
Anti-Unification and Natural Language Processing∗

Nino Amiridze and Temur Kutsia

RISC, Johannes Kepler University Linz, Austria

Abstract

Anti-unification is a well-known method to compute generalizations in logic. Given two
objects, the goal of anti-unification is to reflect commonalities between these objects in the
computed generalizations, and highlight differences between them.

Anti-unification appears to be useful for various tasks in natural language processing.
Semantic classification of sentences based on their syntactic parse trees, grounded language
learning, semantic text similarity, insight grammar learning, metaphor modeling: This is
an incomplete list of topics where generalization computation has been used in one form or
another. The major anti-unification technique in these applications is the original method
for first-order terms over fixed arity alphabets, introduced by Plotkin and Reynolds in
1970s, and some of its adaptations.

The goal of this paper is to give a brief overview about existing linguistic applications
of anti-unification, discuss a couple of powerful and flexible generalization computation
algorithms developed recently, and argue about their potential use in natural language
processing tasks.

1 Introduction

In this paper we discuss a formal tool coming from logic (anti-unification), which has been
used in various natural language processing tasks. Our motivation is to introduce novel anti-
unification techniques to natural language researchers, presenting the corresponding algorithms
and some illustrative examples. We hope that these techniques can have helpful applications in
linguistics-related areas, and experts can find more elaborated use to them than we envisaged.

Anti-unification aims at computing generalizations of the given objects. Generalization
computation is a pretty common task in learning, where one would like to extract common
features from the given concrete examples. In logic, the problem often is formulated for two
terms: Given s and t, the problem is to compute their generalization, a term r such that s and t
can be obtained from r by some variable substitutions. The interesting generalization are those,
which retain maximal similarities between s and t, and abstract over their differences by fresh
variables in a uniform way. Such generalizations are called the least general generalizations
(lggs). For instance, the terms f(a, g(a) and f(b, g(b) have several generalizations: x, f(x, y),
f(x, g(y)), and f(x, g(x)), but the lgg is one: f(x, g(x)). It indicates that the original terms
have in common the main binary function symbol f and the unary function symbol g in the
second argument, and that the first argument of f and the argument of g are the same.

Anti-unification has been introduced in 1970s in two papers, published in the same vol-
ume of Machine Intelligence, by Plotkin [25] and Reynolds [26]. The algorithms have been
formulated for first-order terms over a fixed arity (ranked) alphabet, and they compute the
least general generalization for input terms. The original motivation was the application in
inductive reasoning, and later the technique (extended to richer theories) has been used in the
areas such as inductive logic programming, machine learning, analogical reasoning, software
code close detection, program analysis, proof generalization, learning custom gestures, etc. The
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name anti-unification indicates that the process is dual to unification [27], which computes most
general common instance of terms.

Semantic parsing is a natural language processing task where anti-unification has been used
in the past. The system Wolfie [32] applies Plotkin’s clause anti-unification in the step of
computing an initial set of candidate meanings for each possible phrase. In the Cocktail
system [31], two inductive logic programming approaches have been combined for the task of
learning semantic parsers. Also here, Plotkin’s anti-unification is used. More modern methods
of semantic parsing are based on statistical approaches.

There are other works related to natural language processing, which use some form of
generalization computation. One such instance is the construction of information extraction
systems, which are supposed to obtain information about certain items from natural language
documents. It is a shallow text processing problem. Building a system that would solve it
is a laborious task. Machine learning has been seen as a possible means to address this diffi-
culty. The Rapier system [10] uses machine learning (inductive logic programming) methods
to learn rules that can be used for information extraction. In the learning process, it needs to
compute generalizations of rules and also of word senses (taken from WordNet). For this, it
uses an algorithm of computing least general generalizations, which is a bit more elaborated
than the one used in induction logic programming. For instance, for word sense generalization
one needs to take into account the semantic hierarchy. In general, inductive logic programming
methods, where anti-unification for least general generalization computation is a core mecha-
nism, has been intensively used in natural language processing for tasks which involve learning,
for instance, learning grammars, an is, e.g., [24, 28, 35]. A different kind of grammar learning
method, insight grammar learning, also makes use of anti-unification [29, 30]. The relation of
these works with the focus of this paper is a bit remote and we do not elaborate on their details
here. However, we would like to discuss a special form grounded language learning, which has
been introduced recently.

