Rewrites for SMT Solvers using Syntax-Guided
Enumeration (Work in Progress)

Andrew Reynoldsl, Haniel Barbosa!, Aina Niemetz2, Andres Notzli2, Mathias Preiner?,

Clark Barrett?, and Cesare Tinelli!

1 University of Iowa, Iowa City, USA
andrew. j.reynolds@gmail.com,{haniel-barbosa,cesare-tinelli}@uiowa.edu
2 Stanford University, Stanford, USA
{niemetz,noetzli,preiner,barrett}@cs.stanford.edu

Abstract

We explore a paradigm for SMT solver development where rewrite rules are suggested to solver
developers using syntax-guided enumeration. We capitalize on recent advances in enumerative
syntax-guided synthesis (SyGuS) techniques for efficiently enumerating terms in a grammar of interest,
and on novel sampling techniques for testing equivalence between terms. We present our preliminary
experience with this paradigm in the SMT solver CVC4. We show its impact on CVC4’s rewriting
capabilities, and on solving constraints and SyGuS problems over bit-vectors and strings.

1 Introduction

Developing a state-of-the-art SMT solver is a demanding process. In particular, implementing a basic
decision procedure for a specific theory is not enough, as in practice many problems can be solved only
after they have been simplified to a form for which the SMT solver is effective. We refer to the component
of the SMT solver that performs this simplification as its rewriter, which given a term ¢ returns the
rewritten form of that term, denoted by #|. Designing an effective and correct rewriter is challenging.
It requires extensive domain knowledge and an analysis of specific problem instances. New rewrites
are often created when a set of constraints can not be solved unless it is first simplified in a particular
way. Depending on the theory, optimizing the implementation of the rewriter can be as important as
optimizing the decision procedure. Moreover, recent work [21, 20] has shown that a generic inference
scheme can be integrated into CDCL(T) theory solvers based on using its rewriter as an oracle.

In this paper, we explore a development paradigm where the SMT solver itself guides the developer in
the implementation of the rewriter. Our twofold goal is to improve the performance of SMT solvers on
constraints of importance to applications and increase the productivity of SMT solver developers during
this task. This preliminary work focuses mostly on the latter goal. Our approach differs from automatic
rewrite rules generation in SWAPPER [24] and the SMT solver Hazel [15] by being more flexible and
application-independent: the suggestion of rewrite rules is parameterized by a user-defined grammar
rather than by particular problems.

An overview of our workflow is shown in Figure 1. In step 1, the developer provides a grammar and
a specification as input to the SMT solver.! Conceptually, this input describes the class of terms that
the developer is interested in targeting in the rewriter. In step 2, we use existing techniques (namely the
syntax-guided synthesis module of the SMT solver CVC4 [19]) to efficiently enumerate target terms into
a term database. In step 3 and 4, we pair those terms together to form a candidate rewrite database and
report a subset of this database to the developer as a set of unoriented pairs t| = sy, ...,t, ~ s,,. These
pairs have the following two key properties:

I We give examples of user-provided grammars in Section 5.

SMT Solver

Equivalence (3) find pairs Candidate |
Checking Rewrite Database

Term

T Database W
Q@

Syntax Guided
Enumeration

filter

filter
enum-
erate

Matching,
Congruence

sared y1odax @

Checking

‘ Rewriter ‘ ‘

!

Figure 1: Overview of our workflow.

(5) implement (1) grammar + spec

1. terms ¢; and s; were inferred to be equivalent based on some criteria in step 3, and
2. t;] is not equal to s; |, in other words, the current rewriter does not treat ¢; and s; as equivalent.

Hence, this list can be understood as a o do list for the developer of the rewriter. In step 5 of the workflow,
the developer uses this list to extend the implementation of the rewriter so that it rewrites more pairs of
equivalent terms to the same term. A major challenge for tools that automatically generate rewriters is
synthesizing generalized conditions that cover multiple rewrite rules. Thus, such tools are inherently
limited by the conditions that can be synthesized. We have found that our workflow is most effective when
candidate rewrite rules act as hints to inspire developers, who, through creativity and careful engineering,
are subsequently able to implement a better rewriter in step 5. We intend to automate synthesizing
generalized conditions but our goal of improving the rewriter is independent of such automation.

We describe the steps of our workflow in more depth in the following. Steps 2, 3, and 4 are described
in Sections 2, 3, and 4 respectively. In Section 5, we give an overview of our first experience with this
workflow in the solver CVC4 [4], and give an initial evaluation of how improving the rewriter can lead to
improvements in SMT solving. We discuss related work in Section 6 and future work in Section 7.

2 Syntax-Guided Synthesis for Term Enumeration

In this section, we describe how syntax-guided techniques are used for enumerating terms in step 2 in
the workflow of Figure 1. For this task, we leverage existing work on highly optimized enumerative
approaches to the syntax-guided synthesis problem [19].

A syntax-guided synthesis problem for a function f in a background theory T consists of:

1. aset of syntactic restrictions, given by a grammar R, and
2. a set of semantic restrictions, or specification, given by a (second-order) T-formula of the form
Af.Vx. o[f, X] where ¢ is (typically) a quantifier-free formula.

Formally, a grammar R is a triple (so, S, R), where s is an initial symbol, S is a set of symbols with
so € S, and R is a set of rules s — ¢ with s € S and ¢ a term built from symbols in T’s signature, free
variables and symbols from S. The set of rules R defines a rewrite relation over such terms, also denoted
by —. We say a term ¢ is generated by R if 59 —* t, where —" is the reflexive-transitive closure of —

and ¢ contains no symbols from S. A solution for f is a closed lambda term Ay. ¢ of the same type as f
such that ¢ is generated by R and Vx. ¢[A47. t, X] is valid in T (modulo beta-reductions).
An enumerative approach to syntax-guided synthesis can be divided into two components:

1. a candidate solution generator, which produces a stream of terms 71, ...,1,, ... in the language
generated by grammar R, and
2. averifier, which, given a candidate solution #;, checks whether Vx. ¢[A15. t;, X] is valid in 7.

The synthesis solver terminates as soon as it generates a candidate solution ¢#; that passes the test in
step 2 above. In practice, most state-of-the-art enumerative syntax-guided synthesis solvers [25, 2] are
implemented as a layer on top of an SMT solver with support for quantifier-free 7-formulas, which can be
used as a verifier in this approach. An exception is the syntax-guided synthesis solver of CVC4, where a
single instance of the SMT solver acts as both the candidate solution generator and the verifier [19].

