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Abstract

Many areas of automated reasoning are goal-oriented i.e the aim is to prove a goal from a set of
axioms. Some methods, including the method of saturation-based reasoning explored in this paper,
do not rely on having an explicit goal but can employ specific heuristics if one is present. SMT-
LIB problems do not record a specific goal, meaning that we cannot straightforwardly employ goal-
oriented proof search heuristics. In this work we examine methods for identifying the potential goal
in an SMT-LIB problem and evaluate (using the Vampire theorem prover) whether this can help
theorem provers (using saturation-based proof search). We also discuss (very broadly) where SMT
solvers could make use of goal information.

1 Introduction
The aim of this paper is to highlight the fact that it would be useful to introduce the notion of a goal
into SMT-LIB. We mainly do this in the rather limited way of showing that detecting goals in problems
can improve the performance of the saturation-based theorem prover Vampire1 [10]. We leave a more
general discussion of the possible wider utility of goals in SMT-LIB to the end of the paper.

Currently, SMT-LIB problems consist of a series of definitions (providing the signature of symbols)
and assertions (providing some formulae that are meant to be true). We will generally ignore the com-
mand language of SMT-LIB here. This is in contrast to TPTP (another language for describing problems
that the authors are familiar with) where formulas can be marked as axioms or as the (single) conjecture
(other roles exist but are not as widely used). Many problems from various domains are phrased in this
way. For example, a problem may consist of a translation of the next-state relation of a program (the
axioms) followed by a postcondition that should hold (the conjecture). In the TPTP setting the meaning
of the problem is that the axioms A imply the conjecture C i.e. provers should check the consistency
of A ∪ {¬C}. This problem can easily be framed in SMT-LIB but the structure of which part of the
problem belongs to the axioms and which to the conjecture is lost.

In the traditional SMT setting losing this structure does not tend to matter as the focus is on model
building and satisfiability in general. To check that a problem is satisfiable it is necessary to consider all
assertions. However, if the focus is unsatisfiability checking then goals become more relevant as only
a subset of the input may be required to show inconsistency and it is highly likely that this subset will
contain the goal. In particular, in saturation-based solvers (such as Vampire) there exist a number of
preprocessing and proof search heuristics that attempt to make proof search more goal-directed.

This paper shows that by detecting parts of the input that are likely to reflect goals we can improve
the performance of the Vampire theorem prover. As it is unlikely that our method of goal detection is
perfect, we suggest that this motivates the addition of the notion of goals to SMT-LIB.

The rest of the paper is organised as follows. We provide some necessary background (Section 2),
describe some heuristics for detecting likely goals in the input (Section 3), present some experimen-
tal results (Section 4), discuss the wider applicability of goals to SMT-LIB (Section 5) and conclude
(Section 6).

∗This work was supported by EPSRC Grant EP/P03408X/1.
1See https://vprover.github.io to download.
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2 Background
We introduce necessary background for the rest of the paper.

2.1 SMT-LIB
The focus of this paper is the SMT-LIB language [2]. The main fact we focus on is that it does not
include a method for marking input formulas as goals or conjectures. Here we briefly discuss (some of)
what it does support. Problems in this format consist of three kinds of statement:

• Definitions. These are used to define the sorts of function symbols or to introduce new sorts. In
SMT-LIB the boolean sort is first-class, meaning that there is no separation between functions
and predicates. A number of sorts and interpreted symbols are built-in e.g. Int and arithmetic
operators such as + and ∗.

• Assertions. These are used to assert first-order formulas using a Lisp-style syntax. Formulas may
make use of the standard logical connectives (including quantification), defined function symbols,
and predefined theory symbols.

• Commands. These instruct the solver to take certain actions. The main command of interest here
is check-sat which is called after the problem has been described to instruct the solver to
check (un)satisfiability.

The order of statements in SMT-LIB problems matters. Symbols must be defined before being used
and commands instruct the solver to take an action using the statements occurring above that command
in the file. This last part is particularly important when defining an incremental file. This can take
two forms – either via a series of check-sat commands (where the assumption is that the answer is
repeatedly sat) or by using the push and pop commands to create new solving contexts. This second
approach is interesting to the discussion of this paper as one might assume that pushing some formulas
on top of an existing set of formulas and checking the resulting problem might imply that the pushed
formulas represent some kind of goal.

We discuss broader implications of goal-oriented reasoning and SMT-LIB later.

2.2 Goal-Oriented Reasoning in Vampire
Vampire is a saturation-based theorem prover for first-order logic with theories implementing the super-
position and resolution calculus and a number of theory-specific reasoning extensions [14, 15, 18]. It
entered SMT-COMP in 2016 and 2017, placing first in a number of divisions (AUFNIRA, UFDTLIA,
UFNIA). Here we briefly describe how Vampire makes use of goal information.

