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Abstract11

This paper describes an application worked out in collaboration with a company that produces made-to-12

order machine components. The goal of the project is to develop a system that can support the company’s13

engineers by automating parts of their component design process. We propose a knowledge extraction14

methodology based on the recent DMN (Decision Model and Notation) standard and compare a rule-15

based and a constraint-based method for representing the resulting knowledge. We study the advantages16

and disadvantages of both approaches in the context of the company’s real-life application.17
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1 Introduction22

This research is conducted in collaboration with a company that has engineering and manufacturing23

offices all over the world. To protect its trade secrets, the company wishes to remain anonymous24

and they have also requested that we avoid providing too much information about its products. In25

certain branches of its activities, the company specialises in producing made-to-order components,26

designed specifically to meet a customer’s particular requirements. Like many such companies, it27

has significantly automated its manufacturing activities, but the design activities of its engineers28

are still performed “manually”. That is to say, the engineers of course make use of computers to29

perform calculations or create 3D models of the components they design, but there is no software30

support for the crux of their activity, namely the actual design process itself. To perform this task,31

the engineers follow an ad hoc process, based on past experience, talks with their colleagues, their32

own preferences, etc.33

This way of working is still common in industry. However, it has several downsides. First,34

the lack of standardisation means that different engineers at different locations may come up with35

different designs for the same set of requirements, some of which may be worse than others. Second,36

the company also depends to a large extent on the expertise of some of its key senior engineers. If37

these should suddenly leave the company, a great deal of the knowledge they have built up over38

the years would leave with them, significantly reducing the efficacy of the engineering department.39

Finally, the lack of software support also means that—in particular, for less challenging design40

tasks—the engineers often have to spend time carrying out the same routine tasks, reducing their41

efficiency.42
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13:2 Application of Logic-Based Methods to Machine Component Design

The goal of this research is to develop a system to assist the engineers in their design process.43

We focus specifically on the design of one particular type of component. This type of component44

consists of a number of different subparts, each of which exists in a number of different variants and45

sizes, and which can be produced from different kinds of materials. Customers request components46

for a specific set of requirements, including a temperature range under which the component should47

function, pressures the component should be able to withstand, the size that the component should48

have, etc. The engineers then decide which combination of subparts should be used, which variants49

of these subparts should be chosen, how big each subpart should be and out of which material it50

should be made. It is with this task that we want to assist them.51

We follow a knowledge-based approach, in we represent the engineers’ knowledge in a suitable52

formal language, and then apply logical inference to this representation in order to provide sugges-53

tions to the engineers. This approach starts with a knowledge extraction step in which a knowledge54

engineer works together with a number of domain experts, in this case the company’s design engin-55

eers, in order to construct the formal model of their knowledge. Typically, this knowledge extraction56

is a challenging task, because the knowledge engineers are not familiar with the problem domain,57

while the domain experts are not familiar with the idea knowledge representation. Good communic-58

ation between the parties is therefore very important.59

In addition to providing automated support, the knowledge extraction process also has the benefit60

of producing a standardised formal description of the company’s design knowledge, thereby elim-61

inating personal preferences of each engineer, regional differences, out-dated habits, and of course62

human mistakes. For this process to be successful, we believe that it is crucial that the formal spe-63

cification is not only executable, but that it is also understandable by the engineers. This helps to64

avoid misunderstandings and errors in the knowledge extraction process. Moreover, it will also allow65

the engineers to get a better understanding of what is going on inside the decision support system,66

it will help them to adopt and evaluate the standardised procedure, and it will allow the knowledge67

base to be maintained after completion of the project.68

In [24], the ability to extract knowledge in a format readable by domain expert was identified69

as a weakness of current product configuration methods. In order to achieve our stated goals, we70

therefore propose a novel method, consisting of a two-step knowledge extraction methodology. First,71

we focus on representing the decision process that the engineers follow when making a new design.72

For this, we make use of the recent Decision Model and Notation (DMN) [13] standard, which73

has been developed with the specific aim of being usable by domain experts, without help from a74

knowledge engineer or software developer. Using an off-the-shelf implementation of the standard,75

such as that provided by the OpenRules system [14], this DMN model is already fully executable,76

which allows it to be used by the engineers and validated w.r.t. a batch of test cases.77