The second step in our workflow in Figure 1 is to generate a database of terms that are eligible to
appear in rewrite rules. We observe that the existing enumerative syntax-guided synthesis solver of CVC4
can be used as a term generator in this step. In particular, the syntax-guided synthesis solver of CVC4
can be instrumented to produce multiple solutions to the syntax-guided synthesis problem specified in
step 1 of the workflow. We do this by adding a clause that blocks the current solution when one is found.
Each of these solutions is added to a term database.

The specification Af. Vx. [f, X] acts as a filtering mechanism to discard terms that should not be
included in rewrite rules. For example, the specification Af. Vxjx,. f(x1, x2) = f(x2, x1) indicates that
we are only interested in enumerating terms that correspond to commutative functions. In contrast, if we
do not wish to impose any semantic restrictions, we can provide df. T as a specification, which amounts
to telling the system that we are interested in any terms that meet syntactic restrictions given by R.

Another key property of the syntax-guided synthesis solver of CVC4 is that it only enumerates
solutions that are unique according to the current rewriter. The motivation for this, in the context
of syntax-guided synthesis, is that if we enumerate a candidate solution #; and Vx. ¢[A17. t1, X] is not
T-valid, then it is fruitless to try another solution 7, that is T-equivalent to #; since VXx. ¢[Ay. to, X] is
also not T-valid. In CVC4’s synthesis solver, the rewriter is used as an oracle to under-approximate
term equivalence in the theory T' (where the syntactic equality of 71| and #,] implies the equivalence
of | and #, in T'). When the syntax-guided synthesis solver of CVC4 discovers the equivalence of two
terms ¢1 and 7, it adds symmetry breaking constraints to ensure that subsequent solutions do not include
t1 (resp., t2) as a subterm (see Section 5.1 of [18] for a recent description of these techniques). As a
consequence, CVC4 will never generate two candidate solutions (and hence solutions) that are identical
up to rewriting.

This last property is highly convenient in the context of Figure 1. Concretely, it ensures that the term
database generated as a result of step 2 contains no terms #; and ¢; such that #;| = ¢;]. This in turn ensures
that the rewrite rules generated in the next step are not redundant, that is, they do not rewrite a term #; to a
term ¢; where t; already has the same rewritten form as #;.

3 Equivalence Checking Techniques for Rewrite Rule Generation

In step 3 of the workflow in Figure 1, we are given a database of terms (possibly containing free
variables y2) generated by syntax-guided enumeration in the form of a set D, which we call our term
database. From this set, we generate a set of (unoriented) pairs of the form #; = sy,...,t, = s, where
tyevostnsS1,...,8, € D,and foreachi = 1,...,n, terms #; and s; meet some criteria for equivalence.
We call such pairs candidate rewrite rules.> We describe different equivalence criteria in this section.

2The tuple y lists the formal arguments of the function f to be synthesized as specified in step 1.
3 This is a slight misnomer since we do not insist on an orientation between #; and s;.

A naive way to generate candidate rewrite rules from the set D would be to consider each distinct
pair of terms t;,¢; in D, check the satisfiability of 3y.#; # ¢;, and return ¢; = ¢; if this disequality is
unsatisfiable. Doing so is highly inefficient in practice, and may even be infeasible depending on the
background theory 7. For instance, if T is the theory of strings with length, whose decidability is
unknown [9], a single check of this form may be non-terminating. Instead, we have developed novel
techniques that are based on testing the evaluation of terms #; and s; on a set of concrete sample points.

In detail, our implementation of step 3 of Figure 1 in CVC4 maintains an equivalence relation between
the terms in our (evolving) term database D. Each equivalence class {71, .. .,,} in this relation is such
that, for eachi = 1, ..., n, a pair of the form #; = ¢; has been generated for some j. In other words, this
equivalence relation corresponds to the transitive closure of the pairs we have generated so far. Two
terms that are equivalent in this relation are conjectured to be equivalent in 7 based on a sampling of
their possible values. Now, let {ry,...,r,} C D be a set of representative terms from this equivalence
relation, that is, this set contains exactly one term from each equivalence class.* When a new term ¢ is
added to our term database D, we either (a) determine that ¢ is equivalent to some r;, output f ~ r; as a
candidate rewrite rule and add ¢ to the equivalence class of r;, or (b) determine that ¢ is not equivalent to
any of rq, ..., r, and add {t} to our set of equivalence classes. We discuss below the criteria we use to
determine this equivalence via sampling methods, where two terms #; and 7, are considered equivalent if
they rewrite to the same value for some list of value assignments to their variables. In other words, 7| and
tp are equivalent iff [(#({y — 1}, ..., ¢ 1{I = eI = [y = 1D, ..., 20y — ¢ })]. We call
c1, - . -, Cy Sample points. Our equivalence checking criteria can thus be characterized by different choices
for constructing a set P of sample points.

Random Sampling A naive method for constructing P is to choose N points at random. To do so, we
have implemented a random value generator for each of the types T we are interested in. For some types
such as Bool and fixed-width bit-vectors Bv, this generator is straightforward: it returns a uniformly
random value in the (finite) range. For other types like the integers Int and the character strings Str, we
apply a recursive procedure that chooses a random digit/character and subsequently either repeats or
terminates with some probability (0.5 in our current implementation). For the reals Real, we return the
rational ¢1/cy where c; is an integer and ¢, a non-zero integer chosen at random from some large interval.

Grammar-Based Sampling While random sampling is very easy to implement, it is not very effective
at generating points that witness the non-equivalence of certain term pairs. For this reason, we have
implemented an alternative method that constructs points based on the user-provided grammar. In contrast
with random sampling, we construct a set P of N points by computing ((t;{y — ¢i})l, ..., (tx{y — DI
where ¢y, ...,C, are random points, and for i = 1,...,n, the term ¢; is generated by the grammar
R = (80, S, R) starting from some symbol s € S such that s — #; € R. The intuition here is that sample
points of this form are biased towards interesting values. In particular notice that points of this form are
highly likely to include combinations of the user-provided constants that occur in the input grammar.