Preprocessing. Vampire applies extensive preprocessing to input problems to place them into an op-
timised clausal form [7, 17]. There are two preprocessing steps that make proof search incomplete by
focussing it on the goal.

The first is SInE selection [9] which is based on the observation that the proof of a goal tends to use
only a small subset of the axioms, particularly in problems with large axiomatizations. The idea is to
heuristically select a subset of axioms that are likely to be used in the proof of the goal. Axioms are
selected using a notion of closeness to the goal that is based on whether they can be connected to the
goal via their least common symbol. The approach can be parametrised by various measures and has
been found to be widely successful in dealing with large problems.



Figure 1: Illustrating the Given Clause Algorithm.

The second is the set-of-support strategy [24, 13] where clauses from the goal are put into a set of
support and proof search is restricted so that it only makes inferences with clauses in, or derived from,
this set. Therefore, this strategy requires all reasoning steps to be related to the goal directly.

Both approaches make proof search incomplete as they potentially throw away clauses that could be
necessary to find a proof. They also prevent Vampire from establishing satisfiability, but in general this
is impossible when theories are present.

Proof Search. Vampire is a refutational saturation-based theorem prover. The idea is that an input
formula of the form Premises → Goal is negated, to give Premises ∧ ¬Goal , then clausified to
produce a set of clauses S. This set is then saturated with respect to some inference system I meaning
that for every inference from I with premises in S the conclusion of the inference is also in S. If the
saturated set S contains a contradiction then the initial formula is necessarily valid. Otherwise, if I is a
complete inference system, and importantly the requirements for this completeness have been preserved,
then S is satisfiable and the input formula is not valid. If S contains theories then I cannot be complete.

The standard approach to saturation is the given-clause algorithm illustrated in Figure 1. The idea
is to have an active set of clauses with the invariant that all inferences between active clauses have
been performed and a passive set of clauses waiting to be activated. The algorithm then iteratively
selects a given clause from passive and performs all necessary inferences to add it to active. Clause
selection is the main place where information about the goal is used to steer proof search in Vam-
pire. Passive clauses are stored in two queues ordered by weight and age respectively and clause se-
lection picks clauses from the front of each queue based on a given ratio. One proof search heuristic
(nongoal weight coefficient) specifies a multiplier for the weight of clauses not derived from
the goal. Setting this to a value greater than one prioritises clauses derived from the goal.

Not Using the Goal. It should be pointed out that Vampire also has many heuristics and algorithms
that make no reliance on the existence of a goal. Most proof search heuristics (e.g. literal selection [8])
are based on other metrics that suggest that clauses or inferences would lead to a proof quickly. Ad-
ditionally, Vampire does not only employ the above saturation-based technique as it also uses finite
model building [16] to establish finite satisfiability in the theory of uninterpreted functions. For this
information about the goal is unnecessary.

3 Detecting Goals
In this section we consider two (rather primitive) heuristics for detecting input formulas that are likely
to be goals. Ideally we would not need to do this as the originator of a problem is most likely best-



Table 1: Statistics on things that look like negated conjectures.

Kind of formula Count of problems containing this kind
¬∀x.F [x] 3,846
∃x.F [x] 3,686

Infrequent function symbols 51,628

placed to identify the goal. However, we implement the below techniques to (i) test whether identifying
goals in SMT-LIB problems can help, and (ii) perform goal-oriented reasoning on existing problems in
SMT-LIB that are unlikely to ever be annotated with goal information.

3.1 Things That Look Like Negated Conjectures
Our first heuristic attempts to detect things that might be a negated conjecture ¬C such that overall
unsatisfiability will show that C is valid (with respect to the rest of the problem). We focus on univer-
sally quantified conjectures. In such cases formulas of the form ¬∀x.F [x] or equivalently ∃x.F [x] are
likely candidates. However, some problems may already have been subject to some preprocessing, in
which case existential variables may have been Skolemised. To detect such cases we look for formulas
containing very infrequently occurring constant symbols or function symbols applied only to variables.
Our default notion of very infrequent is for the symbol to appear in a single formula.

As a sanity check, Table 1 counts the number of problems with formulas of this kind in the area
of SMT-LIB we are interested in for Vampire (problems containing quantifiers but not containing bit-
vectors or floating point). This shows that there are a non-trivial number of problems to be targeted
with this approach. However, it should be noted that the infrequent function symbols metric is likely
to be a (significant) over-approximation of the number of problems containing useful goals as (i) all
problems containing very few assertions will almost certainly have been included and (ii) problems
containing constant symbol definitions unused elsewhere (which is common in translations) will have
been included.

