
Higher-Order SMT Solving

(Work in Progress)

Haniel Barbosa1, Andrew Reynolds1, Pascal Fontaine2, Daniel El Ouraoui2, and
Cesare Tinelli1

1 University of Iowa, Iowa City, USA
{haniel-barbosa,cesare-tinelli}@uiowa.edu,andrew.j.reynolds@gmail.com

2 University of Lorraine, CNRS, Inria, and LORIA, Nancy, France
{daniel.el-ouraoui,pascal.fontaine}@inria.fr

Abstract

Satisfiability modulo theories (SMT) solvers have throughout the years been able to
cope with increasingly expressive formulas, from ground logics to full first-order logic mod-
ulo theories. Nevertheless, higher-order logic within SMT (HOSMT) is still little explored.
In this preliminary report we discuss how to extend SMT solvers to natively support higher-
order reasoning without compromising their performances on FO problems. We present a
pragmatic extension of the cvc4 solver in which we generalize existing data structures and
algorithms to HOSMT, thus leveraging the extensive research and implementation efforts
dedicated to efficient FO solving. Our evaluation shows that the initial implementation
does not add significant overhead to FO problems and its performance is on par with
the encoding-based approach for HOSMT. We also discuss an alternative extension being
implemented in veriT, in which new data structures and algorithms are being developed
from scratch to best support HOSMT, thus avoiding the inherent difficulties of generalizing
in a graceful way existing infrastructure not intended for higher-order reasoning.

1 Introduction

Higher-order (HO) logic is a pervasive setting for reasoning about numerous real-world appli-
cations. In particular, it is widely used in proof assistants (also known as interactive theorem
provers) to provide trustworthy, machine-checkable formal proofs of theorems. A major chal-
lenge in these applications is to automate as much as possible the production of these formal
proofs, thereby reducing the burden of proof on the users.

An effective approach for stronger automation is to rely on less expressive but more au-
tomatic theorem provers to discharge some of the proof obligations. Systems such as HOLy-
Hammer, MizAR, Sledgehammer, and Why3, which provide a one-click connection from proof
assistants to first-order provers, have led in recent years to considerable improvements in proof
assistant automation [11]. Today, the leading automatic provers for first-order classical logic
are based either on the superposition calculus [1, 25] or on CDCL(T ) [24]. Those based on the
latter are usually called satisfiability modulo theory (SMT) solvers [6] and are the focus of this
paper. We present preliminary extensions of SMT solvers to natively support higher-order rea-
soning. Our goal is to avoid the completeness and performance issues associated with encoding
higher-order problems into first-order ones.

The higher-order language we use is the syntax extension proposed by Barbosa et al. [2]
to augment SMT-LIB [5], the standard first-order language recognized by SMT solvers, with
partial applications, λ-abstractions, quantification on higher-order variables and application of
variables. We adopt Henkin semantics [18, 9], in which the domain of function interpretations
can be restricted to terms expressible in the language, so that we can search for refutations



Higher-Order SMT Solving (WIP) Haniel Barbosa et al.

relying on a natural lifting of the Herbrand theorem from first-order logic. Higher-order logic
with Henkin semantics is thus semi-decidable, as is first-order logic. Part of our future work is
to properly present the theoretical foundations and formal correctness of our techniques, but we
are effectively developing sound but incomplete refutation calculi for extensional higher-order
logic with Henkin semantics.

We present a pragmatic extension of the cvc4 [4] solver, which has two main components:
extensions to the ground congruence closure procedure to account for partial applications and
extensionality (Section 2.1); and extensions to the E-matching algorithm to account for partial
applications and higher-order variables (Section 2.2). We assume without loss of generality
that both components operate on λ-free terms, which we achieve by performing λ-lifting at
preprocessing in a standard way [20]. Partial applications are supported by means of the
applicative encoding, a complete approach for reducing HO proving to FO proving [21]: the
problem signature is extended with a family of binary symbols @τ1,τ2 to represent the (curried)
application of terms of function type τ1 to arguments of type τ2. By considering function
symbols as constants, partial applications become regular first-order applications. To avoid the
performance issues of applying this reduction eagerly to regular applications (which is required
for completeness), we apply this reduction lazily by means of our extension to the congruence
closure procedure (Section 2.1.1). Techniques to account for extensionality and higher-order
variables are described in Sections 2.1.2 and 2.2, respectively, and mostly involve engineering
challenges. Finally, we evaluate the initial cvc4 implementation in Section 2.3, observing no
significant overhead in FO problems due to the extended algorithms and that on HOSMT
the new system performs similarly to the old one on the first-order-encoding-based equivalent
problems.