As we will discuss below, the DMN model by itself is not expressive enough to achieve all of the78

project’s goals. We therefore propose a second knowledge extraction step, in which the DMN model79

is further analysed together with the design engineers. Having the DMN model already available80

in this step provides a way of focusing the discussion, ensuring that all the relevant questions end81

up being discussed, and avoiding misunderstandings. The result of this second step is a logical82

specification, written in classical first-order logic—which can be used by an automated reasoning83

system—in our case the IDP system [3]. This specification can then be validated by comparing its84

conclusions to those of the original DMN models.85

In the following sections, we first provide some more details on the context and goals of the pro-86

ject. We then discuss the first step of the knowledge extraction methodology, using DMN, together87

with its implementation and limitations. We then present the second step, using the IDP system,88

again also discussing implementation and limitations. We discuss the validation efforts that were89

made and finally also related work.90
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2 Problem Description91

The company designs and produces components based on specific customer requests. These custom-92

ers typically are engineerings from other production companies, who want a specific part to be man-93

ufactured according to a detailed set of requirements. In contrast to typical configuration problems,94

understanding and explicitating the customers’ needs is therefore not an issue in this application.95

Incoming requests are initially handled by the sales staff. If the customer’s requirements can be96

met by one of the companies standard solutions, the sales staff autonomously handles the request.97

They are supported in this by a Visual Basic tool that inspects a Microsoft Access database to select98

the appropriate standard design for a particular request. Requests that fall outside the scope of99

this tool are forwarded to the engineering department. Here, one of the engineers analyses the100

requirements and proposes a suitable component design. A distinction is made between requests101

that fall within known application areas and those that do not. Handling the first kind of requests is102

a routine job for the engineers and they always follow roughly the same procedure when doing so.103

The second kind of requests are more challenging and may require a significant amount of creativity104

from the engineers.105

Our project has three main goals. First, the company has noted that is quite difficult and time-106

consuming to extend the scope of the tool that is used by the sales staff and they are looking for a107

more maintainable solution. Second, the “routine” work done by the engineers for known applica-108

tions should be standardised and automated as much as possible. Third, the company also wishes to109

develop a decision support system that the engineers can use when handling the more challenging110

requests.111

3 Knowledge extraction of the design process112

The engineers have a “standard” decision process that they use to handle routine requests. However,113

this process is not explicitly standardised and different engineers at different locations may do certain114

things somewhat differently. To fully standardize this process and to be able to automate it, the115

engineers’ detailed technical knowledge needs to be represented in a formal and structured manner.116

This section describes the knowledge extraction methodology that we have followed.117

Because the design process had not yet been internally standardised, we chose to start from a118

series of brainstorming workshops with all of the involved parties. Each workshop takes a couple119

of days and results in an initial representation of the design process for a specifically delineated120

application area. The involved parties are a number of design engineers (representing each of the121

locations worldwide that are involved in the particular application area), a manager and one external122

knowledge engineer to guide the workshop. This approach offers a number of advantages.123

Since multiple participants are involved, we do not blindly adopt the approach of one engineer124

or one particular location.125

The face-to-face time allows intensive discussion about why certain decisions are taken, which126

is often necessary when different engineers are used to follow different approaches.127

During one multiple-day workshop, all parties focus solely on one specific application, which128

helps to keep the discussion focused.129

The knowledge engineer not only helps with technical issues concerning the representation, but130

he also assists the engineers in clarifying their design process: as a non-expert in the domain, he131

is able to ask “trivial” questions that help to ensure that all the engineers are on the same page132

and that nothing is being overlooked.133

Such a workshop results in a formal representation of the engineers’ relevant knowledge, which134

is then used to build an initial prototype of a decision support system for that particular application135
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13:4 Application of Logic-Based Methods to Machine Component Design

area. This prototype is then presented to the design engineers for evaluation. The evaluation can be136

done briefly by e-mail or in another workshop, depending on how close to reality the preliminary137

model is. Based on the feedback, the model is refined. This process is repeated until all parties agree138

that the model is correct.139

To support this knowledge extraction process, we need a notation that allows all aspects of the140

decision process to be expressed. In addition, the notation should not only be readable by the know-141

ledge engineer, but also by the domain experts, who have no background in computer science or142

logic. This will allow the notation to be used as an effective communication tool throughout the143

brainstorming workshops and will also give the domain experts confidence in the correctness of the144

automated system. After surveying the different possibilities, we have decided to use the DMN145

standard that is explained in the following section.146

3.1 The Decision Model and Notation (DMN)147

The Decision Model and Notation (DMN) is a relative new standard [13], which is best known for148

also being responsible for the widely used UML standard. This standard was developed specifically149

for describing and modeling repeatable decision processes. In addition, it is especially designed to150

be usable by “business users”, without involvement of IT personnel. These two properties make it151

uniquely well-suited for our purposes. In addition, as an open standard from a well-known organ-152

isation, it enjoys tool-support from multiple vendors, which means that it can be adopted without153

running the risk of vendor lock-in.154

In general, a DMN model consists of two components. The first is a Decision Requirement155