3.2 Things At the End
As an artefact of how problems are typically created, it is likely that goal assertions are placed at the
end of problem files. To check this hypothesis we examined proofs produced by the Vampire theorem
prover to see where the input formulas appear in the input problem. We chunk up the input problem
into 11 buckets (with the last bucket being the very last formula i.e. it is an unevenly sized bucket) and
find the distribution of the assertions from the proof across these buckets. Figure 2 gives the average
distribution across 35,676 proofs. Within this data 76.5% of proofs contain the last line of the input
problem. However, roughly 50% of proofs only use the last line of the problem in the proof which
suggests that there are many problems consisting of a single line (this is not necessarily the case for all
of these proofs, it may just be that the final line is inconsistent by itself). It is interesting to note that the
second most common area for parts of the input problem to come from is the start – although this may
again be an artifact of short problems.

The heuristic we implement is naive but supported (somewhat) by this evidence. We select the
assertions at the end of the problem (with the default being the single final assertion) to mark as goal
formulas. It should be noted that we don’t necessarily expect this to be useful in a competition setting
where syntactic features of a problem are altered. However, the focus here is on solving actual problems
and it seems reasonable to attempt to make use of the artefact of goals appearing at the end of files.



Figure 2: Checking the hypothesis that goals are at the end of problem files.

3.3 Implementation
The above heuristics lead to the implementation of a simple preprocessing step that marks formulas as
goals. The option is called guess the goal and is (currently) available on an experimental branch
of Vampire’s GitHub repository2. The values this new option can take are as follows:

• exists top. Mark as a goal if the top level is ¬∀ or ∃.

• exists sym. Mark as goal if contains a symbol appearing in at most k formulas (default k = 1)

• exists all. The union of the previous two.

• position. Mark as goal in the final n (default n = 1)

• all. Perform all of the above.

Both the exists sym and position options come with further parameters but we do not explore
those here as our experiments are proof-of-concept in nature.

4 Experimental Evaluation
The experiments described in this section use all relevant problems from SMT-LIB3 (i.e. those with
quantifiers and no floating point or bitvectors)4 and were run on the StarExec cluster [22] where each
node contains an Intel Xeon 2.4GHz processor. In experiments we run Vampire 4.2.1 extended with the
options previously described.

4.1 Exploring Goal-Oriented Heuristics
In our first experiment we consider the default mode of Vampire (with AVATAR modulo theories [14]
switched on) and run exists all goal detection and the two different goal-oriented preprocessing

2https://github.com/vprover/vampire/tree/smt_goals
3Copied from StarExec space https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=

234826.
4We report on a subset of the benchmarks in the experiments as for some logics the results are uninteresting.

https://github.com/vprover/vampire/tree/smt_goals
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=234826
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=234826


Table 2: Number of solved problems when running goal detection and goal-oriented preprocessing with
SInE selection and set of support. Numbers in parenthesis give number of unique solutions.

Logic default sine sine10 sos
UFDTLIA 50 49 49 59 (10)
UFDT 1,944 (10) 1,935 (2) 1,932 (3) 1,933 (16)
UFIDL 55 55 55 55
UFLIA 4,351 (96) 4,250 (10) 4,249 (8) 3,789 (40)
UF 2,950 (31) 2,966 (2) 2,973 (4) 2,925 (26)

heuristics for 5 minutes5. For SInE we ran with two variants with sine10 being more restrictive than
sine (it limits sine depth to 10).

Table 2 presents the results for logics where one or more problems were solved. For many logics no
problems were solved as the default strategy in Vampire is not very powerful by itself - we typically run
tens to hundreds of different strategies in a portfolio mode (see next section). A solution is unique if it
is solved by exactly one strategy.

All three strategies using goal-oriented preprocessing solved problems unsolved without those heuris-
tics and in two cases such a strategy solved the most problems overall in a logic. This demonstrates that
detecting goals can contribute positively to solving problems. The most restrictive of these options is
sine10 and this performed the best.

4.2 Extending the Portfolio Mode
In our second experiment we applied goal detection on top of the portfolio used in the SMT competi-
tion6. Portfolio mode uses many strategies using a variety of different preprocessing and proof search
options in a time-sliced manner across multiple cores. This time Vampire was run for 30 minutes (al-
though it usually runs for much less time) with two of the goal detection strategies (due to issues with
StarExec the results of other experiments are pending). The results are given in Table 3 (we exclude
logics where all three strategies solve the same number of problems). Again we can see that the use of
goal detection can improve the performance of Vampire. The results suggest that including the strategies
where goal detection helped in the standard portfolio mode would observably improve the performance
of Vampire.

5 Effect on SMT Solvers
In this section we consider whether adding this goal information could help traditional SMT solvers
following the lazy CDCL(T ) architecture [3] e.g. CVC4 [1].

Vampire uses goal information to select the part of the search space to prioritise when searching for
a contradiction. SMT solvers (and SAT solvers) could do the same in variable selection i.e. selecting
the SAT variable that represents the literal ‘closest’ to the goal (for some measure). We have begun to
explore a similar idea in Vampire’s AVATAR architecture [23] but have not obtained any experimental
results yet.