Exact Checking with Model-based Sampling In contrast to the previous two methods this one is exact,
that is, it makes two terms equivalent only if they are T-equivalent. It is based on satisfiability checking
and dynamic, model-based generation of our sample points P. The method maintains a growing set of
sample points P, initially empty. When a term ¢ is generated, we check if it agrees on the current set of
sample points P with any previously generated term s. If so, we separately check the T-satisfiability of
dy.t #£ s where y includes the free variables of s and of 7. If this query is unsatisfiable, then t = s is
guaranteed to be a correct rewrite rule and we output it. If instead, ¢ # s is satisfied by some model M,
then we add the evaluation M(¥) of ¥ in the model M as a new sample point to P, to be used for the
subsequently generated terms. Since, s and ¢ are provably inequivalent in 7', we return no rewrite rule for
this pair.

4 Typically, the representative of an equivalence class is the first term from the class that was added to D.

4 Filtering Techniques for Rewrite Rules

An important aspect in the workflow in Figure 1 from a developer’s perspective is that the system suggests
not only suitable rewrite rules but useful ones. In particular, it is preferable that the set of candidate rewrite
rules do not include trivial consequences of previous rewrite rules. Thus, we have implemented several
additional filtering techniques, which we describe in this section. In the following, we say a candidate
rewrite rule t = s is redundant with respect to set {f] = s1,...,tp ® Sy} ifVy. (1 = s1 A .. AL, = Sp)
entails Vy.t = s in theory T, where y collects all the free variables in these terms. Checking this
entailment directly is impractical, since it involves first-order quantification modulo 7. However, we have
implemented several efficient and sound techniques to prove entailments of this form. These significantly
reduce the number of rewrite rules we print in step 4 of the workflow, as we discuss in Section 5.1.

Filtering based on Matching One simple way to infer that a rewrite rule is redundant is to check that
it is an instance of a previously generated rule. For example, y; + 1 = 1 + y; is clearly redundant with
respect to any set that includes y; + y» = y» + y;. Our implementation filters rewrite rules like the one
above using a discrimination tree data structure over all representative terms generated as a result of our
equivalence checking in the previous step. When a new candidate rewrite rule ¢ ~ s is generated, we first
add the term ¢ to this data structure. It outputs a set of matches of the form ty0y, . . ., t,0, where for each
i=1,...,n, we have that t; is a previous term added to the structure, and ¢;0; = ¢. If for any such i, we
have that ¢; ~ s; was a previously generated candidate rewrite rule, and s;0; = s, we have inferred that
t ~ s is an instance of the rule ¢; ~ s; for substitution o7;, and hence ¢ ~ s is not reported to the user.

Filtering based on Congruence Another simple way to infer that a rewrite rule is redundant is to verify
that it can be inferred by congruence closure. For example, it is easy to infer, for any function f, that the
rule f(y; +0) = f(y1) is redundant with respect to any set that contains y; + 0 = y;. Our implementation
filters candidate rewrite rules like the one above by maintaining a data structure that represents the
congruence closure C(E) of the current set E set of rewrite rules. That is, the smallest superset of E that
is closed under entailment in the theory of equality and (uninterpreted) function symbol>. We discard any
new candidate rewrite rule ¢ =~ s if the equality ¢ ~ s is already a consequence of C(E).

S Preliminary Experience

We discuss our implementation of the proposed workflow, evaluate different configurations, and show
the impact on benchmarks. We ran all experiments on a cluster equipped with Intel E5-2637 v4 CPUs
running Ubuntu 16.04. We provisioned one core and 8 GB RAM for each job.

We have implemented our approach for generating rewrite rules in CVC4, a state-of-the-art SMT solver.
In the past few months, we generated rewrite rules using several grammars® and started implementing
promising candidates in an extended rewriter, ext, that can be enabled optionally. The rewrites
implemented in ext are a superset of the rewrites in the default rewriter std. So far, we have used our
approach to implement rewrite rules in the theory of strings, the theory of bit-vectors and for Booleans.

In our experience, the rewrite rules suggested by our approach can be very subtle. For example, our
approach suggested that (str.substr "B" z z) can be rewritten to the empty string (if z is zero, then
the length of the substring is zero, so the result is the empty string and if z is one or greater, the substring
starts out of the bounds of the string "B", so the result is again the empty string). We implemented a
generalized form of this rewrite for arbitrary strings and for more complex start and length expressions.
We discovered and implemented approximately 45 classes of bit-vector rewrites during the course of
this work. Some examples are x + | ~ —~ x, and classes that include x — (x & y) ~ x & ~y and

SWe treat all symbols as uninterpreted functions in this setting
¢ We give details on three of these in this section.

(synth-fun f
((x String) (y String) (z Int))

(synth-fun f ((s (BitVec 4))

(t (BitVec 4)))

(synth-fun f
((x Bool) (y Bool)

String ((BitVec 4) ((z Bool) (w Bool))
(Start String ((Start (BitVec 4) (Bool (

xy "A" "B" "" s t #x0 (Start Bool (

(str.++ Start Start) (bvneg Start) (and d1 d1) (not dl1)
(str.replace Start Start Start) (bvnot Start) (or d1 d1) (xor di1 dl1)))
(str.at Start ie) (bvadd Start Start) (d1 Bool (

(int.to.str ie) (bvmul Start Start) x (and d2 d2) (not d2)
(str.substr Start ie ie))) (bvand Start Start) (or d2 d2) (xor d2 d2)))
(ie Int ((bvlshr Start Start) (d2 Bool (

01z (bvor Start Start) w (and d3 d3) (not d3)
(+ ie ie) (bvshl Start Start))))) (or d3 d3) (xor d3 d3)))
(- ie ie) (d3 Bool (

(str.len Start)
(str.to.int Start)
(str.indexof Start Start ie)))))

y (and d4 d4) (not d4)
(or d4 d4) (xor d4 d4)))
(d4 Bool (2))))

Figure 2: Grammars used for comparisons. From left to right: strterm, bvterm (4-bit variant), crci.

x & ~x ~» 0. These rewrites were suggested by our workflow for one (or more) fixed bit-widths; it is the
responsibility of the developer to ensure that these rewrites hold for all bit-widths. For Booleans, we
implemented several classes of rewrite rules for negation normal form, commutative argument sorting,
equality chain normalization and Boolean constraint propagation which are not enabled in the default
rewriter of CVC4.