We also discuss an alternative extension implemented in veriT [13], in which new data
structures and algorithms are being developed from scratch to best support HOSMT. This
will provide more flexibility to later develop new techniques specially suited for higher-order
reasoning. As a starting point, we reimplemented a ground decision procedure with native
support for higher-order terms. It is based on congruence closure, but with a focus on simplicity
rather than optimal complexity. Indeed simplicity of the algorithm will be instrumental to
extend its expressivity in the future. Even so, we show the algorithm is quite efficient on
QF UF, the SMT-LIB category which is most sensitive to the efficiency of the congruence
closure algorithm. We are currently proceeding to extend the instantiation infrastructure to
higher-order, and in particular, the CCFV [3] framework which actually interacts heavily with
the congruence closure algorithm.

2 A pragmatic extension for HOSMT

For simplicity, and without loss of generality, we consider λ-free formulas in Skolem form, with
all quantified subformulas being quantified clauses; we also assume all atomic formulas are
equalities. CDCL(T ) solvers proceed by enumerating assignments for the propositional ab-
straction of the input formula, i.e. the formula obtained by replacing every atom and quantified
subformula by a proposition. Such an assignment corresponds to a set E ∪Q, in which E and
Q are conjunctive sets of ground literals and quantified formulas, respectively. If E ∪Q is con-
sistent, all of its models also satisfy the input formula; if not, a new assignment is derived. A
ground solver first checks the satisfiability of E, and, if it is satisfiable, an instantiation module
derives ground instances I from Q such that the satisfiability of E ∪ I is checked. This is
repeated until either a conflict is found, and a new assignment for the propositional abstraction
must be produced, or no more instantiations are possible. Of course, the whole process might

2



Higher-Order SMT Solving (WIP) Haniel Barbosa et al.

not terminate and the solver might loop indefinitely.
We discuss below how cvc4 has been extended to check the satisfiability of E in a setting

with partial applications and to instantiate Q when functional variables are present.

2.1 Extending the ground solver

2.1.1 Lazy applicative encoding

We extend the ground decision procedure in cvc4 by introducing equalities between first-order
terms (e.g. f(a)) and their equivalent representation in the applicative encoding (e.g. @(f, a)).

Inputs in the higher-order extension of SMT LIB [2] may contain partial applications of
function symbols. For example, if f is of type Int × Int → Int and a is an integer, then we
say the term f(a) is a partial application of f ; we understand type Int × Int → Int as type
Int → Int → Int when the function f is partially applied. Notice this term has function type
Int → Int. As a preprocessing step, all partial applications are turned into total applications
by using the binary @ symbols and considering function symbols as constants. Above, f(a)
would be replaced by @(f, a). Once E is determined to be satisfiable by the regular first-order
procedure, we introduce equalities between regular terms (i.e. fully applied terms without the
@ symbol) and their applicative counterpart and recheck the satisfiability of the resulting set
of constraints. For the sake of performance, we only introduce these equalities for regular
terms which interact with partially applied ones. In particular, we introduce equalities only
for function symbols that appear as members of congruence classes in the E-graph (i.e. the
congruence closure of E built by the ground decision procedure). A function occurs in an
equivalence class if it is an argument of an @ symbol or if it appears in an equality between
function symbols, and thus as part of a partial application. The equalities between regular
terms and their applicative encodings is kept internal to the E-graph, therefore avoiding that
it affects other parts of the ground decision procedure.

For example, consider the constraints {@(f, a) ' g, f(a, a) 6' g(a), g(a) ' h(a)} ⊆ E where
g has type Int → Int. We have that E is initially found to be satisfiable. Equalities are added
to E since f and g appear in the E-graph, resulting in the set

E′ = E ∪ {@(@(f, a), a) ' f(a, a), @(g, a) ' g(a)}

When determining the satisfiability of E′ the equality @(@(f, a), a) ' @(g, a) will be derived
by congruence and hence f(a, a) ' g(a) will be derived by transistivity, which leads to a
conflict that would otherwise not have been detected without the additional equalities. Notice
that we do not require equalities between fully applied terms whose functions do not appear
in the E-graph and their equivalent in the applicative encoding. In particular, the equality
h(a) ' @(h, a) is not introduced in this example.

