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Abstract. Ethereum smart contracts are programs that run inside a
public distributed database called a blockchain. These smart contracts
are used to handle tokens of value, can be accessed and analyzed by ev-
eryone and are immutable once deployed. Those characteristics make it
imperative that smart contracts are bug-free at deployment time, hence
the need to verify them formally. In this paper we describe our current
efforts in building an SMT-based formal verification module within the
compiler of Solidity, a popular language for writing smart contracts. The
tool is seamlessly integrated into the compiler, where during compilation,
the user is automatically warned of and given counterexamples for poten-
tial arithmetic overflow/underflow, unreachable code, trivial conditions,
and assertion fails. We present how the component currently translates
a subset of Solidity into SMT statements using different theories, and
discuss future challenges such as multi-transaction and state invariants.

1 Introduction

The Ethereum [6] platform is a system that appears as a singleton networked
computer usable by anyone, but is actually built as a distributed database that
utilizes blockchain technology to achieve consensus. One of the features that sets
Ethereum apart from other blockchain systems is the ability to store and execute
code inside this database, via the Ethereum Virtual Machine (EVM ). In contrast
to traditional server systems, anyone can inspect this stored code and execute
functions that can have stateful effects. Since blockchains are typically used
to store ownership relations of valuable goods (for example cryptocurrencies),
malicious actors have a monetary incentive to analyze the inner workings of such
code. Because of that, testing (i.e. dynamic analysis of some typical inputs) does
not suffice and analyzing all possible inputs by utilizing static analysis or formal
verification is recommended.

SAT/SMT-based techniques have been used extensively for program verifi-
cation [5,8,11,3,12,1]. This paper shows how the Solidity compiler, which gener-
ates EVM bytecode, utilizes an SMT solver and a Bounded Model Checking [5]
(BMC) approach to verify safety properties that can be specified as part of
the source code, as well as fixed targets such as arithmetic underflow/overflow,



division by zero and detection of unreachable code and trivial conditions. For
the user, the main advantage of this system over others is that they do not
need to learn a second verification language or how to use any new tools, since
verification is part of the compilation process. The Solidity language has require-
ment and assertion constructs that enable assuming and checking conditions at
run-time. The verification component builds on top of this and tries to verify
at compile-time that the asserted conditions hold for any input, assuming the
given requirements.

This paper is organized as follows: Sec. 2 introduces the EVM and smart
contracts. Sec. 3 gives a very brief overview of Solidity. Sec. 4 discusses the
translation from Solidity to SMT statements and next challenges. Finally, Sec. 5
contains our concluding remarks.

Related work. Oyente [13], Mythril [7] and MAIAN [15] are SMT-based symbolic
execution tools for EVM bytecode that check for specific known vulnerabilities,
where Oyente also checks for assertion fails. They simulate the virtual machine
and execute all possible paths, whereas this work follows a BMC approach.

Subsets of Solidity have been translated to Why3 [18], F* [4] and LLVM [10],
with the goal of verifying statements in those languages instead, where the first
requires learning a new annotation specification language; the second only veri-
fies fixed vulnerability patterns and does not verify custom user-provided asser-
tions; and the latter focuses on discovering non-ideal coding patterns instead of
actual vulnerabilities that demand a fix.

2 Smart Contracts

Programs in Ethereum are called smart contracts. They can be used to enforce
agreements between mutually distrusting parties as long as all conditions can
be fully formalized and do not depend on external factors. Typical use-cases are
decentralized tokens which can have a currency-like aspect, any mechanisms that
build on top of these tokens like exchanges and auctions or also decentralized
tamper-proof registry systems like a domain name system.

Each smart contract has an address under which its code, Ethereum’s native
token, Ether, balance, and a key-value store of data (storage) are stored. The
code is fixed after the creation phase and only the smart contract itself can
modify the data stored at its address.