5.1 Evaluating Internal Metrics of Our Workflow
In this section, we evaluate the effectiveness of our workflow, addressing the following questions:

* Given a grammar, how does the number of terms grow in comparison to the number of terms that
are unique up to T-equivalence?

* How do different rewriters affect the number of redundant terms and the performance of our
enumeration?

* What is the accuracy and performance of different equivalence checks?

* How many rewrites do our filtering techniques eliminate?

For our evaluation, we consider three grammars: strterm for the theory of strings, bvterm for the
theory of bit-vectors, and crci for Booleans. For bvterm, we consider two variants, 4-bit (bvtermy)
and 32-bit (bvterms,), that use different bitwidths for constants, variables and operations variants to
show the impact of the bitwidth. Figure 2 lists the grammars in SyGusS syntax [17]. Each SyGuS problem
specifies a function f with a set of parameters (e.g. two strings x and y and an integer z in the case of
strterm) and a return type (e.g. a function returning a string for strterm) to synthesize. The initial
symbol of the grammar is always Start and the rules of the grammar are given by a symbol (e.g. ie
in strterm) and a list of terms (e.g. the constants 0, 1 and the functions str.len, str.to.int for
the grammar symbol ie). SyGuS problems generally have semantic constraints for the functions to be
synthesized but for our use case we want to enumerate as many terms as possible for a given grammar,
so do not provide any, and let our implementation enumerate all solutions. Note that the number of
solutions is generally infinite, so our evaluation restricts the search for candidate rewrites by limiting the
size of the enumerated terms and using a 24h timeout for each measurement. We define the size of a
term as the number of non-nullary symbols in it. Our implementation provides three different settings for
rewriting: none performs no rewriting at all; std corresponds to the rewriter in CVC4 1.5 and reflects
a typical rewriter in a state-of-the-art solver; and ext corresponds to a rewriter that implements the

none std ext

Grammar Size Terms Unique Redundancy Time Redundancy Time Redundancy Time
strterm 1 218 86 60.6% 0.47 17.3% 0.28 0.0% 0.29
2 24587 >4181 <83.0% 352.83 <49.7% 90.02 <28.8% 60.87

1 63 22 65.1% 0.20 0.0% 0.00 0.0% 0.24

bter 2 2343 288 87.7% 491 22.0% 0.97 0.7% 0.77
T4 3 110583 4744 95.7% 5714.03 39.3% 96.35 9.7% 55.42

4 5865303 84050 — t/o — t/o 23.6% 25403.53

1 63 22 65.1% 0.29 8.3% 0.10 0.0% 0.15

bvterms, 2 2343 290 87.6% 24.90 21.4% 2.44 0.0% 1.66
3 110583 >4746* — t/o <39.2% 233.05 <9.7% 123.99

1 4 3 25.0% 0.22 25.0% 0.22 0.0% 0.20

2 32 12 62.5% 0.18 52.0% 0.27 0.0% 0.17

3 276 44 84.1% 1.05 74.4% 0.86 8.3% 0.66

crci 4 2656 176 93.4% 8.88 87.5% 8.79 17.0% 3.21
5 17920 228 98.7% 132.73 96.9% 81.64 25.0% 15.11

6 107632 348 99.7% 4127.80 99.0% 1156.01 60.5% 40.58

7 588064 396 — t/o 99.8% 19128.83 82.2% 60.65

Table 1: Impact of different rewriters on the amount of redundant terms generated, using grammar
equivalence checking. All times are given in seconds. * indicates that the estimate is based on the variant
with the lower bit-width.

rules that we discovered through the approach presented in this work. For equivalence checking, we
implemented the three methods described in Section 3: random performs random sampling; grammar
performs grammar-based sampling; and exact performs exact equivalence checking.

Unique Solutions In Table 1, we provide an overview of the number of terms and the number of
unique terms modulo T-equivalence at different sizes for each grammar. We established the number
of unique terms for the Boolean and bit-vector grammars using the exact equivalence checking, and
approximated the number of unique terms for the string grammar using grammar with 10,000 samples.
We use grammar-based sampling for strings because it is currently not known whether the theory of
strings is decidable [9] and the procedure for the theory of strings in CVC4 [14] is not guaranteed to
terminate. None of our equivalence checks may result in false negatives, i.e. they will never declare two
terms to be different when they are actually equivalent. Thus, the number of unique terms reported by
grammar is a lower bound of the actual number of unique terms. For all grammars, the number of terms
grows rapidly with increasing size while the number of unique terms grows much slower. As the size
increases, the relative number of redundant terms quickly approaches 100% when none is used. This
indicates enumerating terms without filtering based on rewriting can be very inefficient for larger sizes,
and suggests that there is high potential for rewrite rules in these domains. Interestingly, the number
of unique terms differs between the 4-bit and the 32-bit versions of bvterm at size 2. This is due to
bit-width dependent rewrites that are valid for smaller bit-widths only.

Rewriter Comparison To measure the impact of the rewriter, we used our three rewriter configurations
and measured their term redundancy” for the set of terms up to given sizes for each grammar, as well as
the wall-clock time to enumerate and check all the solutions. We used grammar with 1,000 samples for
the equivalence checks. Table 1 summarizes the results. Without a rewriter, the redundancy is very high

7 We define the term redundancy of a rewriter (.)] with respect to a (non-empty) set of terms S to be (n — u)/n, where n is the
cardinality of {¢t] | ¢t € S} and u is the number of unique terms in S (the size of a maximal subset of S whose terms are pairwise
T-disequivalent), where notice that n > u.

no-eqc random rammar exact .
a 9 Rewrites Confidence

Grammar Size Time Error Time Error Time Error Time Filtered Overhead
strterm 1 0.23 0.0% 0.22 0.0% 0.29 0.0% 0.32 0.0% 137.9%
2 41.30 <6.6% 73.13 <1.1% 60.87 — t/o 64.0% 121.9%

1 0.06 0.0% 0.13 0.0% 0.09 0.0% 66.7%

bter 2 0.61 0.0% 0.71 0.0% 0.70 50.0% 110.4%
T4 3 47.84 0.0% 56.21 0.0% 50.91 43.2% 96.6%

4 21141.60 0.0% 26213.56 0.0% 25321.95 49.4% —

1 0.09 27.3% 0.07 0.0% 0.15 0.0% 0.14 0.0% 93.3%

bvterms, 2 0.69 62.8% 2.84 15.9% 1.66 0.0% 1.15 0.0% 753.6%
3 42.57 <79.1% 177.98 <38.7% 123.99 — t/o 46.1% 341.7%