Diagram (DRD). This is a tree-like graph which specifies dependencies between different (sub-)156

decisions. Figure 1 displays a fragment of the complete DRD representing the decision procedure157

used in our application.158

Figure 1 Fragment of the Decision Requirement Diagram

The other part of a DMN model consists a number of in-depth decision tables, one for each159

decision in the DRD. An example can be found in Table 1. The purpose of this table is to decide160

whether the chosen design should contain a wiper, a bent piece of plastic that protects the component161
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Table 1 Decision table describing whether or not to use a wiper

Any
Input Output

Dirty Environment Reverse Pressure Wiper
1 True - True
2 - True True
3 False False False

Table 2 Decision table for Spring Shape.

First
Input Output

Orientation Reverse Pressure Location Pressure Temperature Spring Shape
1

Radial True
Pressure Accumulating - - Open

2 Bi-directional - - Open
3 - ≤ 100 - Open
4 - - - - - Closed

from environmental factors, such as dirt or reverse pressure (i.e., pressure from the outside to the162

inside, instead of the other way around). Each column of such a table corresponds to either an input163

variable (Dirty Environment and Reverse Pressure, in this case) or an output variable (Wiper). In164

this example, all variables are boolean, but in general DMN also allows other data types. A row165

in a decision table specifies that if the row is applicable (i.e., all of the input variables satisfy the166

conditions given by this row) then all of the output variables must have the values given by this row.167

For instance, the first row of Table 1 states that a wiper must be used whenever the environment is168

dirty (regardless of whether there is reverse pressure); the second row states that if there is reverse169

pressure, a wiper must also be used; finally, the third row states that if the environment is not dirty170

and there is no reverse pressure, a wiper should not be used.171

The entries in the table are written in a syntax called the Friendly Enough Expression Language172

(FEEL), which is also part of the DMN standard. In addition to simple values (as used in Table 1),173

FEEL also allows numerical comparisons, ranges of values and calculations to be expressed.174

If multiple rows in a table might be applicable for some combination of input values, then the175

table’s so-called hit policy determines how this should be handled. Table 1 has the hit policy Any,176

as can be seen in its upper left cell. This means that different rows may be applicable for a given177

input (e.g., the first two rows are applicable in a dirty environment with reverse pressure), but that178

all applicable rows have the same output, so that it does not matter which row is applied. Other hit179

policies are Unique (only one row may be applicable) and First (when multiple rows are applicable,180

only the top one is considered). In addition, there are also multiple hit policies that allow, e.g., the181

output of all applicable rows to be gathered into a list.182

Another, more advanced example is the following. In the design of a component, a spring is183

used to keep it in place. The type of this spring is determined by two decision nodes in the DRD.184

First, the general shape of spring is determined (whether to use a stiffer closed spring or a weaker185

open spring). This influences the overall form of the design. Later, the specific spring is selected,186

based on how much the component would shrink in the given circumstances. Table 2 shows how the187

general shape of the spring is decided, based on the reverse pressure and various other inputs.188

Another part of the design is a spacer, whose purpose is to keep the component in place, even189

when there is a high pressure from the backside of the seal. Based on the spring shape, the need for190

a spacer is decided in Table 3.191
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13:6 Application of Logic-Based Methods to Machine Component Design

Table 3 Decision table for Use Of Spacer.

Unique
Input Output

Spring Shape Use Spacer
1 Closed False
2 Open True

3.2 Results192

Following the methodology outlined above, we have extracted the knowledge of the routine design193

process in six different application fields. A total of 75 decision tables were constructed. In each194

of the applications, one or two tables were pure data tables, consisting of all numerical data for195

dimensioning the component. Since the discussed applications are more or less similar, some of the196

already constructed data and decision tables from one application could be reused in another. The197

extracted tables had an average size of approximately 5 rows and 3 input conditions.198

Each workshop started with a brief introduction to DMN, after which the knowledge engineer199

started to guide the domain experts through the modelling process. We typically started by con-200

structing a DRD to get a general overview of the structure of the design process, and then proceeded201

to construct detailed decision tables for each of the decisions. The company’s engineers found the202