Grounded language learning is an established research topic in computational linguistics.
It is related to semantic parsing, mentioned above. According to [7, 8], the problem can be
formulated as follows: Input consists of example sentences and a context, and the goal is to learn
a mapping between n-grams (sequences of n words) and meanings, where meaning stands for
whatever is in common among all the contexts in which that n-gram can be used. Both context
and meaning are specified in first-order logic. In the process of learning the meaning of n-grams,
their generalizations are computed with the help of Plotkin’s anti-unification algorithm.

The above mentioned applications can be largely classified as grammatical inference prob-
lems for natural language.

Feature structures [11] (or their equivalent expressions, ψ-terms [1]) are a formalism on
which unification grammars [12] are based. In [12], the authors say that they are not aware
of proposals to use generalization of feature structures for linguistic applications except of two
works on coordination phenomena and grammar learning.

In [13–15], a method to automatically infer semantic features from syntax is proposed. Anti-
unification over syntactic parse trees is used to compute similarities between them, which then
can help to classify sentences as being informative and can serve as recommendations. We will
speak more about this work later.

Motivated by using syntactic generalization for finding similarities in texts, anti-unification
has been included in a multi-layer system for semantic textual similarity [33], as a tool to extract
the syntactic structure information from texts.

In [17,18], the authors propose an approach to model and formally analyze natural language
metaphoric expressions, which is a quite hard problem. The approach uses the technique called



heuristic-driven theory projection [16]. It is a generalization of classical anti-unification by
permitting formulas as inputs with the corresponding equational/equivalence theories, and it
is guided by heuristics.

In this paper, we first recall the original anti-unification algorithm, then consider some
of its adaptations/generalizations and their applications. After that, we discuss more recent
algorithms, obtained from their classical first-order counterparts by relaxing the fixed arity
restriction and permitting second order variables, and show advantages of their use for natural
language processing tasks.

2 First-Order Ranked Anti-Unification

First-order ranked alphabet consists of the disjoint sets of variables and function symbols, where
each function symbol has a fixed arity (rank). Terms are defined in the usual way, by grammar
t ∶∶= x ∣ f(t1, . . . , tn), where x is a variable and f is an n-ary function symbol. The letters x, y, z
are used for variables and s, t, r for terms.

Substitutions are mappings from variables to terms, where all but finitely many variables are
mapped to themselves. They are denoted by lower case Greek letters and are usually written
in the form of finite sets, e.g., the substitution σ can be represented as {x ↦ σ(x) ∣ x ≠ σ(x)}.
For a substitution σ and a term t, application of σ on t, written tσ, is defined as follows: If t
is a variable x, then tσ = σ(t); If t is a compound term f(t1, . . . , tn), then tσ = f(t1σ, . . . , tnσ).

A term s is more general than t if there exists a substitution σ such that sσ = t. We write
s ⪯ t to denote this fact. The term t is called an instance of s. For instance, f(x, g(x, y)) ⪯
f(b, g(b, h(a))), because f(x, g(x, y)σ = f(b, g(b, h(a))) for σ = {x↦ a, y ↦ h(a)}. On the other
hand, f(x,x) /⪯ f(a, b), because no substitution can map x at the same time to both a and b.

The relation ⪯ is quasi-ordering. It generates an equivalence relation, denoted by ≃. The
strict part of ⪯ is denoted by ≺.

A term s is a generalization of t1 and t2 if s ⪯ t1 and s ⪯ t2. It is a least general generalization
(lgg) if s /⪯ r for any generalization r of t1 and t2. For first-order ranked terms, lggs are unique
modulo variable renaming. The terms f(a, h(a)) and f(b, h(b)) have generalizations (up to
variable renaming) x, f(x, y), f(x,h(y)), and f(x,h(x)), but only the last one is the lgg.

To compute least general generalizations, one can use, for instance, Plotkin’s algorithm
from [25]. Reynolds’ algorithm [26] is essentially the same. Later, Huet [19] formulated a
simpler algorithm for the same problem in terms of recursive equations: Assuming that φ is a
given bijection from a pair of terms to variables, he defined a function AU, which maps pairs
of terms to terms:

• AU(f(t1, . . . , tn), f(s1, . . . , sn)) = f(AU(t1, s1), . . . ,AU(tn, sn)), for any f .

• AU(t, s) = φ(t, s) otherwise.