2.1.2 Extensionality

When reasoning about equality between terms of function types, we must ensure all models
satisfy the extensionality property, characterized by the axiom ∀x̄. f(x̄) ' g(x̄) ↔ f ' g for
all functions f and g of same type. Notice that the “←” direction comes as a consequence of
congruence in the above scheme. If e.g. both f ' g and f(a) 6' g(a) are asserted for some
a, a conflict will be derived. To ensure the “→” direction, first, for each disequality between
functions f 6' g, we infer the disequality f(k̄) 6' g(k̄) for some fresh k̄, which witnesses the
contrapositive of the above extensionality property. We also apply this lemma for certain pairs
of functions f and g that are neither asserted to be equal nor disequal in the current assignment,

3



Higher-Order SMT Solving (WIP) Haniel Barbosa et al.

which is based on the cardinality of their types. If f and g are of some type that has infinite
cardinality, it is always possible to satisfy the disequality f(k̄) 6' g(k̄) for fresh k̄. On the other
hand, if f and g have function types of finite cardinality, the above disequality may lead to a
conflict.

Consider for example the constraint distinct(p1, p2, p3), in which p1, p2, p3 are predicates
over the same type U . The distinct predicate holds if and only if all of its arguments are
interpreted differently. If U has cardinality one, this constraint is unsatisfiable since it enforces
that there must exist elements k1, k2, k3 of type U such that p1(k1) 6' p2(k1), p1(k2) 6' p3(k2),
and p2(k3) 6' p3(k3). Since U has cardinality one, we have that k1 ' k2 ' k3, and thus the
three disequalities are unsatisfiable since the range of p1, p2, p3 is a finite set with cardinality 2.
Therefore in this example, we would introduce the lemmas:

p1 ' p2 ∨ p1(k1) 6' p2(k1)
p1 ' p3 ∨ p1(k3) 6' p3(k3)
p2 ' p3 ∨ p2(k2) 6' p3(k2)

where k1, k2, k3 are fresh Skolem constants to ensure that the decision procedure detects the
inconsistency. We add lemmas of this form for each pair of functions f and g having the same
(finite) type where we have yet to infer f ' g or f 6' g.

2.1.3 Model generation for ground formulas

When cvc4 determines that a problem is satisfiable it can produce a first-order model M as a
witness. The models generated by SMT solvers like cvc4 map functions f to a function, denoted
M(f), of the form λx ite(x ' t1, s1, . . . ite(x ' tn−1, sn−1, sn) . . .), where ite denotes if-then-else.
In other words, functions are interpreted in models M as almost constant functions. In the
presence of partial applications, this scheme can sometimes lead to functions with exponentially
many entries. For example, consider the satisfiable formula

f1(0) ' f1(1) ∧ f1(1) ' f2
f2(0) ' f2(1) ∧ f2(1) ' f3
f3(0) ' f3(1) ∧ f3(1) ' 2

in which f1 : Int × Int × Int → Int, f2 : Int × Int → Int, and f3 : Int → Int. To produce the
model values of f1 as a list of total applications with three arguments into an integer, we would
need to account for 8 cases. In other words, we require 8 ite cases to indicate f1(x, y, z) ' 2
for all inputs where x, y, z ∈ {0, 1}. The number of entries in the model is exponential on the
“depth” of the chain of functions that each partial application is equal to, which can make
model building unfeasible if just a few functions are chained as in the above example.

To avoid such an exponential behavior, model building for higher-order functions in cvc4

assigns values for functions in terms of the other functions that their partial applications are
equated to. This way in the above example f1 would have only two model values, depending on
whether the first argument of its application is 0 or 1, by using the model values of f2 applied
on its two other arguments. In other words, we construct M(f1) as the term:

λxyz ite(x ' 0,M(f2)(y, z), ite(x ' 1,M(f2)(y, z), ))

where M(f2) is the model for f2 and is an arbitrary value. The model value of f2 would be
analogously built in terms of the model value of f3. This guarantees a polynomial construction
for models in terms of the number of constraints in the problem in the presence of partial
applications.