5We run for 5 minutes with single strategies and 30 minutes with portfolio mode as the portfolio mode is made up of many
single strategies and our results from the single strategy experiments are meant to act as guidance as to what should be added to
the portfolio.

6See http://smtcomp.sourceforge.net/2018/

http://smtcomp.sourceforge.net/2018/


Table 3: Number of solved problems when extending portfolio mode with goal detection. Numbers in
parenthesis give number of unique solutions.

Logic off exists all position
AUFDTLIA 634 634 635 (1)
AUFLIRA 19,760 (1) 19,761 (1) 19,760
AUFNIRA 1,051 1,049 1,054 (4)
LIA 218 218 217
LRA 914 (2) 1,006 (6) 1,003 (7)
UFDT 2,207 (4) 2,218 (14) 2,202 (1)
UFLIA 7,537 (14) 7,540 (23) 7526 (14)
UFNIA 2,404 (19) 2,386 (20) 2,383 (18)
UF 3,474 (14) 3,468 (15) 3,462 (8)

Another approach that we would expect to benefit from goal information would be for instantiation
[19]. The most obvious use-case would be during instantiation via E-matching [12]. Preferring goal
related terms during trigger selection could help find conflicting instances more quickly. Since a large
number of instantiations increase the size of the congruence closure significantly the terms generated by
E-matching could even be reduced to only those related to the goal. One could also imagine using goal
information in model-based [6] and conflict-based [21] instantiation.

In the context of Isabelle, Sledgehammer already uses the conjecture to perform relevance filtering
on the input problems[4]. However, this filtering is performed once and then the problem is given to the
solver. If a solver can perform its own filtering in different ways (e.g. within a portfolio) using this goal
information then it may be able to find a more optimal filtering.

Inductive theorem proving is another area where it can be helpful to know what the goal is as
induction should be applied in a guided way. Previous approaches to integrating induction into SMT
solvers [20, 11] used similar heuristics to those mentioned in Section 3 to identify formulas on which to
apply induction. The TIP format already provides the assert-not construct [5] to indicate a goal.

Does Adding Goals Help CVC4? We ran a further experiment to investigate whether goal detection
could help in SMT solvers. We used Vampire as a pre-processor (--mode tpreprocess), once with
SInE selection of unlimited depth and goal guessing turned on (-ss axioms -gtg exists all)
and once without (-ss off)). To reduce the impact of unrelated optimizations, the options for func-
tion definition elimination (-fde off, unused predicate definition removal (-updr off) and for
subterm naming (-nm 32767) were turned off. Since Vampire only outputs the TPTP format we were
restricted solvers that can read it. This reduced the choice of SMT solvers to CVC4 which we used the
development version7 with a timeout of 300 seconds on the two versions of the benchmark.

To identify problems that could benefit from relevance filtering, we took the non-incremental SMTLIB
benchmarks8 and focused on the 2534 benchmarks that are expected to be unsatisfiable and larger than
100KB. Due Starexec’s space quota of 5GB, we removed the lahiri-cav09-storm-queries from the
UFNIA suite and ended up with 2225 files. Out of these 1930 could be parsed by CVC49.

Applying SInE selection took between 0.005 and 6.892 with an average of 0.328 seconds. There

7Version 1.6pre at git commit 28e9077fad9d5c61c61a1762e7cf021c226cb9c2
854825 in the logics ALIA, AUFDTLIA, AUFLIA, AUFLIRA, AUFNIRA, LIA, LRA, NIA, NRA, UF, UFDT, UFDTLIA,

UFIDL, UFLIA, UFLRA, UFNIA
9Some literals like $false = X are unsupported.



Figure 3: Scatter plots of SInE selection with goal guessing against no sine selection and a direct call of
CVC4

were 281 problems that could not be solved without relevance filtering, with 23 being solved between
50 and 250 seconds. There were also 7 cases taking longer than 10 seconds where the speedup factor
was greater than 2. Compared to CVC4 executed directly on the original SMTLIB file there are none
that can only be solved with our heuristics. There were 3 cases taking longer than 10 seconds where the
speedup factor was greater than 2. Scatter plots of the timings can be seen in Figure 3. This indicates
possible speedups for direct inclusion of relevance filtering into SMT solvers.

6 Conclusion

The aim of this paper was to demonstrate that adding the notion of a goal or conjecture to SMT-LIB
problems would be generally helpful. We have done this by automatically detecting likely goal asser-
tions and then showing that treating such assertions as goals in the Vampire theorem prover improved
performance. We are not suggesting that the options described in this paper are optimised or will be
used as they are within Vampire in the future (although we will explore this).

Whilst we are suggesting that it would be helpful for SMT-LIB problems to include goal information,
we have made no proposal as to how this should be done.
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