Huet’s algorithm was analyzed in detail in [23].A modification of syntactic anti-unification
for a finite set of terms was considered in [3], proposing to generalize the given set of terms not
necessarily with a single term, but with several of them, to reduce overgeneralization. Each
computed term generalizes some subset of the input. The bound on the number of terms in the
generalization is a part of the problem.

Plotkin in [25] also proposed an anti-unification algorithm for clauses, which are disjunctions
(or sets) of atomic formulas or their negations. The notion of generalization there differs from
the same notion for terms: a clause C is more general than a clause D (written C ⪯ D) iff
there exists a substitution ϑ such that Cϑ ⊆ D (in words, C ϑ-subsumes D). For instance,



{¬q(x, y),¬q(y, x), p(x)} ⪯ {¬q(x,x), p(x)}, which can be seen easily, taking ϑ = {y ↦ x}. Lgg
for clauses is unique modulo ⪯ and equivalence generated by subsumption.

In the presence of equational axioms, there is no single lgg, in general. For instance, if
f is associative with unit element, then the terms f(f(a, b), f(b, c)) and f(a, f(b, c)) have
two minimal generalizations: f(f(a, b), f(x, c)) and f(f(a, x), f(b, c)). Even more, for some
theories and terms there can be infinitely many incomparable generalizations.

Another kind of knowledge can be a certain type hierarchy or taxonomy among notions
function symbols stand for. For instance, such a taxonomy might tell us that a square is a
quadrilateral, which is a polygon. A triangle also is a polygon. Then one would general-
ize position(square, p1) and position(triangle, p2) into position(polygon, x). Without the extra
knowledge about polygons, the lgg would be just position(y, x).

When it comes to applications in natural language processing, first-order ranked anti-
unification and anti-unification for clauses are probably the most frequently used techniques of
this kind. A concept taxonomy might be also available, when generalization affects semantic
structures.

Anti-unification in inferring semantic properties from syntactic parse trees. A re-
cent work on an interesting use of anti-unification in a linguistics-related application is reported
in [15]. The authors try to obtain semantic properties, unobservable on the level of keywords,
from syntactic parse trees with the help of generalization. The semantic properties they are
interested in require a deep natural language understanding. Hence, instead of shallow parsing,
they are interested in obtaining a rich linguistic data structure, such as syntactic parse trees.
They also illustrate that for their problems, these structures, as a subject of learning, perform
better than keyword-based approaches. The primary motivation of their work is the automa-
tion of content management and a delivery platform, to support recommendation forums for a
wide variety of products and services. Users as well as automated agents answer questions and
provide recommendations based on previous postings by human users. Therefore, finding simi-
larities between various types of texts is required. The use of more rich structures to represent
texts’ meanings is justified by the fact that it indeed helps to assess similarities and relevance
more accurately in practice, as the reported results illustrate. The practical problems addressed
in the paper include detecting expressions suitable for automatic ad generation, classifying user
postings with respect to how well she understands what product she needs, and classifying
search results with respect to their relevance to queries.

The process of generalization computation described in [15] consists of several steps, in-
cluding pre-processing and post-processing. The actual anti-unification is done only on the
processed trees. The authors describe these steps for two sentences as follows:

1. Obtain the parsing tree for each sentence. For each word (tree node), we have a lemma,
a part of speech and the form of the word’s information. This information is contained
in the node label. We also have an arc to the other node.

2. Split sentences into sub-trees that are phrases for each type: verb, noun, prepositional
and other types. These sub-trees are overlapping. The sub-trees are coded so that the
information about their occurrence in the full tree is retained.

3. All the sub-trees are grouped by phrase types.

4. Extend the list of phrases by adding equivalence transformations.

5. Generalize each pair of sub-trees for both sentences for each phrase type.



6. For each pair of sub-trees, yield an alignment, and generalize each node for this alignment.
Calculate the score for the obtained set of trees (generalization results).

7. For each pair of sub-trees of phrases, select the set of generalizations with the highest
score (the least general).

8. Form the sets of generalizations for each phrase type whose elements are the sets of
generalizations for that type.

9. Filter the list of generalization results: for the list of generalizations for each phrase type,
exclude more general elements from the lists of generalization for a given pair of phrases.

