
A Verified SAT Solver with Watched Literals
Using Imperative HOL (Extended Abstract)

Mathias Fleury1 and Jasmin Christian Blanchette2,1 and Peter Lammich3,4

1 Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrücken,
Germany

{mathias.fleury,jasmin.blanchette}@mpi-inf.mpg.de
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

j.c.blanchette@vu.nl
3 Technische Universität München, Munich, Germany

lammich@in.tum.de
4 Virginia Tech, Blacksburg, Virginia, USA

lpeter1@vt.edu

Abstract. Based on our earlier formalization of conflict-driven clause
learning (CDCL) in Isabelle/HOL, we refine the CDCL calculus to add a
crucial optimization: two watched literals. We formalize the data structure
and the invariants. Then we refine the calculus to obtain an executable
SAT solver. Through a chain of refinements carried out using the Isabelle
Refinement Framework, we target Imperative HOL and extract imperative
Standard ML code. Although our solver is not competitive with the state
of the art, it offers acceptable performance for some applications, and
heuristics can be added to improve it further.

SAT solvers are programs that decide the Boolean satisfiability problem.
Other NP-complete problems are often reduced to SAT, to exploit efficient SAT
solvers. For example, the CeTA (non)termination and (non)confluence checker [19],
which is formalized in Isabelle/HOL, includes a naive SAT solver based on a
disjunctive normal form transformation. Using a verified SAT solver that is
reasonably efficient could greatly improve the checker’s performance.

We recently formalized an abstract calculus for conflict-driven clause learning
(CDCL) in Isabelle/HOL [4], following Nieuwenhuis, Oliveras, and Tinelli [15].
CDCL is the core of most modern SAT solvers. It generalizes the Davis–Putnam–
Logemann–Loveland (DPLL) procedure [7] with clause learning and nonchrono-
logical backjumping. We also formalized a CDCL variant due to Weidenbach,
described in a paper [20] and in an unpublished book draft, that explores first
unique implication points [3, Chapter 3] to learn clauses.

In this paper, we connect the formalized metatheory of CDCL with the code
of an imperative SAT solver that implements several key optimizations found in
modern CDCL-based solvers. We start by extending Weidenbach’s backjumping
rule to minimize conflict clauses [18].

A crucial optimization in modern SAT solvers is the two-watched-literal [14]
data structure. It allows for efficient unit propagation and conflict detection—
the core CDCL operations. We introduce an abstract transition system, called



TWL, that captures the essence of a SAT solver with this optimization as a
nondeterministic transition system. Weidenbach’s book draft only presents the
main invariant, without a precise description of the optimization. We enrich the
invariant based on MiniSat’s [8] source code and prove that it is maintained by
all transitions.

To get an executable program that can be incorporated into CeTA, we refine
the TWL calculus in several correctness-preserving steps. The stepwise refinement
methodology enables us to inherit invariants, correctness, and termination from
previous refinement steps. The first refinement step implements the rules of the
calculus in a more algorithmic fashion, using the nondeterministic programming
language provided by the Isabelle Refinement Framework [11]. The next step
refines the data structure: Multisets are replaced by lists, and clauses justifying
propagations are represented by indices into a list of clauses. A key ingredient for
an efficient implementation of watched literals is a data structure called watch
lists. These index the clauses by their two watched literals—literals that can
influence their clauses’ truth value in the solver’s current state. Watch lists are
introduced in a separate refinement step.

Next, we use the Sepref tool [12] to synthesize imperative code for a func-
tional program, together with a refinement proof. Sepref replaces the abstract
functional data structures by concrete imperative implementations, while leaving
the algorithmic structure of the program unchanged. Isabelle’s code generator
can then be used to extract a self-contained SAT solver in imperative Standard
ML. Finally, to obtain reasonably efficient code, we need to implement further
optimizations and heuristics. In particular, the literal selection heuristic is crucial.
We use variable move to front [2] with phase saving [17].

To measure the gap between our solver, IsaSAT, and the state of the art,
we compare IsaSAT’s performance with four other solvers: the leading solver
Glucose [1]; the well-known MiniSat [8]; and the most efficient verified solver
we know of, versat [16]. Although our solver is competitive with versat, the
results are sobering. They confirm the view that the generation of and checking
of unsatisfiability certificates is the superior approach to combine efficiency and
trustworthiness [5,6,13]. Compared with other verified SAT solvers, the hallmark
of our solver is its modularity. New heuristics can be incorporated, and further re-
finement steps can be performed if desired. Furthermore, our solver is guaranteed
to terminate.

Much of the scientific value of formalization is that it constitutes a case study
in the use of a proof assistant. We depend heavily on Isabelle’s Refinement Frame-
work. We especially benefit from its ability to align program steps, allowing us to
focus on the changes between subsequent programs in the refinement chain. The
Sepref tool simplifies the last refinement step by generating imperative code and
a corresponding refinement theorem. It makes it easy to change data structures.
The refinement approach encourages a clean separation of concerns; for example,
termination can be proved at the abstract, calculus level, and optimizations can
be considered in isolation. Although IsaSAT is not as efficient as the state of



the art, our work suggests that refinement could be applied further to derive
competitive SAT solvers.

Our formalization is available online as part of the Isabelle Formalization of
Logic (IsaFoL) repository [9]. The contributions of this paper correspond to the
theory files with names matching the patterns Watched_Literals_*.thy and
IsaSAT*.thy. They amount to about 31 000 lines of Isabelle text.

This extended abstract is based on our CPP paper [10] which is available
online.5
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