Users can interact with a smart contract by sending a transaction to its
address. This causes the smart contract’s code to execute inside the so-called
Ethereum Virtual Machine (EVM), which is a stack-based 256-bit machine with
a minimalistic instruction set. Each execution environment has a freshly initial-
ized memory area (not to be confused with the persisting storage). During its
execution, a smart contract can also call other smart contracts synchronously,
which causes their code to be run in a new execution environment. Data can be
passed and received in calls. Furthermore, smart contracts can also create new
smart contracts with arbitrary code.
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Since it would otherwise be easy to stall the network by asking it to execute
a complex task, the resources consumed are metered during execution in a unit
called gas. Each transaction only provides a certain amount of gas, which acts
as a gas limit. If execution is terminated via the stop instruction, any remain-
der gas is refunded and the transaction is successful. However if an exceptional
condition or this gas limit is reached without prior termination, any effect of
the transaction is reverted and is marked as a failure. In every case, the user
who requested the execution pays for it with Ethereum’s native token, Ether,
proportionally to the amount of gas consumed.

A reverting termination can also happen prior to all gas being consumed. This
is a special feature of the Ethereum Virtual Machine, which makes the control-
flow analysis different from other languages. Whenever the EVM encounters
an invalid situation (invalid opcode, invalid stack access, etc.), execution will
not only stop, but all effects on the state will be reverted. This reversion takes
effect in the current execution environment, and the environment will also flag
a failure to the calling environment, if present. Typically, when a call fails, high
level languages will in turn cause an invalid situation in the caller and thus the
reversion affects the whole transaction.

There is also an explicit opcode that causes the current call to fail, which is
essentially the same as described above, but as an intended effect. Very briefly,
the SMT encoding we will discuss later assumes that no intended failure hap-
pens and tries to deduce that no unintended failure can occur. This allows the
programmer to state preconditions using intended failures and postconditions
using unintended failures.

3 Solidity

Solidity is a programming language specifically developed to write smart con-
tracts which run on the Ethereum Virtual Machine. It is a statically-typed curly-
braces language with a syntax similar to Java. The main source code elements
are called contracts and are similar to classes in other languages. Contract-level
variables in Solidity are persisted in storage while local variables and function
parameters only have a temporary lifetime. Among others, Solidity has integer
data types of various sizes (up to 256 bits, the word size of the EVM), address
types and an associative array type called mapping which can only be used for
contract-level variables.

The source code in Fig. 1 shows a minimal example of a token contract.
Users are identified by their addresses and initially, all tokens are owned by the
creator of the contract, but anyone who owns tokens can transfer an arbitrary
amount to other addresses. Authentication is implicit in the fact that the address
from which a function is called can be accessed through the global variable
msg.sender. In practice, this is enforced by checking a cryptographic signature
on the transaction that is sent through the network.

The require statement inside the function transfer is used to check a pre-
condition at run-time: If its argument evaluates to false, the execution terminates
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contract Token {

/// The main balances / accounting mapping.

mapping(address => uint256) balances;

/// Create the token contract crediting ‘msg.sender‘ with

/// 10000 tokens.

constructor() public {

balances[msg.sender] = 10000;

}

/// Transfer ‘_value‘ tokens from ‘msg.sender‘ to ‘_to‘.

function transfer(address _to, uint256 _value) public {

require(balances[msg.sender] >= _value);

balances[msg.sender] -= _value;

balances[_to] += _value;

}

}

Fig. 1. Example of a token contract

and any previous change to the state is reverted. Here, it prevents tokens being
transferred that are not actually available.

In general, invalid input should be caught via a failing require. The related
assert statement can be used to check postconditions. The idea behind is that
it should never be possible to reach a failing assert. assert essentially1 has the
same effect as require, but is encoded differently in the bytecode. Verification
tools on bytecode level (as opposed to the high-level approach described in this
article) typically check whether it is possible to reach an assert in any way.

We now show how an assert can be introduced into the transfer function
to perform a simple invariant check.

function transfer(address _to, uint256 _value) public {

require(balances[msg.sender] >= _value);

uint256 sumBefore = balances[msg.sender] + balances[_to];

balances[msg.sender] -= _value;

balances[_to] += _value;

uint256 sumAfter = balances[msg.sender] + balances[_to];

assert(sumBefore == sumAfter);

}

The assert checks that the sum of the balances in the two accounts involved
did not change due to the transfer. Currently, the assert statement is not re-
moved by the compiler, even if the formal analysis module can prove that it
never fails.
1 There are two main differences however: As opposed to require, assert will result

in all remainder gas to be consumed and require allows a custom message to be
returned.
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Note that in the general case, balances[_to] can overflow and thus an
analysis tool might flag this assert as potentially failing. In this specific example,
though, the amount of available tokens is too small for this to happen.

