similar to what Wadler et al. have called the “even with difficulty”
style [19] and adapts the code equations of functions on lazy types accordingly.
In particular, constructors are replaced by lazy constructors and pattern matches
are replaced with case operators that explicitly force the evaluation. To that end,
CodeLazy implements a new algorithm that eliminates pattern-matching, which
can be used independently and is more powerful than existing implementations.
Other Isabelle/HOL tools like case-of-simps could broaden their scope by
switching to our algorithm.4 CodeLazy runs with Isabelle2017 and is available
at http://www.andreas-lochbihler.de/pub/code_lazy.zip. It is scheduled for
inclusion in the next Isabelle release as part of HOL-Library.

There is only one requirement on the lazy type constructor: it must be alge-
braic, as captured by Isabelle’s free-constructors abstraction. That is, values
must be built from constructors and a corresponding case operator decomposes
them. Every datatype and codatatype is algebraic and thus eligible for lazifica-
tion. This includes in particular mutually recursive (co)datatypes and recursion
4 In fact, we initially tried to use case-of-simps to eliminate the patterns, but quickly
ran into it failing on overlapping and missing patterns. We therefore developed and
implemented our own pattern-matching algorithm.
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through arbitrary bounded natural functors. No induction or coinduction princi-
ple is required. Exotic types like streams with uncountably many elements are
therefore algebraic, too.

Two design goals have guided our development: First, lazification should be
transparent to the user’s definitions, theorems, and proofs. So the reasoning is not
affected by laziness. This is crucial for seamless integration into the Isabelle/HOL
ecosystem as all existing packages and tools can be used without change. We
achieve this goal by automatically deriving a lazy view and transforming the
code equations right before code generation.

Second, the trusted computing base should be kept as small as possible.
Lazification should not be able to introduce inconsistencies, even when theorems
are proven by execution. To that end, CodeLazy has all transformations of the
code equations checked by Isabelle’s inference kernel. We nevertheless need a
small extension that makes it possible to use the result of a single lazy evaluation
several times in one execution.

The paper is structured as follows: We describe the lazification approach and
its implementation in §2. In §3, we present the user interface, several examples
and discuss the limitations. Related work is discussed in §4. We conclude in §5
with future uses cases for different parts of our implementation.

2 Lazy Algebraic Types in the Generated Code

In this section, we describe how we model laziness in HOL (§2.1, §2.2), how
CodeLazy constructs the lazy view for an algebraic type (2.3), and how it hooks
into the code generator (§2.4, §2.5). We assume that the type that shall become
lazy must have been defined before in the logic.

Our approach works with arbitrary algebraic types. All datatypes and co-
datatypes definable with Isabelle’s (co)datatype package [4] fall into this class. In
particular, this includes mutually recursive (co)datatypes and recursion through
arbitrary bounded natural functors. Other definition mechanisms like records
are covered, too. Non-free types such as (multi)sets and unordered pairs are not
algebraic. In principle, our approach can handle non-uniform (co)datatypes [5],
but Isabelle’s code generator cannot handle them. We therefore restrict the
presentation to uniform algebraic types.

Formally, an algebraic type is a type constructor α κ equipped with construc-
tors C i :: σi ⇒ α κ (1 ≤ i ≤ n) and a case combinator case-κ:: (σi ⇒ β) ⇒ α
κ ⇒ β where all type variables in σi must occur in α and every occurrence of κ
in any σi takes the arguments α. The constructors must be free, i.e., injective,
mutually disjoint, and exhaustive; and the case combinator must be an eliminator:
case-κ f (C i x) = f i x .

No induction or coinduction principle is needed for algebraic types. Exotic
types like streams with uncountably many elements are therefore algebraic, too.
Moreover, in mutually recursive (co)datatypes, we can choose to treat only some
of them as lazy and others as eager.
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2.1 Suspensions

As pointed out by Wadler et al. [19], laziness can be captured in an eager language
by a suspension type ′a lazy with two primitive operations:

– delay :: (unit ⇒ ′a) ⇒ ′a lazy wraps the computation f in a suspension, and
– force :: ′a lazy ⇒ ′a unwraps and runs the stored computation.