Equivalence transformations are performed with the help of predefined rules. For instance,
such a rule might convert “camera with digital zoom” into “digital zoom camera”. Depending
how the word sub-trees are paired, multiple generalizations may be obtained. From those, one
may select the interesting ones (or the best one) based on some heuristics, for instance, the parts
of speech may be assigned different weights and the generalization with the highest weight is
selected. In [15], an example of such a weight assignment is presented, giving to nouns highest
weight and to prepositional phrases the lowest, treating common and frequent verbs inferior
than less common ones, etc. Generalization scores are computed based on the weights. The
same process applies not only to sentences, but to phrases and paragraphs as well.

We take from [15] a simplified example, which can illustrate how the method described in
that paper works for sentences. Assume the following three sentences are given:

S1. I am curious how to use the digital zoom of this camera for filming insects.

S2. How can I get short focus zoom lens for digital camera?

S3. Can I get auto focus lens for digital camera?

The parse trees of the second and the third examples are pretty similar and their gener-
alization, written as a list, is {MD-can, PRP-I, VB-get, NN-focus, NN-lens, IN-for JJ-digital
NN-camera}. For the first and second sentences they are quite different. Therefore, they are
split into chunks of phrases. Examples of chunks for the first sentence are (SBAR-how to use the
digital zoom of this camera for filming insects), (NP-the digital zoom of this camera), (NP-the
digital zoom), (DT-the), etc. There are in total 29 such phrase chunks for the first sentence
and 19 for the second. Afterwards, for each sentence, these phrases are grouped so that phrases
of one type (NP, PP, VP, etc) are placed in one group. After that, one takes a phrase from one
group, say, from NP, in the first sentence, another phrase from the same group from another
sentence, and tries to generalize them, provided that certain integrity constraints are satisfied.
This process is repeated for all phrase-pairs, aiming to establish correspondences between as
many words as possible. The result can be several generalizations, returning meanings, which
are common to the sentences. In our example, for sentences S1 and S2, there are six such gen-
eralizations. Two of them are quite interesting: [JJ-digital NN-camera] (the sentences have a
common concept “digital camera”) and [VBP-* ADJP-* NN-zoom NN-camera] (a verb phrase
talking about “some-kind-of zoom camera”).

The authors of [15] discuss further interesting themes, e.g., how to get logical forms from
generalizations, generalization-based search, evaluations, etc., but they go beyond the scope of
our discussion.



Anti-unification in grounded language learning. In [7], the authors propose a method
of learning the meaning of phrases from phrase/context pairs in which the phrase’s meaning is
not explicitly represented. They aim at modeling the way how children learn language. Often,
learning from a physical context means to find a correspondence between the phrase elements
and observed things. The phrases are assumed to be linked to the context, but it is not required
that all context elements are mentioned in phrases.

Contexts and meanings are represented as first-order logic expressions, and an incremental
learning algorithm is presented. A phrase is represented as a sequence of words, and a context as
a set of ground facts (ground atomic formulas). For instance, a context in which a big red square
is to the left of a small green triangle is represented as {object(o1), shape(o1, sq), color(o1, rd),
size(o1, bg), object(o2), shape(o2, tr), color(o2, gr), size(o2, sm), relative-position(o1, lo, o2)}.
To define the meaning of a sentence, phrase or word, the authors propose a pragmatic solu-
tion: the meaning of an n-gram is “whatever is common among all contexts where the n-gram
can be used”. This “common” knowledge is formalized with the help of least general gener-
alizations with respect to ϑ-subsumption. For instance, for two contexts {obj(o1), clr(o1,re),
shp(o1,sq), obj(o2), clr(o2,gr), shp(o2,tr), relpos(o1,lo,o2)} and {obj(o3), clr(o3,gr), shp(o3,tr),
obj(o4), clr(o4,re), shp(o4,tr), relpos(o3,lo,o4)}, their lgg, the most specific common pattern
of both contexts, is {obj(B), clr(B,re), shp(B,D), obj(E), clr(E,gr), shp(E,tr), obj(A), clr(A,C),
shp(A,D), relpos(A,lo,F), obj(F), clr(F,G), shp(F,tr)}, where the capital letters are variables. It
states that there are red and green objects (the objects B and E, respectively), E is a triangle,
and there is an object A to the left of triangle F. It does not imply that these objects are
necessarily distinct.