4



Higher-Order SMT Solving (WIP) Haniel Barbosa et al.

Respecting extensionality In order to be consistent with the extensionality axiom, model
construction explicitly makes functions f and g which are not asserted equal to be disequal
when building a model. This is accomplished by adding disequalities of the form f(k̄) 6' g(k̄)
for fresh k̄. Such disequalities can always be satisfied because functions ranging over finite types
would already be part of such an inference added by the decision procedure as described in the
previous section. Hence, f and g must be of infinite type, and as noted earlier, we can always
create a new element of the type to witness their disequality.

2.2 Extending the instantiation module

Currently cvc4 only applies trigger-based instantiation, or E-matching [16] for solving problems
that involve higher-order constraints. These techniques are based on choosing trigger terms t
containing free variables x̄, and deriving substitutions {x̄ 7→ s̄} such that E entails that t{x̄ 7→ s̄}
is equivalent to some term g in E. In this case, we say that g E-matches t under the substitution
{x̄ 7→ s̄}. For example, if E is {f(a) ' g(b), a ' g(b)}, then f(a) E-matches f(g(x)) under the
substitution {x 7→ b}. To accomodate function variable applications and partial applications,
the standard algorithm for E-matching must be adapted in several ways.

One of the challenges when using the applicative encoding is that regular indexing tech-
niques, which are paramount for efficient E-matching, are dependent on looking at the head of
the term. However, in the presence of equalities between functions, it may be the case that a
match involves a trigger term and ground term with different head symbols. For example, if E
contains the equality @(f, a) ' g and the term f(a, b) where f : Int× Int→ Int and g : Int→ Int,
then notice that g(x) is equivalent modulo E to the term f(a, b) under the substitution x 7→ b.
Such a match is found by indexing all terms that are applications of either @(f, a) or g in a
common term index. This ensures that when we find matches for g(x), the application f(a, b)
(whose applicative counterpart is @(@(f, a), b)) is considered.

With this approach the regular first-order E-matching algorithm of cvc4 can be used for
trigger-based instantiation. Our evaluation shows this performs on par with the first-order
encoded benchmarks, even though the remaining instantiation techniques of cvc4 are not yet
available for higher-order instantiation.

Towards higher-order E-matching. Let p : Int→ Bool, q : Int→ Bool, and k : Int× Int→
Int and consider the formula

ϕ = q(k(0, 1)) ∧ ¬p(k(0, 0)) ∧ ∀(f : Int× Int→ Int) (y, z : Int). p(f(y, z)) ∨ ¬q(f(1, y))

The satisfiability of ϕ depends on which semantics we use. We distinguish between two se-
mantics, as defined by Bentkamp et al. [8]: “λ-free Henkin semantics” and regular Henkin
semantics. In Henkin semantics the universes of interpretation for functions need only contain
the functions that are expressible as terms, so whether we allow or not λ-abstractions as valid
terms in our logic determines which semantics we want to use. In λ-free Henkin semantics the
above problem is satisfiable, as there is no instantiation for the functional variable f into a
lambda-free term that leads to a refutation. However if we allow λ-abstractions, and there-
fore use regular Henkin semantics, the above problem can be found unsatisfiable with e.g. the
instantiation {f 7→ λw1w2. k(0, w1), y 7→ 0, z 7→ 0}.

First-order E-matching is not capable of finding instantiations as the one above, since it
does not derive new lambda expressions. To address this issue we have developed an extension
of E-matching based on Huet’s algorithm to higher-order matching [19]. In this extension,
when given a match for a trigger whose head is a function variable, we obtain variations of the

5



Higher-Order SMT Solving (WIP) Haniel Barbosa et al.

match based on permuting the arguments of the value of the head in the match. Considering
again the above formula ϕ, first-order E-matching for the pair 〈f(y, z), k(0, 0)〉 would find
the substitution {f 7→ k, y 7→ 0, z 7→ 0}. Our procedure may then generate the following
instantiations for f :

f 7→ λw1w2. k(w1, w2) (1)

f 7→ λw1w2. k(w2, w1) (2)

f 7→ λw1w2. k(0, w1) (3)

f 7→ λw1w2. k(w1, 0) (4)

f 7→ λw1w2. k(0, w2) (5)

f 7→ λw1w2. k(w2, 0) (6)

f 7→ λw1w2. k(0, 0) (7)

in which (2)− (7) are variations obtained by permuting the function arguments with constants
according to the match that was found. Note that (3) is the instantiation for f we gave as
example above to show that ϕ unsatisfiable with Henkin semantics.