Since HOL has no notion of evaluation, we model the suspension type ′a lazy
simply as a copy of ′a. So a suspension ′a lazy is isomorphic to its result ′a. The
delay operation, not force, “runs” the computation in the logic by applying the
unit closure to ().

typedef ′a lazy = 〈UNIV :: ′a set〉

lift-definition delay :: 〈(unit ⇒ ′a) ⇒ ′a lazy〉 is 〈λf . f ()〉

lift-definition force :: 〈 ′a lazy ⇒ ′a〉 is 〈λx . x 〉

Only when generating code can we talk about evaluation order and this is
when we specify delay and force’s evaluation behaviour: delay becomes ′a lazy ’s
code constructor and it is force’s code equation that supplies () to run the
computation.

code-datatype delay
lemma force-code [code]: 〈force (delay f ) = f ()〉

In a call-by-value language, delay now delays the evaluation and force forces it.
For evaluation with Isabelle’s simplifier (code-simp, value [simp]), we instruct it
to not evaluate the suspended computation using a congruence rule:

lemma delay-lazy-cong : 〈delay f = delay f 〉

setup 〈Code-Simp.map-ss (Simplifier .add-cong @{thm delay-lazy-cong})〉

These declarations yield a basic kind of lazy evaluation. For example, the
following command evaluates to the string ′′x ′′. Without laziness, the evaluation
would fail with a pattern-match error caused by taking the head of the empty
list.

value [code] 〈let x = ( ′′x ′′, delay (λ-. hd [])) in fst x 〉

2.2 Caching Results

The suspensions from the previous section suffice to implement lazy evaluation.
Some computations, however, may be evaluated multiple times. For example,

value [code] 〈let x = delay (λ-. length ′′Isabelle ′′) in force x + force x 〉

computes twice the length of the string ′′Isabelle ′′. The reason is that the
suspension x does not cache the computation. Each force x therefore computes
the length afresh. But we would prefer that only the first force on a suspension
runs the computation and all subsequent forces return the result of the first force.
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To reuse a result of a shared suspension, the suspension must cache the result.
As HOL does not know about evaluation and sharing, caching cannot be expressed
in the logic. Even worse, we cannot express it in the higher-order rewrite system
model of the code generator [6]. Instead, we provide manual implementations
for the suspension type lazy for all target languages using code-printing decla-
rations. Users must trust that these implementations correctly implement the
caching. We emphasize that this is the only extension to the trusted computing
base in our implementation.

In Standard ML, the implementation uses a reference cell; delay initialises
the cell with the unit closure and force updates it with the evaluation result, a
value or an exception. Subsequent calls to force merely return the cached value
or raise the exception again.

datatype 'a content = Delay of unit -> 'a | Value of 'a | Exn of exn;
datatype 'a lazy = Lazy of 'a content ref;

fun delay f = Lazy (ref (Delay f));

fun force (Lazy x) = case !x of
Delay f => (
let val res = f (); val _ = x := Value res; in res end
handle exn => (x := Exn exn; raise exn))

| Value x => x
| Exn exn => raise exn;

For Haskell, we use the definition in the logic where delay already supplies
the argument. This works because Haskell itself is lazy.

newtype Lazy a = Lazy a;
delay f = Lazy (f ());
force (Lazy x) = x;

In OCaml, we map lazy to the built-in Lazy.t type from the standard library.
In Scala, a lazy val takes care of the caching.

Caching also makes it possible to pretty-print evaluated suspensions to the
user. Pretty printing must not evaluate a suspended computation because there
might be exceptions or non-termination hiding in it. We therefore implemented
a term reconstruction function for ′a lazy values in Standard ML, OCaml, and
Scala that checks whether a lazy value has been forced and, if so, pretty-prints the
result. For example, the first value command below prints _ for the unevaluated
suspension x. The second command prints 3 · 4 · 5 · 6 · 7 · 8 · - because
computing y has evaluated the lazy list x to depth 5. Without sharing, both
value commands would print _.