1 0.05 0.0% 0.07 0.0% 0.06 0.0% 90.0%

2 0.07 0.0% 0.07 0.0% 0.12 0.0% 200.0%

3 0.61 0.0% 0.57 0.0% 0.56 0.0% 51.5%

crci 4 3.08 0.0% 3.25 0.0% 3.13 11.1% 12.8%
5 15.05 0.0% 15.01 0.0% 14.66 23.7% 5.7%

6 37.31 0.0% 40.55 0.0% 39.02 28.3% 8.1%

7 55.63 0.0% 62.56 0.0% 71.52 26.6% 14.8%

Table 2: Comparison of different equivalence checks, the relative number of candidates filtered and the
overhead of checking rewrites for soundness, using the ext rewriter. All times are given in in seconds.
For bvtermy and crci there is no difference between random and grammar.

at larger sizes, whereas std keeps the redundancy much lower, except in the case of crci. This is due to
the fact that the existing Boolean rewriter in CVC4 only performs basic rewriting because CVC4 relies on
a SAT solver to perform Boolean reasoning. As expected, ext fares much better in all cases, lowering the
percentage of redundant terms by over 70% in the case of crci at size 5. This has a significant effect on
the time it takes to enumerate all solutions: ext consistently and significantly outperforms std, in some
cases by more than five times, especially at larger sizes. Compared to none both std and ext perform
much better.

Equivalence Check Comparison To compare the different equivalence checks, we measured their error®
with respect to the set of terms enumerated by the ext rewriter, and the wall-clock time to enumerate
all the solutions. For both random and grammar, we used 1,000 samples. We summarize the results
in Table 2. For crci and the 4-bit variant of bvterm, 1,000 samples are enough to cover all possible
inputs, so there is no error in those cases. For both variants of bvtermy and crci, there is no difference
between random and grammar, which is why we only report the former. While sampling performs
similarly to exact for crci and the 4-bit variant of bvterm, for the 32-bit variant, it is significantly
more precise and slightly faster for size 2. At size 3, exact consumed more than 8 GB RAM and was
killed. For strterm, we found that the use of grammar-based sampling was much more effective than
random sampling, having an error that was around 6 times smaller (< 1.1%) for depth 2. Recall that
since we did not establish the number of unique terms using exact for this depth, this error is relative
to grammar with 10,000 samples. Thus, these numbers also indicate that a relatively small number of
samples using grammar is good enough to discard a majority of spurious rewrites. As expected, exact
gets stuck and times out for strterm at size 2. The first difficult query is proving the equivalence of
(str.replace x (str.replace x "B" x) x) and x. We plan to collect these problems that are
challenging to the current decision procedure and use them to improve the rewriter as well as the decision

8 Similarly, we define the error of an equivalence check with respect to a (non-empty) set of terms S to be (u — n)/u, where n
is number of equivalence classes of S induced by the check and u is the number of unique terms in S, where notice that u > n.

Strings . Bit-Vectors ., Boolean

10° s 10° L 10°
2 T e 2 2 o
o 10 £ 10 o 10
- I -
] E %5] "o,-""
8
10! 10! 10!
o
e
100k 10k 100 k22
10° 10! 10 103 10° 10! 10 103 10° 10! 10 103
ext bv-ext ext

Figure 3: Impact of new rewrites for SyGuS benchmarks over strings, bit-vector and Boolean logics. All
benchmarks ran with a 3600 second timeout.

procedure itself.

Impact of Filtering In Table 2, we report how many candidate rewrites were filtered using our filtering
techniques described in Section 4. We used ext and exact if available and grammar otherwise. Our
filtering techniques eliminate up to 64.0% of the rules, which significantly lowers the burden on the
developer when analyzing the proposed rewrite rules.

5.2 Improving Confidence in the Rewriter

Soundness is of utmost importance when implementing a rewriter in an SMT solver. An unsound
rewriter® often implies that the overall SMT solver is unsound. To accommodate the rapid development
of new rewrite rules in our workflow in Figure 1, we have instrumented an optional mode of CVC4 that
attempts to detect unsoundness in the implementation of its current rewriter. When this mode is enabled,
for each term ¢ enumerated in step 2, we use the grammar-based technique from Section 3 to test the
equivalence of # and #|. This functionality has been critical for catching subtle bugs in implementation of
new rewrite rules. In Table 2, we provide a column that indicates the overhead of running this checking
for each grammar and term size, where grammar-based sampling is used both for computing the rewrite
rules and for checking the soundness of the ext rewriter. For example, adding checks that ensure that no
unsound rewrites are produced for terms up to size 3 in the bvterms, grammar has a 341.7% overhead,
or is roughly four and a half times slower. Overall, this option leads to a noticeable, but not prohibitively
large, slowdown in the run-time of the overall system.

5.3 Impact of Rewrites on Solving

We give a brief evaluation of the impact of our newly developed rewrites have had on solving times of
CVC4. We focus on two categories: syntax-guided synthesis problems and traditional SMT problems.

Syntax-guided Synthesis In Figure 3, we give three scatter plots that compare the syntax-guided
synthesis solver of CVC4 that is instrumented to use the extended rewriter developed as the result of
this work (ext), and the rewriter from version 1.5 (std). All plots use a logarithmic scale. The string
problems come from a programming-by-examples application [10] and the Boolean problems come from
a cryptographic circuit synthesis application [8]. For these two, the grammars are similar to those shown
in Figure 2. The bit-vector problems cover a range of applications [12, 1, 13], where the grammars vary

9 A rewriter is unsound if there exists a pair of T-disequivalent terms ¢ and s such that 7] = 5.

significantly. We observe that the performance of CVC4’s enumerative syntax-guided synthesis solver
is highly related to the speed at which it is able to enumerate terms that are unique up to equivalence.
Concretely, this means that solving time in this domain is directly proportional to the time columns
from Table 1 for the various rewriters and sizes. Overall, on the benchmarks that both configurations of
CVC4 solved, the use of the extended rewriter was on average a factor of 1.54 times faster on the strings
benchmarks, a factor of 1.08 faster on the bit-vector benchmarks and a factor of 2.96 times faster on the
Boolean benchmarks. Additionally, the use of the extended rewriter enabled us to solve 4 more bit-vector
problems and 24 more Boolean problems within a 3600 second timeout.