We have yet to evaluate the effectiveness of this technique in cvc4, but once we consider
benchmarks which are only unsatisfiable w.r.t. regular Henkin semantics such techniques based
on higher-order unification will be paramount. Ideally the benchmarks themselves should spec-
ify w.r.t. which semantics their satisfiability should be checked, so that the appropriate solving
technique can be chosen.

2.3 Evaluation

We have evaluated our pragmatic extension of cvc4 on a benchmark set derived from the
“Judgment Day” test harness [12]. It consists of 1240 provable goals originating from different
Isabelle [26] formalizations such that each one is encoded into a first-order problem in SMT-
LIB [5] and into an HOSMT problem. The encodings maintain the invariant that the SMT-LIB
problem is unsatisfiable if and only if the HOSMT problem is unsatisfiable in the λ-free Henkin
semantics. Moreover, the encoded HOSMT problems are λ-free.

We present the results of two configurations of cvc4, with and without support for HOSMT,
i.e. to partial applications, application of variables and higher-order quantification. We denote
the version with the techniques described in this paper by cvc4-ho. Our goal is to measure
whether cvc4-ho has a significant decrease in performance on the first-order problems w.r.t.
cvc4 and how cvc4-ho performs on HOSMT problems in comparison with cvc4 on their
first-order counterpart.

hosmt smt-lib

#unsat avg time (s) #unsat avg time (s)

cvc4-ho 648 1.08 662 1.02
cvc4 4 0.06 662 1.01

Table 1: Summary of cvc4 configurations on “Judgement day” benchmarks with 60s timeout.

Our experiments were performed on the StarExec logic solving service [32]. The timeout
was set for 60 seconds, since our goal is evaluating SMT solvers as back-ends of verification
and ITP platforms, which require fast answers. The results for problems solved within the

6



Higher-Order SMT Solving (WIP) Haniel Barbosa et al.

10−2 10−1 100 101

cvc4
10−2

10−1

100

101
cv

ch
o

hosmt vs smt-lib

10−2 10−1 100 101

cvc4
10−2

10−1

100

101

cv
ch

o

smt-lib

Figure 1: Time comparison of cvc4 configurations on “Judgement day” benchmarks.
The left figure compares cvc4-ho on “Judgement day” higher-order problems with cvc4 on
the translation to first-order of the same problems. The right figure evaluates both cvc4 and
cvc4-ho on the same first-order problems.

timeout are summarized in Table 1 and Figure 1. Note that cvc4 solves 4 HOSMT problems,
which indicates that these problems contained no partial applications and that proving their
unsatisfiability did not depend on high-order instantiation.

In the comparison on the effectiveness of solving HOSMT rather than the encoded first-order
counterpart, we have that cvc4-ho solves slightly less problems than cvc4 while being slightly
slower on average. The “hosmt vs smt-lib” scatter plot in Figure 1 shows that there is a gain/loss
behavior as well, which we can attribute to the heuristic nature of instantiation in SMT solvers.
In total, cvc4-ho solves 10 more and 24 less problems than cvc4. The “smt-lib” scatter plot
shows that cvc4-ho and cvc4 have virtually the same performance on first-order problem and
that they solve the same number of problems, indicating that our pragmatic extension costs no
significant overhead for pure first-order solving.

Given the preliminary state of our implementation we consider these results promising.
There are important instantiation techniques, such as finding conflicting instances [28], available
for first-order problems that we have not yet generalized to the higher-order case. This indicates
to us that once a more mature implementation of our pragmatic extension is in place we can
outperform cvc4 w.r.t. the first-order encoded problems.