value [code] 〈let x = up 3 in x 〉

value [code] 〈let x = up 3 ; y = x ! 5 in x 〉

For Haskell, no term reconstruction is available for suspensions because we did
not find an implementation-independent and reliable way to figure out whether
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a Lazy value has been evaluated. Consequently, the following shows only an
uninformative _ as the result.

value [GHC ] 〈let x = up 3 ; y = x ! 5 in x 〉

2.3 Bringing Suspensions into an Algebraic Type

To turn an algebraic type into a lazy algebraic type, we wrap every value in a
suspension for the code generator. For example, we want to pretend to the code
generator that the codatatype llist was defined as follows.

codatatype ′a llist = Lazy-llist (unlazy-llist : 〈 ′a llist-lazy lazy〉)
and ′a llist-lazy = LNil-Lazy | LCons-Lazy 〈 ′a〉 〈 ′a llist〉

So a lazy list xs is a suspension whose result is either the empty list LNil-Lazy
or a LCons-Lazy x xs’ whose tail xs’ is again a suspension. Wadler et al. [19] call
this the even style with difficulty.

Clearly, we do not want to actually define llist like this in the logic as this
would severely complicate working with lazy types. Indeed, the algebraic type
has already been constructed in the logic. So there is no point in redefining it in
a complicated way. Instead, CodeLazy definitionally constructs the mutually
recursive view from the existing algebraic type as follows.

The key observation is that ′a llist-lazy is isomorphic to ′a llist as ′a lazy is
isomorphic to ′a. So, given an algebraic type α κ with constructors C i, we define

– α κ-lazy as a copy of α κ with the bijection Rep-κ-lazy and Abs-κ-lazy,
– Lazy-κ x = Rep-κ-lazy (force x) and unlazy-κ x = delay (λ-. Abs-κ-lazy x),
– C i-Lazy x = Abs-κ-lazy (C i x), and
– case-κ-lazy f x = case-κ f (Rep-κ-lazy x).

From these definitions and κ’s algebraicness, it is easy to derive the following
equations by term rewriting:

C i x = Lazy-κ (delay (λ-. C i-Lazy x)) (1)

case-κ f x = case-κ-lazy f (force (unlazy-κ x)) (2)

case-κ-lazy f (C i-lazy x) = f i x (3)

The first two (1) and (2) show how κ’s constructors and case combinator can be
implemented in terms of the new constructors and case combinator, respectively.
As one would expect, the constructor delays the evaluation and the case combina-
tor forces it. The last equation (3) implements the new case operator by pattern
matching.5 We can now switch to the new constructors in the code generator.

code-datatype Lazy-κ
code-datatype C i-Lazy

5 From these equations, our implementation derives a case certificate such that the
code generator uses the target language case syntax for case-κ-lazy.
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All these definitions, derivations and declarations are automated by the
command code-lazy-type. Thus, after the command

code-lazy-type llist

the code generator views ′a llist as if it had been defined in the mutually recursive
way shown at the beginning of this section.

2.4 Transforming the Code Equations

With the lazy view on an algebraic type in place, we must also replace the
old constructors and case combinators with the lazy ones in all code equations.
Otherwise, we might not get the benefits of laziness or code generation may
fail altogether. For example, up’s original specification up n = n · up (n + 1 )
will cause non-termination in an eager language like Standard ML because the
list constructor · in the logic is now an ordinary function in the generated code.
Call-by-value thus evaluates the argument up (n + 1 ) before applying ·. So ·
cannot delay the evaluation and up therefore never terminates. Instead, up should
be implemented as follows:

up n = Lazy-llist (delay (λ-. LCons-Lazy n (up (n + 1 )))).

Clearly, users do not want to manually state and prove such an equation for
all their functions. Fortunately, this equation can be obtained by unfolding (1) in
up’s specification. The command code-lazy-type therefore adds the equations
(1) and (2) as unfold equations to the code preprocessor. This eliminates all
occurrences of the logical constructors and case combinator on the right-hand
sides of the code equations.