The meaning of an n-gram is the most specific common pattern of all the contexts where
it can be used. There is a simple algorithm that incrementally learns the meaning of specific
n-grams: whenever a new example (context/phrase pair) (C,P ) appears, update the meaning
of each n-gram G in P with respect to C, i.e., use the procedure Update(G,C). The latter can
be defined as

Update(G,C) ∶
if Meaning(G) is undefined then Meaning(G) ∶= C else Meaning(G) ∶= lgg(C,Meaning(G))

In fact, the learning algorithm from the paper is more involved and takes into account how
the meaning of an n-gram depends of the meanings of k-grams for k < n, but the main idea
and the use of generalization is sufficiently demonstrated by the algorithm above, which we
borrowed from [9]. It has been shown that the system, which is based on the implementation of
the algorithm from [15], learns to understand and generate simple natural language utterances
using only the context/utterance pairs, without taking candidate meanings as input. The latter
are constructed by the system itself. Learning from more complex contexts (which may include
actions) and learning more complex languages are mentioned among topics for further research.

3 First- and Second-Order Unranked Anti-Unification

In many applications, arity of function symbols is not fixed. XML documents, hedge automata,
and the programming language of Mathematica [34] are prominent examples. Alphabets, where
symbols do not have fixed arity, are called unranked, variadic, flexary, or polyadic. We use here
the term “unranked”. It is interesting to notice that parse trees can be also seen as expressions
over an unranked alphabet. For instance, in Fig. 1 one can see that the nodes labeled with NP
have one, two, three, and four children at different places. It indicates that if we consider NP
as a function symbol used in the construction of parse trees, it should be unranked.



Figure 1: Parse trees of the sentences “How can I get short focus zoom lens for digital camera”
and “Can I get auto focus lens for digital camera” (obtained from http://corenlp.run/)

In unranked first-order languages function symbols do not have fixed arity.1 there are also
hedge variables, which stand for finite, possibly empty sequences of terms. Such sequences are
called hedges. In anti-unification for such languages (see, e.g., [22]), they help to deal with

1Often there is also a set of ranked function symbols, see, e.g., [20, 21], but for simplicity here we assume
only the unranked ones.

http://corenlp.run/


position mismatches for similar argument pairs in terms to be generalized.
Sometimes the expressive power of first-order languages is not enough and one would like to

bring in higher-order variables. In the context of generalization computation (see [6]), it gives
a capability to detect similarities at different levels in terms. We use a special kind of second-
order variables, called context variables. Contexts that we consider here are not the same as
contexts in grounded language learning. Our contexts are hedges with a single occurrence of
the distinguished symbol “hole”. They are functions which can apply to another context or to
a hedge, which are then “plugged” in the place of the hole. Unless otherwise stated, in the rest
of the paper the word “context” is used in this sense. Hence, permitting the use of context
variables helps to abstract vertical differences between trees, while hedge variables will be used
to abstract horizontal differences.

More formally, following [6], we consider pairwise disjoint countable sets of unranked function
symbols F , hedge variables VH, unranked context variables VC, and a special symbol ○ (the hole),
and define terms, hedges, and contexts by the following grammar:

t ∶= X ∣ f(s̃) ∣X(s̃) (terms)
s̃ ∶= t1, . . . , tn (hedges)

c̃ ∶= s̃1, ○, s̃2 ∣ s̃1, f(c̃), s̃2 ∣ s̃1,X(c̃), s̃2 (contexts)

where x ∈ VH, f ∈ F , X ∈ VC, and n ≥ 0. (For keeping things simple, we do not consider here the
standard variables which stand for single terms. If necessary, they can be brought in without
any complications.)

Hedges are finite sequences of terms, constructed over F and VH ∪ VC. A term can be seen
as a singleton hedge. A context can be seen as a hedge over F ∪ {○} and VH ∪ VC, where the
hole occurs exactly once. To improve readability, we put non-singleton hedges and contexts
between parenthesis. The letters X,Y,Z denote hedge variables and X,Y ,Z context variables.
The empty hedge is denoted by ε. Terms of the form a(ε) are written as just a.

A context c̃ can apply to a hedge s̃, denoted by c̃[s̃], obtaining a hedge by replacing the
hole in c̃ with s̃. Application of a context to a context is defined similarly.

Examples of a term, hedge, and a context are, resp., f(f(a), b), (X,X(a,X), f(f(a), b)),
and (X,X(a,X), f(f(○), b)). The latter can be applied to a hedge (a,X(a)), resulting in
(X,X(a,X), f(f(○), b))[a,X(a)] = (X,X(a,X), f(f(a,X(a)), b)).