SMT Solving While the above evaluation shows that improving a rewriter has a clear positive impact
on syntax-guided synthesis solving, our updates to the rewriter in CVC4 so far have a mixed impact on
general SMT solving. We considered 25421 strings benchmarks corresponding to symbolic execution of
Python programs [21], 40043 benchmarks in the quantifier-free bit-vector logic of SMT-LIB [5] (QF_BV).
and 5151 benchmarks in the quantified bit-vector logic (BV). We used a 30 second timeout for the first
set and a 300 second timeout for the other two. For the first two sets, CVC4 with the extended rewriter
ext had a positive impact on unsatisfiable benchmarks where it was (+12, -1) on the strings set and
(+232,-158) on QF_BYV, but a negative impact on satisfiable benchmarks where it was (+13, -94) on the
strings set and (+143, -236) on QF_BV. For the quantified bit-vector set, CVC4 with the extended rewriter
has an overall positive impact for both satisfiable and unsatisfiable benchmarks, where it was a combined
(+42,-15) with respect to CVC4 with its default rewriter. We believe this indicates the importance of
selecting a subset of possible rewrites to be enabled based on the application.

6 Related Work

A number of techniques have been proposed for automatically generating rewrite rules for bit-vectors. For
some examples, SWAPPER [24] is an automatic formula simplifier generator based on machine learning
and program synthesis techniques. In the context of symbolic execution, Romanoe et al. [22] propose
an approach that learns rewrite rules to simplify expressions before sending them to an SMT solver. In
contrast to these works, our approach targets the developer of the SMT solver itself. A related approach
was explored by Hansen [1], which generates all the terms that fit a grammar and finds equivalent pairs
that can the be used by the developer to implement new rules. In contrast to our work, the candidate
rules are not filtered, the grammar is hard-coded and only considers bit-vector operations. Other work by
Nadel [15] proposes generating bit-vector rewrite rules in SMT solvers at runtime for a given problem.
Syntax-guided synthesis was used by Niemetz et al. [16] to synthesize conditions that characterize when
bit-vector constraints have solutions. Rewrite rules in SMT solvers—especially the ones for the theories of
bit-vectors and Booleans—bear similarities with local optimizations in compilers [3, 6]. Finally, caching
counterexamples as we do in our exact equivalence check is similar to techniques used in symbolic
execution engines, e.g. KLEE [7], and superoptimizers, e.g. STOKE [23].

7 Conclusion

We have presented a paradigm for rewrite rule development in SMT solvers and an encouraging report of
our preliminary experience with it. In ongoing work, we plan to (partially) automate the implementation
of the rewriter in step 5 by automatically inferring optimal configurations that enable or disable specific
rewrites that the developer implements. This is a key component towards developing a rewriter that is
optimal for SMT constraints in applications. We are also working on providing an interface for external
users who are interested in enumerating rewrite rules relative to a user-provided rewriter.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

Takuya Akiba, Kentaro Imajo, Hiroaki Iwami, Yoichi Iwata, Toshiki Kataoka, Naohiro Takahashi,
Michat Moskal, and Nikhil Swamy. Calibrating research in program synthesis using 72,000 hours
of programmer time. MSR, Redmond, WA, USA, Tech. Rep, 2013.

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumerative program synthesis
via divide and conquer. volume 10205, pages 319-336, 2017. ISBN 978-3-662-54576-8. doi:
10.1007/978-3-662-54577-5. URL http://dx.doi.org/10.1007/978-3-662-54577-5.

Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers. In John Paul
Shen and Margaret Martonosi, editors, Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS 2006, San
Jose, CA, USA, October 21-25, 2006, pages 394-403. ACM, 2006. ISBN 1-59593-451-0. doi:
10.1145/1168857.1168906. URL http://doi.acm.org/10.1145/1168857.1168906.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim
King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages
171-177. Springer, 2011. ISBN 978-3-642-22109-5. doi: 10.1007/978-3-642-22110-1_14. URL
https://doi.org/10.1007/978-3-642-22110-1_14.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

Sebastian Buchwald. Optgen: A generator for local optimizations. In Bjorn Franke, editor,
Compiler Construction - 24th International Conference, CC 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-
18, 2015. Proceedings, volume 9031 of Lecture Notes in Computer Science, pages 171-189.
Springer, 2015. ISBN 978-3-662-46662-9. doi: 10.1007/978-3-662-46663-6_9. URL https:
//doi.org/10.1007/978-3-662-46663-6_9.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In Richard Draves and Robbert van
Renesse, editors, 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2008, December 8-10, 2008, San Diego, California, USA, Proceedings, pages 209—224. USENIX
Association, 2008. ISBN 978-1-931971-65-2. URL http://www.usenix.org/events/osdi®8/
tech/full_papers/cadar/cadar.pdf.

Hassan Eldib, Meng Wu, and Chao Wang. Synthesis of fault-attack countermeasures for cryp-
tographic circuits. In Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, pages 343-363, 2016. doi:
10.1007/978-3-319-41540-6_19. URL https://doi.org/10.1007/978-3-319-41540-6_19.

Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin C. Rinard. Word equations with
length constraints: What’s decidable? In Hardware and Software: Verification and Testing -
8th International Haifa Verification Conference, HVC 2012, Haifa, Israel, November 6-8, 2012.
Revised Selected Papers, pages 209-226, 2012. doi: 10.1007/978-3-642-39611-3_21. URL
https://doi.org/10.1007/978-3-642-39611-3_21.

http://dx.doi.org/10.1007/978-3-662-54577-5
http://doi.acm.org/10.1145/1168857.1168906
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-662-46663-6_9
https://doi.org/10.1007/978-3-662-46663-6_9
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-319-41540-6_19
https://doi.org/10.1007/978-3-642-39611-3_21

(10]

(11]

[12]

[13]

(14]

(15]

(16]

(17]

(18]

[19]

(20]

(21]

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. pages
317-330. ACM, 2011. ISBN 978-1-4503-0490-0. URL http://dl.acm.org/citation.cfm?
1d=1926385.

Trevor Hansen. A constraint solver and its application to machine code test generation. PhD thesis,
University of Melbourne, Australia, 2012. URL http://hdl.handle.net/11343/37952.