Yet, the old constructors may also appear on the left-hand sides in pattern
matches. For example, !’s equations

(x · xs) ! 0 = x (x · xs) ! Suc n = xs ! n (4)

pattern-match on ·. Here, we cannot simply unfold (2) on the left, because that
would bring in a delay and a λ abstraction, neither of which can be pattern-
matched on in the target languages. Rather, we must eliminate the pattern
matching on the left. This is done in two steps. First, we replace all patterns
with eager constructors of lazy types on the left-hand side with a fresh variable
and perform a case analysis on this variable on the right-hand side:

xs ! 0 = (case xs of [] ⇒ ? | x · xs ′ ⇒ x )
xs ! Suc n = (case xs of [] ⇒ ? | x · xs ′ ⇒ xs ′ ! n)

Second, the case operators on the right-hand side are replaced with the lazy case
combinator by rewriting with (2):

xs ! 0 = (case force (unlazy-llist xs) of LNil-lazy ⇒ ? | LCons-lazy x xs ′ ⇒ x )
xs ! Suc n = (case force (unlazy-llist xs) of LNil-lazy⇒ ? |LCons-lazy x xs ′⇒ xs ′ ! n)
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The command code-lazy-type installs a function transformer in the code pre-
processor which eliminates the patterns from the code equations. The second
step is already covered by the unfold equations.

The big question is what we should put for the question marks. Indeed, the
pattern matches in (4) do not cover the case where the list is empty. At run time,
these cases should fail with an exception. But in HOL, where every function is total,
there is no notion of an exception. So we fill the question mark with something
that makes the code equations provable in HOL, namely missing-pattern-match
(STR ′′Missing pattern in lnth ′′) (λ-. lhs) where lhs denotes the left-hand side
of the equation. Here, the HOL function missing-pattern-match msg f is defined
as f () in the logic while it raises an exception with the message msg in the
generated code.

In this paper, we only describe the key features of the pattern matching
elimination algorithm. The full details with a correctness proof can be found in
the second author’s thesis [16]. The algorithm takes a list of equational theorems
with the same head function symbol and the same number of arguments and
outputs a list of equational theorems such that

1. all pattern matches on constructors of lazy types have been transformed into
case combinators on the right-hand side,

2. all pattern matches on non-lazy types remain unless they appear inside a
constructor of a lazy type, and

3. the eager evaluation behaviour is semantically equivalent to the input; in
particular, earlier equations take precedence over later ones when their
patterns overlap and missing-pattern-match errors are added for missing
pattern.

The first property ensures that the second step can replace the eager case
combinator with the lazy one. The second property is crucial to support non-free
code constructors in patterns. For example, sets are implemented by default
using lists via the non-free code constructor set :: ′a list ⇒ ′a set. The code
equations therefore pattern-match on set, but these matches cannot be converted
into a case operator in HOL because the constructor is not free. By leaving such
matches on the left-hand side, our algorithm does not run into the problem of
the non-existing case combinator. For example, it transforms the two equations

insert-all A [] = A
insert-all (set ys) (x · xs) = insert-all (set (x · ys)) xs

into

insert-all (set ys) xs = (case xs of [] ⇒ set ys | x · xs ′⇒ insert-all (set (x · ys)) xs ′)
insert-all A xs = (case xs of [] ⇒ A | x · xs ′ ⇒ ? )

where the question mark abbreviates again a pattern-match error.
Moreover, the second property helps to mitigate the exponential blow-up

that a full conversion from patterns to decision trees can cause, namely if the
blow-up is due to patterns that need not be eliminated completely. For example,
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consider an algebraic type with constructors C 1,. . . ,Cn (n>1 ) and a list of m+1
equations for the m+1 -ary function f, and another type with a single constructor
D with one argument.

f C 1 _ _ . . . _ (D x) = . . .
f _ C 1 _ . . . _ (D x) = . . .
...

...
. . .

...
...

...
f _ _ . . . _ C 1 (D x) = . . .
f _ _ _ . . . _ (D x) = . . .

If only the matches on D must be eliminated, our algorithm just moves the matches
to the right hand side, i.e., the transformation yields again m+1 equations.
Eliminating all patterns would be much worse, though; there would be only one
equation, but the decision tree of case operators on the right has a branching
factor of n in the first m level and a branching factor of 1 on the last level. This
makes nm cases overall.