DMN format quite intuitive and after some initial questions, they were typically able to easily in-203

terpret and reason about the knowledge in the tables. Our experiences therefore indeed confirm that204

DMN’s readability for domain experts is a big advantage of this standard.205

A small exception to our normal way of working occurred when representing the design process206

for applications that fall within the scope of the Visual Basic tool that had already been developed207

for the sales staff. Here, we simply started from the existing VB code and transformed this into a208

DMN model, which proved to be significantly shorter (360 lines of VB code were reduced to 80209

table rows) and easier to maintain.210

Overall, the DMN representation seemed to fit well with the engineers’ own way of thinking211

about their design process. However, there were some exceptions. In a few limited cases, the212

engineers themselves do not follow a strict bottom-up decision procedure when making their design.213

For instance, in certain circumstances, it is necessary to ensure that the component stays in place.214

This can be done by using a stiffer spring than usual to prevent the component from sliding in the215

wrong direction. Adding a spacer and keeping the normal shape of spring is the preferred approach,216

but this is not always feasible. In particular, in cold circumstances, the component may shrink to217

such an extent that the normal spring would fail. However, to know whether this is the case, the218

shrinkage of the component has to be computed. Because this depends on the materials being used219

and the precise layout of the different parts of the component, this computation can only be done at220

the very end of the design process. Therefore, what the engineers currently do is they assume that221

the spacer option will work, completely design the component based on this assumption, compute222

the shrinkage and then backtrack over their initial choice if it turns out that the shrinkage is too223

big. Such a “guess and check” procedure cannot be elegantly represented in DMN. In Section 4 we224

discuss the work-around that we have used for this.225

In general, we perceived the use of a formal representation in the workshop as a significant added226

value. The precision of the notation allowed us to quickly detect inconsistencies and missing cases227

in the information that the domain experts were providing. In addition, once they had gotten used to228

the notation, also the design engineers themselves started to notice flaws in the decision tables, such229

as implementation mistakes from our side or previously unnoticed exceptions in their own design230

process. Towards the end of a workshop, the design engineers were comfortable enough with the231

notation that we could leave certain decision tables to be constructed as “homework” after the end232
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of the workshop.233

Based on our experiences, we are confident that the design engineers will be able to maintain the234

existing decision tables and, with a bit more experience, would be able to construct additional DMN235

models for new application areas.236

4 Direct implementation of the design process237

DMN is designed to be a fully executable specification and is currently supported by a number of238

different tools, both commercial and open source. By providing it with the constructed DMN tables,239

we have implemented an automated design system in the OpenRules [14] system, currently for two240

of the six application areas for which the DMN knowledge extraction has been performed.241

This direct encoding of the design engineers’ design process has the advantage that it is easy to242

implement, and that is easy to understand for the engineers what is going on. However, there are243

also downsides to this approach.244

First, as mentioned in Section 3.2, a few aspects of the design process do not fit readily into245

the DMN model. Currently, we have worked around this problem by an “err on the side of safety”246

approach: for the example given Section 3.2, the engineers have determined a set of parameters247

within which it is always safe to use the preferred solution of adding a spacer; whenever the input248

falls outside of this safe range, the alternative option of using a stiffer spring is always chosen. While249

this solution is suboptimal (in the sense that sometimes a stiffer spring is used when the combination250

of a weaker spring and a spacer would have sufficed), it avoids the risk of suggesting faulty designs251

in a way that does not introduce complicated decision structures, which would reduce the legibility252

of the DMN model.253

Second, the DMN representation forces one to mix different kinds of knowledge within a single254

table, which reduces the maintainability. For instance, Table 2 is based on both physical constraints255

and preferences of the company. However, the actual constraints and preferences cannot be deduced256

from this table alone. For instance, the decisions could be explained in any of the following three257

ways:258

A closed spring is always preferred, but it is unusable in situations 1, 2 and 3;259

An open spring is always preferred, but it can only be used in situations 1, 2 and 3;260