3 Redesigning a solver for HOSMT

As seen previously, the main difficulties in extending an SMT solver to higher-order logic come
from partially applied functions and functions symbols as arguments of other functions or as
quantified variables. There already exist some automatic provers with native support for higher-
order logic, e.g. Satalax [14] and LEO-II [10], Leo-III [31], respectively extending the tableau
calculus and resolution to higher-order reasoning. It seems natural to also lift-up SMT solving
techniques to higher-order, and not only use encodings, even if it is an on-the-fly encoding as
shown in Section 2. This approach requires however much more work in the core data-structures
and algorithms, and can only be done within a lightweight solver. The veriT solver seems an

7



Higher-Order SMT Solving (WIP) Haniel Barbosa et al.

10−1 100 101 102

veriT-ho
10−1

100

101

102
cv

c4

10−1 100 101 102

veriT
10−1

100

101

102

ve
ri

T-
ho

Figure 2: Time comparison of cvc4 veriT and veriT-Ho on QFUF benchmarks.

appropriate basis.

As above, the solver should be adapted in two ways. First, since SMT reasoning is mostly
based on ground solving, the ground decision procedure for uninterpreted symbols should first
handle natively both partial functions and functions as arguments of other functions. Second,
instantiation techniques should also be adapted and complemented for higher-order reasoning.
The decision procedure for uninterpreted symbols in the veriT solver is essentially based on
the classical congruence closure algorithm developed by Downey et al. [17] and Nelson and
Oppen [22], whose asymptotic time complexity is O(n log n). The congruence closure module
in veriT more precisely follows Nieuwenhuis et al. [23] which is more appropriate to SMT
with an underlying SAT solver. As good as it is, this algorithm is however quite complex
and not really flexible, especially considering the expected demands of our future higher-order
SMT solver: data structures are strongly nested together and extensions are hard. We thus
reimplemented a new, simpler module, suitable for the changes we envision. This is at the cost
of complexity (the algorithm is quadratic and not O(n log n) anymore) but better integrates
with various other features such as term addition, injective functions, rewriting or even to do
computation, in particular for β and η transformations. We also aim at a better integration
with the CCFV [3] framework, which we intend to extend to HO unification and thus fully
lift-up veriT to HOSMT. Instead of union-find data-structures, this simple algorithm oper-
ates straightforwardly on a graph where nodes are the terms, and edges are relations (equality,
congruence, disequality) between them. An equivalence class is a connected component with-
out disequality edges. All operations (incremental addition of new constraints, backtracking,
conflict analysis, proof production) are straightforward to implement. The algorithm uses a
curried representation: the term f(a, g(b, c)) is understood as ((f a) ((g b) c)), much like in the
original presentation by Downey et al. [17]. Partial functions handled straightforwardly, as well
as functions as arguments of other functions. The congruence closure algorithm operates on
pairs, left and right being handled totally symmetrically in contrast to FO congruence closure.

All this can be considered as folklore (see e.g. [15, 30]) but an important question is: how
much efficiency do we pay for simplicity and higher-order? Figure 2 shows that veriT with
the simpler congruence closure is around 3 times slower on the QF UF category of the SMT-
LIB than the standard version of veriT. The veriT solver was second in this category in
the SMT-COMP 2017, behind Yices and in front of CVC4. The simpler solver is still better

8



Higher-Order SMT Solving (WIP) Haniel Barbosa et al.

than CVC4, which means using the simpler congruence closure would not have changed the
ranking in the SMT-COMP 2017. This ground solver is thus a good basis to handle higher-
order formulas. We are now focusing on higher-order instantiation to make the solver ready to
deal with higher-order formulas natively.

4 Related work

Since the dawn of automated reasoning much has been done on automating higher-order theo-
rem proving, from the pioneering work of Robinson [29] and Huet [19] to more recent approaches
such as in the higher-order ATPs LEO-II [10], Leo-III [31] and Satallax [14]. However such
systems are often not effective on first-order problem, since they have been built primarily to
solve HO problems. Nevertheless, we intend to investigate HO provers based on instantiation,
such as Satallax, to determine whether we can adapt some of their successful techniques for
HO solving to HOSMT without detriment to performance on FO solving.