The blow-up cannot be avoided in general, though. For example, if the
equations are as follows

f C 1 _ _ . . . _ 1 = . . .
f _ C 1 _ . . . _ 2 = . . .
...

...
. . .

...
...

...
f _ _ . . . _ C 1 m = . . .
f _ _ _ . . . _ _ = . . .

and we want to eliminate the pattern matching on the numbers in the last
argument. Now, we cannot simply replace the patterns in the last argument by
a variable, because this would change the pattern-matching behaviour for the
other arguments. In this case, our algorithm eliminates all patterns and it is easy
to see that there is no better solution. So we end up with a decision tree with
(m+ 1) · 2m cases.

Finally, in the third property, the restriction to eager evaluation is justified
by the call-by-value target languages. In fact, the evaluation behaviour in a
call-by-need setting may change. For example, the zip function on lazy lists given
by the equations

lzip xs [] = []
lzip [] ys = []
lzip (x · xs) (y · ys) = (x , y) · lzip xs ys

evaluates in a lazy programming language like Haskell the second argument first.
The pattern-matching elimination algorithm, however, eliminates the patterns
from left to right, so the generated case expression on the right-hand side forces
the first argument first. We do not consider this a problem because there is
little point in using our laziness converter for Haskell. Rather, we recommend to
deactivate the conversion when generating Haskell code.
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2.5 Pretty Evaluation Results

By automatically generating the lazy view and converting the code equations,
we manage to hide the laziness complications from the user’s definitions and
proofs. We now describe how CodeLazy hides the laziness view from the user
when pretty-printing evaluation results, e.g., from the value command. Without
further measures, the command

value [code] 〈let x = up 3 ; y = x ! 5 in x 〉

prints the following monstrosity:

Lazy-llist (delay (λ-. LCons-Lazy 3 (Lazy-llist (delay (λ-. LCons-Lazy 4 (Lazy-llist
(delay (λ-. LCons-Lazy 5 (Lazy-llist (delay (λ-. LCons-Lazy 6 (Lazy-llist (delay (λ-.
LCons-Lazy 7 (Lazy-llist (delay (λ-. LCons-Lazy 8 (Lazy-llist (delay -)))))))))))))))))))

Fortunately, it is easy to instrument the code generator’s post processor to
instead output 3 · 4 · 5 · 6 · 7 · 8 · -. Two steps are necessary:

– Print the term Lazy-κ (delay Pure.dummy) as -. Term reconstruction uses
this term to represent unevaluated parts.

– Fold (1). This replaces the lazy constructors with the original ones, which
are then pretty-printed as usual.

The command code-lazy-type configures the post processor accordingly.

3 User interface

This section describes our tool’s user interface and how it integrates with other
Isabelle features. This may serve as a reference for users. We also present several
examples and discuss the practical limitations.

3.1 Documentation

The CodeLazy tool is implemented in the theory Code_Lazy and the correspond-
ing ML files. The theory formalises the type ′a lazy from §2.1 and provides the
serialisation instructions for caching (§2.2). It also defines six user-level commands:

– code-lazy-type tycon
– activate-lazy-type tycon
– deactivate-lazy-type tycon

– print-lazy-types
– activate-lazy-types
– deactivate-lazy-types

The commands on the left all take one type constructor name as an argument;
those on the right do not take any argument.

The command code-lazy-type is the main workhorse. It defines the lazy
constructors for the given type constructor and derives the relevant theorems as
described in §2.3, and activates the lazy view as described in §2.4 and §2.5. The
argument tycon must satisfy the following conditions:
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– tycon must be a type constructor in HOL, i.e., no compound type nor a type
abbreviation,

– tycon must have been registered as a free constructor type with a case operator,
e.g., via the command free-constructors; the (co)datatype command
automatically registers the defined types, and

– tycon’s type arguments must all have sort type.