An open spring is preferred if there is reverse pressure, while closed springs are preferred in all261

situations when there is no reverse pressure.262

Now, suppose that a supplier changes the price of the closed spring. This will have an impact on263

which shape of spring is preferred, but it is impossible to judge the impact of this change on Table 2,264

without knowing the underlying reason for why this table is as it is. A representation that separates265

preferences from constraints would not have this problem.266

Third, all of the currently available DMN rule engines support only a single inference task,267

namely that of computing the “output” decision variables given values for all the input variables. In268

a system that is used interactively by a design engineer, however, we may also envisage other useful269

inference tasks. For instance, after filling out only a subset of the input variables, the engineer may be270

interested in knowing whether a design with a closed spring is still possible. Or, in discussions with271

a customer, he may interested in knowing which values of the input variables would have allowed272

such a spring to be used if one cannot be used now.273

Fourth, DMN keeps the complexity of the decision process manageable by splitting it into differ-274

ent decision tables. A downside of this approach is that it is not possible to talk about global proper-275

ties of the design. For instance, we may be interested in selecting the cheapest possible design. The276

cost of a design depends on which parts are included in the design and on which materials are used277

to make these parts. Both of these decisions influence each other: certain parts can only be made278
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out of certain materials, while the use of a better material might eliminate the need for a particular279

additional part. This interdependency means that we cannot hope to always find the cheapest global280

design by making a sequential series of local decisions.281

Finally, the entire DMN approach of course assumes that there is a decision procedure to model.282

If we want to develop a system that could provide some assistance to engineers in those challenging283

new application areas where they themselves do no yet know how precisely a new design should be284

made, then there is no decision procedure and the DMN approach will be of no use at all.285

5 A Constraint-Based Approach286

As discussed in the previous section, we cannot hope to achieve all of our stated goals by an approach287

in which we simply use a direct implementation of the design procedure as the engineers follow it.288

We will need to take into account also the underlying physical constraints that have led the engineers289

to adopt this procedure in the first place.290

In general, the design process followed by the engineers is governed by a number of physical291

constraints (e.g., a material M1 can only be used in temperatures < 100◦C) and preferences (e.g.,292

material M2 is preferred over material M1, perhaps because it is cheaper or more durable). In293

order to develop a decision support system that can also provide useful information for challenging294

new application areas, we need to make direct use of these underlying constraints and preferences,295

rather than of the engineers’ existing design process. These constraints provide more information296

than is explicitly present in the design procedure, because they also explain why certain designs are297

impossible. Therefore, it is not possible to automatically deduce these constraints from the design298

procedure. Instead, coming up with them requires additional discussions with the design engineers.299

To illustrate the constraint-based approach, we return to the running examples of Section 3.1.300

First, we consider Table 1. The engineers explain the contents of this table as follows: they prefer301

not to include a wiper unless one is necessary, and a wiper is required to cope with either reverse302

pressure or a dirty environment. In other words, this table can be explained as the combination of303

a preference for not having a wiper, together with two constraints: ReversePressure⇒Wiper and304

DirtyEnvironment⇒Wiper.305

The underlying reasons for Tables 2 and 3 are more complex. Discussions with the engineers306

have revealed that these tables can be explained as follows:307

1. Only open springs are able to release reverse pressure.308

SpringShape = ”Open”⇔ AbleToReleaseBP.309

2. It is impossible to use a spacer in combination with a closed spring.310

SpringShape = ”Closed”⇒ SpacerDesign = ”null”.311

3. When the component should be placed in a pressure accumulating location, it should be able to312

release reverse pressure.313

Location = ”PressureAccumulating”⇒ AbleToReleaseBP.314

4. A spacer is needed (in radial applications) if the reverse pressure is bigger than 100 bar.315

ReversePressure∧Pclass > 100⇒ SpacerDesign 6= ”null”.316

5. In the bi-directional location, the component tends to move back and forth excessively, so in317

order to avoid damage, a spacer is always needed.318

Location = ”Bi−directional”⇒ SpacerDesign 6= ”null”.319

6. Lastly, closed springs tend to be cheaper and outperform open springs, so they are the preferred320

type of spring.321

Notice that 1-5 are constraints, while 6 is a preference.322

The first line in Table 2 is a result of combining constraint 1 and 3. The component should be323

able to release reverse pressure and since closed spring designs cannot do that, an open spring design324
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is the only option. The second row is a combination of constraint 2 and constraint 5. In the “Bi-325

directional” location a spacer is always needed, and since it is impossible to have a spacer in closed326

spring designs, the only remaining possibility is to go for an open spring design. Analogously, the327

third line in the decision procedure can be obtained from combining constraint 4 and 2. In all other328

situations, both closed and open spring designs are possible, but closed designs are preferred, which329

explains the last row in the decision procedure.330

5.1 Knowledge extraction of the physical constraints and preferences331

In order to use the physical constraints, we must of course again first elicitate them from the design332

engineers. In our experience, it was difficult to do this directly. The engineers often did not know333

quite where to start and discussions tended to be chaotic and unstructured. For this reason, we have334

chosen to base the knowledge extraction of the constraints on the DMN models. We again organise335

a discussion with the engineers who were originally involved in the construction of these models336

and then go over each row of each table and ask them why this row produces that particular output.337