Henry S. Warren Jr. Hacker’s Delight, Second Edition. Pearson Education, 2013. ISBN 0-321-
84268-5. URL http://www.hackersdelight.org/.

Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. S3: syntax-
and semantic-guided repair synthesis via programming by examples. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, pages 593-604, 2017. doi: 10.1145/3106237.3106309. URL
http://doi.acm.org/10.1145/3106237.3106309.

Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. A DPLL(T)
theory solver for a theory of strings and regular expressions. In Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings, pages 646-662,2014. doi: 10.1007/978-3-319-08867-9_43.
URL https://doi.org/10.1007/978-3-319-08867-9_43.

Alexander Nadel. Bit-vector rewriting with automatic rule generation. In Computer Aided
Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, pages 663—-679, 2014. URL
https://doi.org/10.1007/978-3-319-08867-9_44.

Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark Barrett, and Cesare Tinelli. Solving
quantified bit-vectors using invertibility conditions (to appear). In Computer Aided Verification
CAV, 2018.

Mukund Raghothaman and Abhishek Udupa. Language to specify syntax-guided synthesis problems.
CoRR, abs/1405.5590, 2014. URL http://arxiv.org/abs/1405.5590.

Andrew Reynolds and Cesare Tinelli. Sygus techniques in the core of an SMT solver. In Proceedings
Sixth Workshop on Synthesis, SYNT@ CAV 2017, Heidelberg, Germany, 22nd July 2017., pages
81-96, 2017. doi: 10.4204/EPTCS.260.8. URL https://doi.org/10.4204/EPTCS.260.8.

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W. Barrett.
Counterexample-guided quantifier instantiation for synthesis in SMT. In Computer Aided Ver-
ification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part II, pages 198-216, 2015. doi: 10.1007/978-3-319-21668-3_12. URL
https://doi.org/10.1007/978-3-319-21668-3_12.

Andrew Reynolds, Cesare Tinelli, Dejan Jovanovic, and Clark Barrett. Designing theory solvers
with extensions. In Frontiers of Combining Systems - 11th International Symposium, FroCoS
2017, Brasilia, Brazil, September 27-29, 2017, Proceedings, pages 2240, 2017. doi: 10.1007/
978-3-319-66167-4_2. URL https://doi.org/10.1007/978-3-319-66167-4_2.

Andrew Reynolds, Maverick Woo, Clark Barrett, David Brumley, Tianyi Liang, and Cesare
Tinelli. Scaling up DPLL(T) string solvers using context-dependent simplification. In Computer
Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,

http://dl.acm.org/citation.cfm?id=1926385
http://dl.acm.org/citation.cfm?id=1926385
http://hdl.handle.net/11343/37952
http://www.hackersdelight.org/
http://doi.acm.org/10.1145/3106237.3106309
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_44
http://arxiv.org/abs/1405.5590
https://doi.org/10.4204/EPTCS.260.8
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-319-66167-4_2

[22]

(23]

(24]

[25]

A

2017, Proceedings, Part II, pages 453-474, 2017. doi: 10.1007/978-3-319-63390-9_24. URL
https://doi.org/10.1007/978-3-319-63390-9_24.

Anthony Romano and Dawson R. Engler. Expression reduction from programs in a symbolic
binary executor. In Ezio Bartocci and C. R. Ramakrishnan, editors, Model Checking Software -
20th International Symposium, SPIN 2013, Stony Brook, NY, USA, July 8-9, 2013. Proceedings,
volume 7976 of Lecture Notes in Computer Science, pages 301-319. Springer, 2013. ISBN
978-3-642-39175-0. doi: 10.1007/978-3-642-39176-7_19. URL https://doi.org/10.1007/
978-3-642-39176-7_19.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In Vivek Sarkar
and Rastislav Bodik, editors, Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, Houston, TX, USA - March 16 - 20, 2013, pages 305-316. ACM, 2013. ISBN
978-1-4503-1870-9. doi: 10.1145/2451116.2451150. URL http://doi.acm.org/10.1145/
2451116.2451150.

Rohit Singh and Armando Solar-Lezama. SWAPPER: A framework for automatic generation
of formula simplifiers based on conditional rewrite rules. In Ruzica Piskac and Muralidhar
Talupur, editors, 2016 Formal Methods in Computer-Aided Design, FMCAD 2016, Mountain
View, CA, USA, October 3-6, 2016, pages 185-192. IEEE, 2016. ISBN 978-0-9835678-6-8. doi:
10.1109/FMCAD.2016.7886678. URL https://doi.org/10.1109/FMCAD.2016.7886678.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M. K.
Martin, and Rajeev Alur. TRANSIT: specifying protocols with concolic snippets. In ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13, Seattle,
WA, USA, June 16-19, 2013, pages 287-296, 2013. doi: 10.1145/2462156.2462174. URL
http://doi.acm.org/10.1145/2462156.2462174.

Example Output

We provide sample output of CVC4 in its rewrite rule enumeration mode. For each grammar, we give
the results of CVC4 with no rewriter (none), its rewriter from CVC4 version 1.5 (std), and the rewriter
we generated as a result of this work so far (ext). In each case, the output is a list of unoriented pairs
indicating possible rewrites. All variables x, y, z, w, s, 1, . . . should be interpreted as universal, in that the
rewrite holds for all values of x, y, z,w, s, f, Intuitively, the output when using none corresponds to a
list of rewrites over terms in the grammar if the developer was writing a rewriter from scratch; the output
when using std (resp. ext) corresponds to the simplest rewrites, measured in term size, over the terms
from the grammar that the given rewriter currently can not infer.