Our approach shares the same goal of recent work by Blanchette et al. [7, 8, 33] on gracefully
generalizing the superposition calculus [1, 25] to handle higher-order reasoning, such that super-
position provers can solve higher-order problems effectively while maintaining their efficiency
at first-order ones. Differently from instantiation-based SMT solvers, however, superposition
provers are much more sensitive to the applicative encoding, which can significantly decrease
their performance on first-order problems [8]. Therefore much of their work consists of extend-
ing the theoretical grounds on which a new generation of superposition provers that avoid the
applicative encoding can be based on. Blanchette et al. have promising results [8, 33] with such
extensions for the λ-free fragment of higher-order logic, but they have yet to extend their work
to tackle full higher-order problems.

5 Future directions

We have presented extensions for SMT solvers to handle HOSMT problems. The pragmatic ex-
tension of cvc4 performs similarly to the standard encoding-based approach despite our limited
support for instantiation techniques. We plan to continue our extension to perform higher-order
E-matching as described in Section 2.2 and lift complete techniques such as enumerative in-
stantiation [27] in order to obtain effective and refutationally complete calculi w.r.t. Henkin
semantics. We also plan to lift conflict-based instantiation [28] to HOSMT by extending the
instantiation module of cvc4 to perform some limited form of higher-order E-unification.

In ongoing work we are improving the implementation in veriT to combine the new ground
decision procedure with the instantiation module and evaluate the new framework in a similar
manner as done for cvc4 in Section 2.3. Extending the instantiation module to perform higher-
order E-matching and E-unification will also allow performing both trigger-based and conflict-
based instantiation in HOSMT.

Acknowledgment We are grateful to Jasmin Blanchette for numerous discussions through-
out the development of this work, for providing funding for research visits, and for generating
the benchmarks in which we evaluate our approach. This work has been partially supported by
the H2020-FETOPEN-2016-2017-CSA project SC2 (712689), and by the European Research
Council (ERC) starting grant Matryoshka (713999).

9



Higher-Order SMT Solving (WIP) Haniel Barbosa et al.

References

[1] Leo Bachmair and Harald Ganzinger. Rewrite-Based Equational Theorem Proving with Selection
and Simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

[2] Haniel Barbosa, Jasmin Christian Blanchette, Simon Cruanes, Daniel El Ouraoui, and Pascal
Fontaine. Language and proofs for higher-order SMT (work in progress). In Catherine Dubois and
Bruno Woltzenlogel Paleo, editors, Workshop on Proof eXchange for Theorem Proving (PxTP),
volume 262 of EPTCS, pages 15–22, 2017.

[3] Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. Congruence closure with free variables.
In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for Construction and Analysis
of Systems (TACAS), volume 10206 of Lecture Notes in Computer Science, pages 214–230, 2017.

[4] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim
King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, Computer Aided Verification (CAV), pages 171–177. Springer, 2011.

[5] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.6. Tech-
nical report, Department of Computer Science, The University of Iowa, 2017. Available at
www.SMT-LIB.org.

[6] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. Satisfiability Modulo Theo-
ries. In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, chapter 26, pages
825–885. IOS Press, 2009.

[7] Heiko Becker, Jasmin Christian Blanchette, Uwe Waldmann, and Daniel Wand. A transfinite
knuth-bendix order for lambda-free higher-order terms. In Leonardo de Moura, editor, Proc. Con-
ference on Automated Deduction (CADE), volume 10395 of Lecture Notes in Computer Science,
pages 432–453. Springer, 2017.

[8] Alexander Bentkamp, Jasmin Christian Blanchette, Simon Cruanes, and Uwe Waldmann. Super-
position for lambda-free higher-order logic. IJCAR 2018.

[9] Christoph Benzmüller and Dale Miller. Automation of higher-order logic. In Jörg H. Siekmann,
editor, Computational Logic, volume 9 of Handbook of the History of Logic, pages 215–254. Elsevier,
2014.

[10] Christoph Benzmüller, Nik Sultana, Lawrence C. Paulson, and Frank Theiss. The higher-order
prover leo-ii. J. Autom. Reasoning, 55(4):389–404, 2015.

[11] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban. Hammering
towards QED. J. Formalized Reasoning, 9(1):101–148, 2016.

[12] Sascha Böhme and Tobias Nipkow. Sledgehammer: Judgement day. In Jürgen Giesl and Reiner
Hähnle, editors, International Joint Conference on Automated Reasoning (IJCAR), volume 6173
of Lecture Notes in Computer Science, pages 107–121. Springer, 2010.