Unlike the workshops in which the DMN models are initially constructed, here it is less crucial to338

involve different engineers: even though different engineers may disagree on the best solution for a339

given problem, they tend to all agree on the reason why certain solutions might or might not work.340

This use of the DMN tables provides a structured way of working, in which different topics are341

addressed in a meaningful order and we can be sure that all of the relevant constraints will eventually342

be mentioned. Moreover, because the engineers know and understand the DMN model, there is never343

any confusion about which particular question is being discussed at any particular point in time.344

To reduce the time investment required from the engineers, it is useful to carefully prepare these345

discussions in advance. Often, the form in which a particular table has been written down already346

suggests a certain underlying reason (e.g., the “default” row at the bottom of Table 2 suggests that347

the closed spring is the preferred choice, with the other rows describing circumstances in which348

this preferred choice is not possible). In addition, general knowledge about how the components349

function or considerations that were mentioned during the workshops that constructed the DMN350

models may provide further clues. In practice, we have found that we can construct most of the351

constraints without help of the engineers and only need them to verify and help us revise our initial352

guesses.353

Most of the decision tables can be discussed independently. However, certain constraints influ-354

ence multiple tables. Section 5 handles a detailed example of this.355

The preferences we have encountered so far have been quite simple: when a particular part exists356

in a number of different variants or can be made from a number of different materials, the engineers357

have been able to rank the variants/materials in an absolute order of preference, typically based on358

cost and reliability. There has been no need to handle more complex issues such as conditional359

preferences.360

6 Implementation of a constraint-based approach361

We have used the knowledge based IDP system [3] to implement a prototype of a constraint-based362

design system. IDP allows constraints to be expressed in a rich extension of classical first-order363

logic. Some examples of constraints used, are:364

∀s[Subpart] : SubpartUsed(s)⇒∃ 1 m[Material] : Material(s,m).365
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This IDP formula states that for each subpart it holds that if the subpart is used, there exists exactly366

one material for that subpart.367

sum{s[Subpart] : SubpartUsed(s)∧Length(s, l) : l}< AvailableSpace.368

This formula states that the length of the component, computed as the sum of the lengths of all its369

subparts, must fit in the available space.370

The IDP system offers a number of different algorithms, implementing a number of logical in-371

ference tasks, based on Answer Set Programming (ASP), Logic Programming (LP) and SAT solving372

technology. In recent editions of the ASP Competition [1], it was shown to be competitive with other373

state-of-the-art ASP systems, though typically somewhat slower than systems such as Clasp.374

Our main reason for using IDP is its use of classical logic as an input language. This allows375

individual constraints to be represented in a modular way, which can typically be reasonably well376

explained to the company’s design engineers without requiring much additional background. While377

the engineers would probably not be able to write down constraints correctly, they are able to read378

them pretty well. We suspect that for instance ASP specifications would have been harder for the379

engineers to read, due to the presence of non-classical connectives such as negation-as-failure. A380

second advantage of IDP is that it provides support for different logic inference tasks. Our current381

prototype only offers the functionality of generating design proposals, but IDP’s different logic infer-382

ence methods may prove useful if we would want to extend this to other functionalities in the future.383

This is one potential advantage that IDP offers over the use of constraint-programming languages384

such as MiniZinc [12].385

Our input for IDP consists of six theories: one theory expresses the constraints about the general386

design of the component; another describes the material choice of each of the parts; the third defines387

how the component shrinks in low temperatures; a fourth theory describes whether the component388

will remain in place also in cold environments; the fifth defines whether the complete component fits389

in the available space; the final theory expresses the preferences by assigning a cost to the design,390

based on price, durability, availability, etc.391

In order to use these theories to compute a design, we can apply the logical inference task of392

Model Expansion [11]. This takes as input a theory T and a structure Sin for part of the vocabulary393

of T , and the goal is to produce a structure Sout for the remaining part of the vocabulary such that394

Sin ∪ Sout |= T . In our case, the structure Sin describes the problem specification, by providing an395

interpretation for predicates such as Temperature, Pressure and Location (giving the temperature396

and pressure ranges and the location in which the component should function); the structure Sout then397

describes a design, by providing an interpretation for predicates such as SpringShape and functions398

such as Material, which maps each component used in the design to the material it should be made399

from.400

However, rather than just computing any model expansion, we make use of IDP’s optimisation401

functionality. This allows us to specify a numerical term t for a model expansion problem (T,Sin).402