The command may be invoked on the same type constructor only once; otherwise
an error occurs. After the command has been invoked on tycon, its constructors
and the case combinator must not change any more. Moreover, no custom serialisa-
tion with code-printing may be used for the type and its primitive operations.6

The commands activate-lazy-type and deactivate-lazy-type activate or
deactivate the laziness of the given type constructor in the generated code;
code-lazy-type must previously have been called on the type constructor. After
deactivation, the code generator uses the eager constructors again and the code
equations are no longer transformed. The commands activate-lazy-types and
deactivate-lazy-types do the same, but for all type constructors on which
code-lazy-type has been called. All lazy types should be deactivated, e.g., when
generating code to a lazy language like Haskell or when the conversion fails for
debugging.

The command print-lazy-types prints a list of all lazy types with their lazy
constructors and the lazy case combinator and whether they are currently active.
For example, if lazy lists and streams have been registered as lazy, but only lazy
lists are active, the output looks as follows:

llist : ′a llist = Lazy-llist (unlazy-llist : ′a llist-lazy lazy)
and ′a llist-lazy = LNil-Lazy | LCons-Lazy ′a ′a llist
for case: case-llist-lazy

stream (inactive): ′a stream = Lazy-stream (unlazy-stream: ′a stream-lazy lazy)
and ′a stream-lazy = SCons-Lazy ′a ′a stream
for case: case-stream-lazy

3.2 Examples

We have already presented some running examples with lazy lists. We now switch
to binary trees as they demonstrate the effects of sharing more clearly. To keep
things simple, we use unlabelled binary trees of possibly infinite depth:

codatatype tree = L | Node tree tree (infix 4 900 )
code-lazy-type tree

and define three functions on them:

– subtree p t descends to t ’s subtree at position p,
– mk-tree n constructs a balanced tree of the given depth, and
– inftree denotes the complete infinite binary tree.

6 Isabelle’s list type cannot thus be made lazy as it is mapped to target-language lists.
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function subtree :: 〈bool list ⇒ tree ⇒ tree〉 where
〈subtree [] t = t〉
| 〈subtree (True # p) (l 4 r) = subtree p l 〉
| 〈subtree (False # p) (l 4 r) = subtree p r 〉

| 〈subtree - L = L〉

fun mk-tree :: 〈nat ⇒ tree〉 where
〈mk-tree 0 = L〉

| 〈mk-tree (Suc n) = (let t = mk-tree n in t 4 t)〉

primcorec inftree :: tree where 〈inftree = inftree 4 inftree〉

Importantly, the function definitions use the constructors from the codatatype
definition, even though we have registered tree as a lazy type. This way, all
the existing reasoning support can be used for proofs about these functions.
Nevertheless, the tree will be lazy when we execute the functions—thanks to the
on-the-fly transformation of the code equations.

For example, value [code] 〈mk-tree 10 〉 just outputs -. Next, we bind the tree
to variable t and descend into t using subtree:

value [code] 〈let t = mk-tree 10 ; - = subtree [True, False, True] t in t〉

The evaluated expression is provably equal to mk-tree 10 in HOL, but lazy
evaluation in Standard ML now yields

((- 4 -) 4 (- 4 -)) 4 ((- 4 -) 4 (- 4 -)) (5)

which is quite different from -. Although the result of the subtree function is
discarded, the subtree function is evaluated nevertheless and—thanks to the
sharing in the lazy type—this evaluation is preserved when the HOL term for t
is reconstructed.

But wait! The evaluation result seems to indicate that subtree has evaluated
the tree t completely to depth 3 instead of just along the one path. Shouldn’t
the result rather be the following?

(- 4 (- 4 -)) 4 - (6)

The answer to this puzzle is again sharing. In mk-tree’s definition, the recursive
call is let-bound to t. The two children of every node in a tree created by mk-tree
are therefore shared, and evaluation of one child thus implicitly propagates to
the other child. If we eliminate the sharing, e.g., with the following code equation

mk-tree (Suc n) = mk-tree n 4 mk-tree n (7)

then we get the expected output (6). These examples demonstrate that users
should consider the computational consequences of their definitions—or of their
code equations.