[13] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine. veriT: An
Open, Trustable and Efficient SMT-Solver. In Renate A. Schmidt, editor, Proc. Conference on
Automated Deduction (CADE), volume 5663 of Lecture Notes in Computer Science, pages 151–156.
Springer, 2009.

[14] ChadE. Brown. Satallax: An automatic higher-order prover. In Bernhard Gramlich, Dale Miller,
and Uli Sattler, editors, Automated Reasoning, volume 7364 of Lecture Notes in Computer Science,
pages 111–117. Springer Berlin Heidelberg, 2012.

[15] Pierre Corbineau. Deciding equality in the constructor theory. In Thorsten Altenkirch and Conor
McBride, editors, Types for Proofs and Programs, pages 78–92, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[16] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem Prover for Program
Checking. J. ACM, 52(3):365–473, 2005.

[17] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpression

10



Higher-Order SMT Solving (WIP) Haniel Barbosa et al.

problem. J. ACM, 27(4):758–771, October 1980.

[18] Leon Henkin. Completeness in the theory of types. J. Symb. Log., 15(2):81–91, 1950.

[19] Gerard P. Huet. A mechanization of type theory. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence, IJCAI’73, pages 139–146, San Francisco, CA, USA, 1973.
Morgan Kaufmann Publishers Inc.

[20] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations. In Proc. Of
a Conference on Functional Programming Languages and Computer Architecture, pages 190–203,
New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[21] Manfred Kerber. How to prove higher order theorems in first order logic. In John Mylopoulos and
Raymond Reiter, editors, IJCAI-91, pages 137–142. Morgan Kaufmann, 1991.

[22] Greg Nelson and Derek C. Oppen. Fast Decision Procedures Based on Congruence Closure. J.
ACM, 27(2):356–364, 1980.

[23] Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence closure. In Jürgen Giesl,
editor, Rewriting Techniques and Applications (RTA), volume 3467 of Lecture Notes in Computer
Science, pages 453–468. Springer, 2005.

[24] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat and sat modulo theories:
From an abstract davis–putnam–logemann–loveland procedure to dpll(t). J. ACM, 53(6):937–977,
November 2006.

[25] Robert Nieuwenhuis and Albert Rubio. Paramodulation-Based Theorem Proving. In Alan Robin-
son and Andrei Voronkov, editors, Handbook of automated reasoning, volume 1, pages 371–443.
Elsevier and MIT Press, 2001.

[26] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[27] Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. Revisiting enumerative instantiation. In
Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for Construction and Analysis of
Systems (TACAS), volume 10806 of Lecture Notes in Computer Science, pages 112–131. Springer,
2018.

[28] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. Finding conflicting instances
of quantified formulas in SMT. In Formal Methods In Computer-Aided Design (FMCAD), pages
195–202. IEEE, 2014.

[29] John Alan Robinson. Mechanizing higher order logic. Machine Intelligence, 4:151–170, 1969.

[30] Daniel Selsam and Leonardo de Moura. Congruence closure in intensional type theory. In Nicola
Olivetti and Ashish Tiwari, editors, Automated Reasoning: 8th International Joint Conference,
IJCAR 2016, Coimbra, Portugal, June 27 – July 2, 2016, Proceedings, pages 99–115, Cham, 2016.
Springer International Publishing.

[31] Alexander Steen and Christoph Benzmüller. The higher-order prover leo-iii. IJCAR 2018.

[32] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. Starexec: A cross-community infrastructure for
logic solving. In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, editors, International
Joint Conference on Automated Reasoning (IJCAR), volume 8562 of Lecture Notes in Computer
Science, pages 367–373. Springer, 2014.

[33] Petar Vukmirović. Implementation of Lambda-Free Higher-Order Superposition. PhD thesis, Vrije
Universiteit Amsterdam, 2018.

11


	Introduction
	A pragmatic extension for HOSMT
	Extending the ground solver
	Lazy applicative encoding
	Extensionality
	Model generation for ground formulas

	Extending the instantiation module
	Evaluation

	Redesigning a solver for HOSMT
	Related work
	Future directions