A substitution is a mapping from hedge variables to hedges and from context variables to
contexts, which is identity almost everywhere. When substituting a context variable X by a
context, the context will be applied to the argument hedge of X.

The notions of more general term / substitution, instance, generalization, least general
generalization are extended from terms to hedges and contexts straightforwardly.

The second-order unranked anti-unification algorithm described in [6] first constructs a
“skeleton” of a generalization of the input hedges, which corresponds to a hedge embedded into
each of the input hedges. Next, it inserts context and/or hedge variables into the skeleton,
which are supposed to uniformly generalize (vertical and horizontal) differences between input
hedges, to obtain an lgg (with respect to the given skeleton). The skeleton computation function
is the parameter of the algorithm and the soundness and completeness properties of the anti-
unification algorithm do not depend on the particular instantiations of this parameter.

The skeleton computation function offers quite some flexibility in unranked anti-unification.
With its help, one can effectively control the computed set of generalizations, which is very
handy in linguistic applications like considered above. For instance, choosing common nodes
based on predefined priorities (as required in [15]) can be a part of skeleton computation. To
give priority to words over parts of speech (POS) can be implemented by requiring to maximize
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Figure 2: Generalization of hedges (h(a), f(h(g(a, b, b), c), b, b)) and (a, f(g(a, d), c, d)). The
highlighted skeleton is the longest common subforest [2] of the input hedges.

the number of skeleton nodes corresponding to the leaves of the input hedges. Also, in case of
the existence of a taxonomy for the involved words, one can put the least upper bound of two
distinct words in the skeleton of the corresponding parse trees, e.g, female for woman and lady,
instrument for violin and guitar, etc.

Fig. 2 shows an lgg of two hedges. One can see that the variables X and Y are used twice,
to abstract the same differences in two different places. The context variable X generalizes
h(○) in the first input hedge, and ○ in the second. It is reflected in the triple X ∶ h(○) ≜ ○.
The hedge variable Y generalizes the two-element hedge (b, b) in the first input hedge, and
the term (singleton hedge) d in the second. Besides the generalization, the algorithm returns
such difference triples for each variable, which can be used to define anti-unification distance
between the original hedges.

In general, there is no single lgg for unranked terms, unless the skeleton computation function
returns a singleton set. However, the minimal complete set generalizations exists.

We can apply the algorithm to the parse trees S1, S2, and S3 above and compare it to the
results from [13]. The skeleton computation function should maximize the score of leaf words
in the generalization, where verbs, nouns and adjectives weight more than other POSs. This
would give 6 possible generalizations, whose leaves are l1 ∈ {I, how}, l2 ∈ {digital, zoom} and
l3 = camera. To compute those generalizations, one does not need to generate all those chunks,
group them, and apply anti-unification on the pairs. Unranked anti-unification can do the job
by directly working on the syntactic parse trees.

Having said this, we should also mention that the current implementation of the unranked
anti-unification algorithm has only the longest common subforest as the skeleton computation
function. (For the first-order version, there are longest common subsequence and longest com-
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Figure 3: Least general generalization of the parse trees of S2 and S3 from Fig. 1. The skeleton
is the longest common subsequence of the leaf nodes sequences. It is highlighted.

mon substring.) More alternatives is planned to be added in future, including the one that
gives priorities to leaves and returns the set of their longest common subsequence.

The generalization tree of the parse trees of S2 and S3 (see Fig. 1) is shown in Fig. 3. One
can see that not only the skeleton, but also the corresponding parts of speech are displayed,
showing similarities in the both input parse tree structures. The differences are generalized by
one context and two sequence variables.

An useful extension of the unranked anti-unification algorithm is its commutative version,
where the argument order of some function symbols does not matter. It can be used to compute
generalizations of grounded language learning contexts in the examples above. One can wrap all
the information about each object under a commutative symbol, whole learning context under
another, and try to use the commutative unranked anti-unification algorithm. the obtained
results should be minimized and collected into one new learning context.

The unranked anti-unification algorithm are a part of RISC anti-unification algorithm li-
brary [5] and can be accessed online at http://www.risc.jku.at/projects/stout/. Partic-
ular algorithms are described in [4, 6, 22].

4 Summary

We discussed some applications of anti-unification in linguistics, presented recently developed
algorithms for this problem, and showed that they can be conveniently used in some natural
language processing tasks.

http://www.risc.jku.at/projects/stout/
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