4 SMT-based Solidity verification

SMT solvers are powerful tools to prove satisfiability of formulas in different log-
ics which often have the necessary expressiveness to model software in a straight-
forward manner [11,1,8,3].

We translate Solidity contracts and their functions into SMT formulas using
a combination of different quantifier-free theories. We shall name the translated
formulas the SMT encoding of the Solidity program. The goal of the translation
from Solidity to SMT formulas is to verify safety properties from the Solidity
program by performing queries to the SMT solver.

4.1 SMT encoding

The SMT encoding is computed during a depth-first traversal of the abstract
syntax tree (AST) of the Solidity program and thus roughly follows the execu-
tion order. For now, each function is analyzed in isolation and thus the context
regarding the SMT solver (contract storage, local variables, etc.) is cleared before
each function of a contract is visited. There are five types of formulas that are
encoded from Solidity inside each function. Three of them, Control-flow, Type
constraint and Variable assignment are simply translated as SMT constraints.
The Branch conditions are the conditions of the current branch of execution and
thus grow and shrink as we traverse the AST. The last, Verification Target, cre-
ates a formula consisting of the verification goal conjoined with the previously
mentioned constraints, including the current branch conditions, and queries the
SMT solver for satisfiability. The different types of encoding are described below.

Branch conditions. For an if-statement if (c) T else F , we add c to the
branch conditions during the visit of T . After that, we replace c by ¬c for the
visit of F and also remove that when we are finished with the if-statement.

Control-flow. These constraints model conditional termination of execution. A
require(r) statement (and similar for assert(r)) terminates execution if r
evaluates to false, but of course only if it is executed. Let b be the conjunction of
the current branch conditions. We separately check satisfiability of the formulas
b ∧ r for require (unreachable code if unsatisfiable) and b ∧ ¬r for assert

(assertion failure if unsatisfiable), and add b→ r to the set of constraints. Note
that due to the implication, we can keep this constraint even when we leave the
current branch.
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Type constraint. A variable declaration leads to a correspondent SMT variable
that is assigned the default value of the declared type. For example, Boolean
variables are assigned false, and integer variables are assigned 0. Function pa-
rameters are initialized with a range of valid values for the given type, since
their value is unknown. For instance, a parameter uint32 x is initialized as
0 ≤ x < 232 (32 bits), a parameter int256 y is initialized as −2255 ≤ y < 2255,
and a parameter address a is assigned the range 0 ≤ a < 2(8∗20) (20 bytes). The
encoder currently supports Boolean and the various sizes of Integer variables.

Variable assignment. The encoding of a variable assignment follows the Single
Static Assignment (SSA) where each assignment to a program variable intro-
duces a new SMT variable that is assigned only once. When a program variable
is modified inside different branches of execution, a new variable is created after
the branch to re-combine the different values after the branches. We use the if-
then-else-function ite to assign the value ite(c, x1, x2) (if-then-else), where
c is the branch condition and x1 and x2 are the two SSA variables corresponding
to x at the ends of the branches (cf. the φ function in SSA).

Verification target. Every arithmetic operation is checked against underflow and
overflow according to the type of the values, and an example is given if there is
an underflow or overflow. We also check whether branch conditions are constant,
warning the user about unreachable blocks or trivial conditions. The conditions
in calls to assert represent target postconditions that the Solidity programmer
wants to ensure at runtime and are verified statically. If it is possible to dis-
prove the assertion provided that the control flow can reach it (i.e. the current
branch conditions are satisfiable), the user is given a counterexample. In con-
trast, require conditions are meant to be used as filters for unwanted input
values when they are unknown, for example, in public functions, acting like pre-
conditions for the rest of the scope. Therefore, failing calls to require are not
treated as errors and are just checked for triviality and reachability.

contract C

{

function f(uint256 a, uint256 b)

{

if (a == 0)

require(b <= 100);

else if (a == 1)

b = 1000;

else

b = 10000;

assert(b <= 100000);

}

}

1. a0 ≥ 0 ∧ a0 < 2256 ∧
2. b0 ≥ 0 ∧ b0 < 2256 ∧
3. (a0 = 0)→ (b0 ≤ 100)∧
4. b1 = 1000 ∧ b2 = 10000
5. b3 = ite(a == 1, b1, b2) ∧
6. b4 = ite(a == 0, b0, b3) ∧
7. ¬b4 ≤ 100000