Apart from these sharing complications, CodeLazy makes it possible to use
common idioms from lazy languages, in particular data-driven programming. For
example, lzip (up 0 ) xs pairs all elements in the lazy list xs with their index.
Similarly, a popular implementation of Eratosthenes’s sieve is also executable:
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sieve [] = [] sieve (x · xs) = x · sieve (lfilter (λy . ¬ x dvd y) xs)

primes = sieve (up 2 )

value [code] 〈ltake 10 primes〉

where lfilter is the filter function on lazy lists [3, 10] with the code equations

lfilter P [] = []
lfilter P (x · xs) = (if P x then x · lfilter P xs else lfilter P xs)

and ltake n xs puts the first n elements of xs into a non-lazy list.

3.3 Limitations

We now turn to CodeLazy’s limitations, both conceptually and implementation-
wise. In the worst case, unaware users may run into errors at code generation
time or find out that the generated code evaluates more than they had expected.
But these limitations can never result in wrong output results because the
transformations are proven correct within Isabelle.

On the conceptual level, it is crucial to understand that CodeLazy only
introduces lazy types, not lazy functions. For the target languages Standard ML,
OCaml and Scala, the evaluation behaviour for function calls remains call-by-
value. So expressions in argument positions are evaluated before the function call.
What CodeLazy changes is that the argument evaluation stops at the first lazy
constructor. Consequently, the transformed code equations may evaluate more in
the eager language than the original code equations would have evaluated in a
lazy language. For example, the function mk-tree from the previous section has a
recursive call that is not syntactically guarded by a constructor. Hence, when
we call mk-tree 10, all ten recursive calls execute immediately and allocate ten
lazy values in memory. This can be observed by tracing the evaluation with the
following code equation:

mk-tree (Suc n) = (let - = Debug .flush n; t = mk-tree n in t 4 t)

where Debug.flush from theory HOL-Library.Debug outputs the given value on the
tracing channel. Then value [code] 〈mk-tree 10 〉 shows ten tracing values, counting
down from nine to zero. Conversely, the recursive call in (7) is syntactically
guarded by 4. If we add tracing to this equation, we only get one tracing value
for nine as expected.

In general, lazy types work well if all (co)recursive calls are syntactically
guarded by a constructor. The primcorec command [4] requires such a guarding
constructor—except that it automatically unfolds lets, which makes its syntactic
check slightly too weak for lazy types. We nevertheless conjecture that most
corecursive definitions in practice syntactically guard the corecursive calls. Non-
primitively corecursive definitions with corec [3] may contain unguarded calls
(e.g., the lfilter function). These functions may therefore evaluate more than
intended. For example, evalutating lhd (lfilter even [1 , 2 , 3 , hd [], 4]) raises
an exception because the force in lhd triggers the evaluation of the tail of the
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lfilter -ed list and lfilter ’s code equation has an unguarded call that forces the
evaluation of hd [].

Another limitation of our approach is that for pattern matching, only construc-
tors registered with free-constructors may appear inside an eager constructor
of a lazy type. For example, the patterns [L], x 4 (L 4 y), and Suc n · xs are
all fine. Yet, code equations may contain patterns that violate this rule, e.g., the
pattern [set []] for matching on a singleton lazy list that contains the empty set
(expressed with the non-free code constructor set). If such a pattern occurs on
the left of a code equation, the transformation of the code equations will fail
with an error. In practice, we have yet not encountered such a pattern, so this is
a theoretical limitation for the moment.

On the implementation level, sharing may get lost when the pattern matches
are eliminated and when the code is generated. For example, the algorithm
eliminates foo’s pattern matches as shown below.

fun foo :: 〈 ′a llist ⇒ tree ⇒ ′a llist〉 where
〈foo xs L = xs〉

| 〈foo [] (l 4 r) = []〉

| 〈foo (x · xs) (l 4 r) = xs〉

foo xs t =
case xs of [] ⇒ case t of L ⇒ [] | - ⇒ [] | x · xs ′⇒ case t of L ⇒ x · xs ′ | l 4 r ⇒ xs ′

For xs = x · xs ′ and t = L, not the list xs as in the original code equation is
returned, but it is reconstructed from the head x and the tail xs ′. So ys = foo xs
L and xs are not shared any more, only their tails are. Such a difference might be
observable in run-time and memory consumption. We believe that our algorithm
could in principle be adapted to prevent such sharing loss. This is left as future
work.