IDP will then compute not just any solution to the model expansion problem, but the solution Sout403

that, in addition to being such that Sin ∪ Sout |= T also minimizes the value tSin∪Sout of this term.404

In our case, the term t is of the form sum{p[Penalty] : Violation(p) : p}, i.e., we associate to each405

violation of a preference a certain penalty and the goal is to compute the design for which the sum of406

all incurred penalties is minimal. IDP implements this inference task by an optimisation loop, which407

iteratively produces better solutions by each time adding as a new constraint that the next solution408

must have a lower score than the previous solution. This is the same method as is typically used in,409

e.g., ASP solvers.410

As an implementation of the knowledge base paradigm [5], IDP allows different inference tasks411

to be performed on the same knowledge base in order to provide different functionalities. Currently,412
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our focus lies on generating designs using the inference task of model expansion. However, in413

the future, other inference tasks may prove useful for offering additional functionalities, such as414

explaining why a certain design is not feasible.415

6.1 Limitations416

Even though using the constraint representation has a lot of interesting advantages, there are also a417

few downsides to it. The main disadvantage is that it is harder for the domain experts to understand.418

On the one hand, the syntax for writing down individual constraints is more complex. While we419

have used IDP because we believe it is quite understandable for untrained experts, it is still much420

more complex that the simple table-based DMN format. On the other hand, also the constraint-based421

approach itself seems inherently more difficult for the domain experts. In a DMN decision model,422

there is always a clear link between input and output, which makes the model easy to interpret423

and inspect by a domain expert. When using constraints to express design knowledge, a single424

decision may be affected by numerous constraints. For example in Section 5, the spring design is425

influenced by a multitude of constraints. Finding out which constraints influence a particular aspect426

of the design and determining their joint outcome is not a straightforward task and we find this often427

confuses the domain experts.428

A second downside is tied to the particular technology used in the IDP system. IDP’s model429

expansion algorithm follows a ground-and-solve strategy (similar to, e.g., ASP solvers), in which all430

variables are first translated away, by replacing them with all of their possible values. However, this431

requires that each variable must have a finite domain, such that the grounding phase can enumerate432

all of its possible values. Moreover, in order for the grounding to be computed in reasonable time,433

these domains should be relatively small. Because our application requires some calculations with434

floating point numbers (e.g., when calculating the shrinkage in cold circumstances), we have had435

to implement a work-around to perform these calculations outside of the normal ground-and-solve436

workflow.437

7 Validation and Experimental Results438

The DMN model. Starting from a direct formalisation of the engineers’ design process proved no-439

ticeably useful. Not only did the engineers appreciate the intuitive way of reasoning in the DMN440

standard, it made them think about how they come to a design in a given situation and about why441

certain design decisions are made. Moreover, when transforming the Visual Basic tool developed442

for the sales staff into a DMN model, a number of irregularities surfaced. Without a formal repres-443

entation of this knowledge, it would have been a far more difficult and time consuming task to detect444

these faults.445

To ensure correctness of the DMN model, the engineers not only inspected the decision tables in446

detail, but also provided us with ten test cases that represent both normal sets of requirements and a447

number of edge cases. Our OpenRules implementation using the DMN model generates the correct448

design in all of the test cases. Computing a design takes about 0.3 seconds single core on an Intel(R)449

Xeon(R) CPU E5-2630 v3 @ 2.40GHz.450

451

The IDP model. While it proved relatively easy to construct the DMN model in collaboration with452

the engineers, constructing the more expressive IDP constraint-based model was more significantly453

more challenging. We therefore want to use to former to validate the latter. In particular, we want454

to check two correspondences between the output D(I) of the DMN model D for a given input I455

and the solutions Sout of the model expansion problem (T,SI) for the IDP constraint theory T . The456
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vocabulary of the theory T was chosen such that the DMN input I and output D(I) can be easily457

translated into structures SI and SD(I).458

The first property to check is that the constraints should not be too strict: for each possible set459

of inputs I, the design D(I) that would be constructed by the DMN model D(I) should satisfy the460

constraints in theory T , i.e., SI ∪SD(I) |= T or in other words, SD(I) is a solution the model expansion461

problem (T,SI).462

Second, to verify that the constraints are not too weak, we also check that the design D(I)463

proposed by the DMN model D is among the optimal solutions of this model expansion problem,464

i.e., that tSI∪SD(I) ≤ tSI∪S′ for any other solution S′ to the model expansion problem (T,SI), where t465

is the optimisation term that should be minimised. This both checks that the constraints do not fail466

to rule out designs with a higher score that are in fact impossible and that the weights used in the467

optimisation criterion are assigned correctly.468

We implement both of these checks using IDP. We first transform the DMN model to IDP syntax469

as described in [4]. We can then use IDP to perform the required checks on relation between the IDP470

theory derived directly from the DMN model and the IDP theory that represents the constraints.471