Fig. 2. SMT encoding of an assertion check.
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Figure 2 shows on the left a Solidity sample that requires all five types of
encoding, shown on the right, in order to verify the intended properties. Since the
variables uint256 a and uint256 b are function parameters, they are initialized
(lines 1 and 2) with the valid range of values for their type (uint256). If a =

0, the require condition about b is used as a precondition when verifying the
assertion in the end of the function (line 3). The next two assignments to b

create the new SSA variables b1 and b2 (line 4). Variable b3 encodes the second
and third conditions, and b4 encodes the first condition (lines 5 and 6). Finally,
b4 is used in the assertion check (line 7). Note that the nested control-flow is
implicitly encoded in the ite variables b3 and b4. We can see that the target
assertion is safe within its function.

It is important to highlight that errors are irrelevant if they result in a state
change reversion (Sec. 2). The user should be warned about checks such as
overflow only if they do not result in a state reversion. One popular example is
the SafeMath [16] contract which is commonly used to turn wrapping arithmetics
into overflow-checked arithmetics:

function add(uint256 a, uint256 b) internal pure

returns (uint256) {

uint256 c = a + b;

require(c >= a);

return c;

}

Although the tool detects an overflow in the computation of a + b, the
overflow will result in a truncation of c in two’s complement and thus any
execution that contains the overflow will revert at the require. In this case
the user should not be warned of the error, since no erroneous cases exist in
accepted executions.

As described above, the component performs several local checks during a
single run, therefore it is critical that the used SMT solver supports incremental
checking. Moreover, we do not abstract difficult operations such as multiplication
between variables, and rather try to give precise answers when possible. There-
fore we combine various quantifier-free theories, such as Linear Arithmetics, Un-
interpreted Functions and Nonlinear Arithmetics. Solidity has integrated Z3 [14]
and CVC4 [2] via their C++ APIs. The two SMT solvers are used together to
increase solving power. This has been important especially for the programs that
require Nonlinear reasoning, since often one solver is able to prove a property
that the other cannot. The component is also able to generate smtlib2 [17]
formulas in order to interface with additional solvers.

4.2 Future plans

Our current implementation plans for the component involve supporting a larger
subset of the language, including more complex data structures such as mapping.
We intend to build the component as a Bounded Model Checker, unrolling loops
up to a constant bound and automatically detecting bounds when possible.
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One of the most interesting aspects we intend to research and support is
multi-transaction invariants. The ultimate goal is to compute invariants for state
variables (resident in the contract’s storage) considering any arbitrary number
of calls to the contract. This would enable these invariants to be used as precon-
ditions whenever they are accessed. As an example, take contract Token from
Sec. 3. We can see from the constructor that the deployer of the contract receives
10000 tokens. The only way to move tokens is via the function transfer, which
decreases a certain amount of tokens from one account, if it owns enough, and
increases the same amount in another account. As we can see, the number of
total tokens never changes and the invariant∑

a∈balances

balances[a] = 10000

holds in the beginning of any function of the contract.

Function modifiers are Solidity constructs that are used as patterns to change
the behavior of functions, and in many cases, to restrict them. Commonly used
modifiers are, for example, allowing only the owner of the contract to execute
the function, or executing a function if and only if the amount of Ether sent is
greater than a certain value. We intend to use properties inferred from modifiers
as function preconditions, therefore improving proving power.

The idea of Effective Callback Freeness was recently introduced by [9]. A
smart contract C is effectively callback free, if any state change caused by an
internal callback can also be caused by an execution that does not have this
callback. The authors show that most of the contracts deployed on Ethereum
have this property. This is a powerful property, since it means that any invariant
computed for a contract’s state variables still holds even after calling external
contracts with unknown behavior. We intend to study how to integrate this
approach to our static analysis.

5 Conclusion

We have presented our work in progress building an SMT-based formal verifi-
cation module inside the Solidity compiler. The component creates SMT con-
straints from the Solidity code and queries to statically check for underflow/over-
flow, division by zero, unreachable/trivial code, and assertion fails. The program-
mer receives, in compile-time, feedback with counterexamples in case any of the
target properties fail, without any extra effort.

Our under implementation features intend to extend the subset of Solidity
that is supported, and future work includes interesting research questions, such
as computing multi-transaction invariants for state variables, and using proper-
ties from assertions at the end of functions or from modifiers to compute generic
invariants, as discussed in Sec. 4.
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