A.l1 strterm

Listing 1: none

(candidate —rewrite (str.++ x "") x)
(candidate —rewrite (str.++ "" x) x)

(candidate —rewrite (str.replace x
(candidate —rewrite (str.replace x
(candidate —rewrite (str.replace x y y) x)
(candidate —rewrite (str.replace x
(candidate —rewrite (str.replace x

X X) X)
Xy)y)

" X) (str.++ X X))
"y) (str.++ y x))

(candidate —rewrite (str.replace "A" "B" x) "A")

https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-642-39176-7_19
https://doi.org/10.1007/978-3-642-39176-7_19
http://doi.acm.org/10.1145/2451116.2451150
http://doi.acm.org/10.1145/2451116.2451150
https://doi.org/10.1109/FMCAD.2016.7886678
http://doi.acm.org/10.1145/2462156.2462174

(candidate —rewrite (str.replace "B" "A" x) "B")
(candidate —rewrite (str.replace "" x "") "")
Listing 2: std
(candidate —rewrite (str.replace x x y) y)
(candidate —rewrite (str.replace "" x "") "")
(candidate —rewrite (str.at "" z) "")
(candidate —rewrite (str.substr "A" 1 z) "")
(candidate —rewrite (str.substr "A" z z) "")
(candidate —rewrite (str.substr "B" 1 z) "")
(candidate —rewrite (str.substr "B" z z) "")
(candidate —rewrite (str.substr "" 0 z) "")
(candidate —rewrite (str.substr "" 1 z) "")
(candidate —rewrite (str.substr "" z z) "")
Listing 3: ext
(candidate —rewrite (str.++ "A" (str.replace "" x "A")) (str.replace "A" x "A"))
(candidate —rewrite (str.++ "B" (str.replace "" x "B")) (str.replace "B" x "B"))
(candidate —rewrite (str.++ (str.replace "" x y) x) (str.++ x (str.replace "" x y)))
(candidate —rewrite (str.++ (str.replace "A" x "A") "A") (str.++ "A" (str.replace "A" x "A")))
(candidate —rewrite (str.++ (str.replace "B" x "B") "B") (str.++ "B" (str.replace "B" x "B")))
(candidate —rewrite (str.replace x (str.++ x x) y) (str.++ x (str.replace "" x y)))
(candidate —rewrite (str.replace x (str.++ y x) y) (str.replace x (str.++ x y) y))
(candidate —rewrite (str.replace x (str.++ y x) "A") (str.replace x (str.++ x y) "A"))
(candidate —rewrite (str.replace x (str.++ y x) "B") (str.replace x (str.++ x y) "B"))
(candidate —rewrite (str.replace x (str.++ x x) "") x)
A.2 bvtermy
Listing 4: none
(candidate —rewrite (bvneg #x0) #x0)
(candidate —rewrite (bvadd s #x0) s)
(candidate —rewrite (bvadd t s) (bvadd s t))
(candidate —rewrite (bvmul s #x0) #x0)
(candidate —rewrite (bvmul t s) (bvmul s t))
(candidate —rewrite (bvand s s) s)
(candidate —rewrite (bvand s #x0) #x0)
(candidate —rewrite (bvand t s) (bvand s t))

(candidate —rewrite
(candidate —rewrite

(bvlshr s s) #x0)
(bvlshr s #x0) s)

Listing 5: std

(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite

(bvlshr s s) #x0)

(bvneg (bvlshr s s)) #x0)

(bvadd (bvnot s) s) (bvnot #x0))

(bvadd (bvnot #x0) s) (bvnot (bvneg s)))
(bvadd (bvlshr s s) s) s)

(bvmul (bvadd s s) t) (bvmul (bvadd t
(bvmul (bvlshr s s) s) #x0)

(bvmul (bvlshr s s) t) #x0)

(bvmul (bvshl s s) t) (bvmul (bvshl
(bvand (bvlshr s s) s) #x0)

t) s))

t s) s))

Listing 6: ext

(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite

(bvshl
(bvadd
(bvadd
(bvadd
(bvadd

(bvshl s s) s) (bvshl (bvadd s s) s))
(bvnot (bvadd s s)) s) (bvnot s))

(bvor (bvnot s) t) s) (bvnot
(bvor (bvnot t) s)
(bvnot s) (bvor s t)) (bvadd (bvnot

(bvneg (bvand s t))))
t) (bvnot (bvneg (bvand s t))))
(bvand s t))

)

(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite

(bvadd
(bvadd
(bvmul
(bvmul
(bvmul

(bvnot t) (bvor s t)) (bvadd (bvnot
(bvand s t) (bvor s t)) (bvadd s t))
(bvmul (bvshl s s) s) s) (bvmul (bvshl s s) s))
(bvlshr (bvnot s) s) s) (bvmul (bvlshr (bvneg s)
(bvshl (bvadd s s) s) s) (bvshl (bvadd s s) s))

(bvand s t)) s))

s) s))

A3 crci

Listing 7: none

(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite

(or x x) (and X X))

(and (or w w) x) (and (and w w) x))
(and (xor w w) x) (xor x X))

(and x (and w w)) (and (and w w) X))
(and x (not w)) (and (not w) X))
(and x (or w w)) (and (and w w) x))
(and x (xor w w)) (xor x X))

(not (or ww)) (not (and w w)))

(or (or ww) x) (or (and w w) x))
(or (xor ww) x) (and x x))

Listing 8: std

(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite

(or x x) (and x X))

(and (or w w) x) (and (and w w) x))
(and x (not w)) (and (not w) x))
(and x (or w w)) (and (and w w) x))
(not (or ww)) (not (and w w)))

(or (or ww) x) (or (and w w) X))
(or (xor ww) x) (and x x))

(or x (and w w)) (or (and w w) x))
(or x (not w)) (or (not w) X))

(xor (or ww) x) (xor (and w w) x))

Listing 9: ext

(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite
(candidate —rewrite

(xor x (and (and y y) w)) (xor (and (and y y) w) X))

(xor x (and (not y) w)) (xor (and (not y) w) X))

(xor x (or (and y y) w)) (xor (or (and y y) w) X))

(xor x (or (mnot y) w)) (xor (or (not y) w) x))

(and (xor w (and (and z z) y)) x) (and (xor (and (and z z) y) w) X))
(and (xor w (and (not z) y)) x) (and (xor (and (not z) y) w) X))

(and (xor w (or (and z z) y)) x) (and (xor (or (and z z) y) w) X))
(and (xor w (or (not z) y)) x) (and (xor (or (not z) y) w) X))
(or (xor w (and (and z z) y)) x) (or (xor (and (and z z) y) w) X))
(or (xor w (and (not z) y)) x) (or (xor (and (not z) y) w) X))

	Introduction
	Syntax-Guided Synthesis for Term Enumeration
	Equivalence Checking Techniques for Rewrite Rule Generation
	Filtering Techniques for Rewrite Rules
	Preliminary Experience
	Evaluating Internal Metrics of Our Workflow
	Improving Confidence in the Rewriter
	Impact of Rewrites on Solving

	Related Work
	Conclusion
	Example Output
	strterm
	bvterm4
	crci