The first check initially revealed a small number of errors in the constraint-based representation.472

After minor fixes to the constraints, the first check was concluded successfully. The second check473

then revealed that, in a number of cases, the constraint-based model produced more optimal designs474

than the DMN model. While we initially thought that this was due to more errors in the constraints,475

an analysis together with the design engineers revealed that the outcome of the constraint-based476

model was in fact correct and that their own design process was in these cases non-optimal. This477

non-optimality turned out to be caused by the difficulty of making the decisions in a fixed order.478

When using the constraint-based method, no fixed decision order is needed, so a better scoring479

global optimum can be found.480

The IDP system typically finds the optimal design in about 3.15 seconds on one core of an481

Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz.482

8 Related Work483

A large body of research has been conducted on the topic of automatic product configuration, typic-484

ally defined as the task of automatically constructing a design from a set of pre-defined components,485

considering several constraints and some optimisation criteria [2]. Research shows that product486

configurators have a positive impact on lead time [8, 6] and quotation time [10]. Other compar-487

ison studies [18] investigate the effect of configuration systems on product quality, also showing488

promising results.489

A thorough literature review on product configuration was performed by [24]. Their findings490

reveal that, despite the wide range of existing research, several topics still require further exploration.491

First, although knowledge acquisition from historical data has been extensively studied, less research492

has been done on extracting knowledge from domain experts. Moreover, knowledge representation493

research typically focusses on methods that are intended to be used by knowledge engineers. Little494

attention has been paid to representations that are usable by domain experts. Our work examines the495

use of DMN to address these issues in the context of one concrete application domain.496

A second aspect which according to [24] has not yet received much attention is the ability to497

suggest new designs. The majority of existing product configuration approaches focus on selecting498

the most appropriate option among a fixed range of possibilities. By contrast, our constraint-based499

approach is also able to provide useful information to the engineers in cases that fall outside the500

scope of existing solutions.501

Third, [24] also identifies several ways in which additional forms of inference might be useful502
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to provide functionality other than suggesting a design. For example, she identifies such tasks as503

explaining which conflicting constraints have led to a rejected design or reconfiguring an existing504

design to cope with changed requirements. The IDP system has been developed according to the505

knowledge base paradigm [5], in which different logical inference methods can be applied to the506

same knowledge base in order to implement different functionalities. Both of the tasks of explaining507

conflicts and of reconfiguration have already been considered in the context of this system [19, 22].508

The IDP system therefore provides a suitable formalism to express the design knowledge.509

9 Conclusions and future work510

In this paper, we have presented an approach to develop a decision support system for the design of511

mechanical components. This research was conducted in collaboration with a multinational com-512

pany that wants to standardise and partially automate its design process, both for “routine” applica-513

tions and challenging new application areas.514

This project’s main challenge is that there are two potentially contradictory requirements. On515

the one hand, a flexible and powerful knowledge representation is needed that will allow useful516

conclusions to be provided to the engineers even in circumstances that fall outside of their designs’517

usual scope. On the other hand, the engineers need to be closely involved in the formal specification518

since they are expected to agree on and understand the model, and to help maintain it.519

To cope with these two requirements, we propose a two-step methodology. First, we use the new520

DMN standard to extract the “routine” design process into an executable formal model, which can521

already by automatically validated. We then use this DMN model as a basis to perform a second522

knowledge extraction step, which results in a first-order logic representation that can be given to523

the state-of-the-art IDP knowledge base system in order to also perform useful inferences in cir-524

cumstances that fall outside the scope of the routine design process. This IDP model can then be525

automatically validated w.r.t. the DMN model.526

In future work, we plan to examine the possibility of extending the expressivity of DMN to527

reduce the gap between DMN and IDP, without sacrificing the ease of understanding for the domain528

experts. Moreover, we also plan to examine the use of IDP’s different inference algorithms to address529

some of the issues highlighting by [24]. Finally, we also wish to develop a method that would530

allow the more general knowledge expressed in the IDP model to automatically derive DMN design531

procedures for new application areas.532
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