Sharing is also lost when the code generator introduces unit closures for
top-level bindings. For inftree, e.g., it generates the Standard ML code

fun inftree () =
Lazy_tree (Lazy.lazy (fn _ => Node_Lazy (inftree (), inftree ())));

val inftree = inftree ();

Consequently, we cannot observe the sharing when descending into inftree as we
did with mk-tree in (5).

Apart from code generation, two more evaluators use the code equations:
normalisation by evaluation and term rewriting. For term rewriting, lazy types
work similarly to what we have described here, although the evaluation order
may be slightly different. Normalisation by evaluation does not offer any control
over the evaluation order and is therefore unsupported.

4 Related Work

Letouzey [8] has implemented a similar transformation for coinductive data types
in Coq’s OCaml code generator. His transformation is simpler than ours because
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Coq ensures syntactic guardedness and patterns have already been converted
into case combinators. Despite guardedness in Coq, he too observed the problem
of unnecessary function argument evaluations as discussed in §3.3 and suggest to
manually add delays and forces to the generated code. In comparison, CodeLazy
is superior in two respects: First, Letouzey’s transformation, which is run upon
every code generation, is not verified and therefore part of the trusted code base.
In contrast, we only trust the code adaptation for the lazy types, which can be
inspected once and for all. Second, Letouzey’s transformation has only been imple-
mented for codatatypes whereas CodeLazy can be used for any algebraic type.

Lochbihler and Maximova [11] have developed a stream fusion library in
Isabelle for inductive and coinductive lists. Stream fusion may introduce laziness
as a side effect. Stream fusion could handle the example from the introduction
where the producer up and the consumer ! are next to each other in a single
code equation, but it does not work in general. Moreover, users must write their
functions in a fusable form or manually prove an appropriate characterisation. In
contrast, CodeLazy requires only a single code-lazy-type command and the
rest is automated.

Converting pattern-matches into case combinators has a long history in
HOL-based provers. Slind’s TFL package [15] converts pattern matches into a
decision tree of case combinators. Isabelle’s recdef package implements a similar
algorithm. Noschinski’s converter case-of-simps combines a set of pattern-
matching equations into one with case combinators on the right. All these
implementations assume that the patterns do not overlap and they eliminate all
patterns. Our pattern elimination algorithm is more flexible: (i) It is possible to
eliminate only some patterns instead of all. This makes it possible to handle non-
algebraic pattern matches in unaffected positions. (ii) It can handle overlapping
and missing patterns, using the order of equations for disambiguation.

Overlapping and missing patterns are also handled by a number of algorithms
that compile pattern matches to decision trees [1, 12–14]. All these algorithms
eliminate all pattern matches. So none of them were directly applicable to our
problem.

Tuerk et al. [18] suggested a new encoding for pattern matches in the HOL4
prover that avoids the exponential blow-up of decision trees, from which our
algorithm also suffers. It would be interesting to port this representation to
Isabelle/HOL and integrate it with Isabelle’s code generator. Then, our algorithm
for eliminating pattern matches could be much simpler.

5 Conclusion

CodeLazy brings lazy evaluation to algebraic types in Isabelle/HOL by adding
suspensions to their code representation and forcing to the functions’ code
equations. These transformations preserve the partial correctness guarantee of
the code generator as Isabelle’s kernel checks them. This is possible as HOL does
not specify the evaluation order. Making a type lazy does not affect its logical
representation and is thus transparent to user definitions, theorems, and proofs.
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Adding the forcing often requires to eliminate pattern matching from a set
of equations. Our algorithm handles overlapping and missing patterns and can
eliminate some patterns while leaving others. Isabelle’s other pattern-matching
elimination algorithms lack these features and this lack has caused problems [7,17].
It should not be too hard to replace the algorithm in Code_Target_Nat that
eliminates pattern matches on nats and the algorithm behind case-of-simps
from Simps_Case_Conv.
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