
The Next 104 UppSAT Approximations

Aleksandar Zeljić1, Peter Backeman1,
Christoph M. Wintersteiger2, and Philipp Rümmer1

1 Uppsala University, Uppsala, Sweden
name.surname@it.uu.se

2 Microsoft Research, Cambridge, UK
cwinter@microsoft.com

Abstract

Reasoning about complex SMT theories is still quite challenging, for instance theories of
bit-vectors, floating-point arithmetic, and strings. Approximations offer a means of map-
ping a complex theory into a simpler one, and attempting to reconstruct models or proofs
in the original theory afterwards. UppSAT is an approximating abstract SMT-solver [1],
based on the systematic approximation refinement framework [9]. The framework can be
instantiated using an approximation and a back-end SMT solver. Implemented in Scala,
UppSAT is designed with easy and flexible specification of approximations in mind. We
discuss the structure of approximations in UppSAT and the components needed for their
specification. Because approximation components can be defined relatively independently,
they can be flexibly combined to obtain many different flavours of approximation. In this
extended abstract we discuss what kinds of approximations can be expressed in UppSAT,
along with design choices that enable the modular mix-and-match specification of approxi-
mations. Finally, we also outline ideas for several new approximations and strategies which
we are currently working.

1 Introduction

The construction of satisfying assignments (i.e., models) of a formula, or showing that no such
assignments exist, is at the heart of Satisfiability Modulo Theories (SMT). It is a field with ex-
tensive research, but there are still theories for which effective model construction is challenging.
Such theories are, in particular, non-linear arithmetic domains such as bit-vectors, non-linear
real arithmetic (or real-closed fields), and floating-point arithmetic; even when decidable, the
high computational complexity of such problems turns model construction into a bottleneck in
applications such as model checking, test-case generation, or hybrid systems analysis.

In several recent papers [1, 9], the notion of approximation has been proposed as a means to
speed up the construction of (precise) satisfying assignments. Generally speaking, approximation-
based solvers follow an iterative strategy to find a satisfying assignment of a formula φ: First,
a simplified or approximated version φ̂ of φ is solved, resulting in an approximate solution m̂
that (hopefully) lies close to a precise solution (for some measure of closeness). Second, a re-
construction procedure is applied to check whether m̂ can be turned into a precise solution m
of the original formula φ. If no precise solution m close to m̂ can be found, refinement is used
to successively obtain better, more precise, approximations.

This high-level approach opens up a large number of design choices, some of which have
been discussed in the literature. The approximations considered have different properties; for
instance, they might be over- or under-approximations (in which case they are commonly called
abstractions), or be non-conservative and exhibit neither of those properties. The approximated

formula φ̂ can be formulated in the same logic as φ, or in some proxy theory that enables more
efficient reasoning. The reconstruction of m from m̂ can follow various strategies, including



The Next 104 UppSAT Approximations Zeljić, Backeman, Wintersteiger and Rümmer

simple re-evaluation, precise constraint solving on partially evaluated formulas, or randomised
optimisation. Refinement can be performed with the help of approximate assignments m̂, using
proofs or unsatisfiable cores, or be completely independent of the reason of the failure.

In this extended abstract, we present a brief overview of UppSAT, an approximating abstract
SMT-solver. We focus on practical aspects and present current research directions which are
particularly relevant for the SMT community. We refer the reader for a more comprehensive
description of the abstract framework [9] and UppSAT [1].

2 UppSAT

φinmin |=Tin

φout

encode with
precision

mout |=Tout

decode +
reconstruct

Figure 1: Commutativity graph
showing how to obtain the model
min via an output theory Tout.

Approximation anatomy. At the heart of the approx-
imation scheme outlined in Figure 1 is the translation of a
formula φin of input theory Tin to a formula φout of theory
Tout. To control the granularity of the approximation, the
translations are dependent on some precision—a partially
ordered domain which satisfy the ascending chain condition
(every ascending chain is finite) [9]. We refer to the pair
of theories Tin and Tout together with the precision as the
approximation context. Fixing the context only frames the
approximation but does not define it. This is done by the
codec, which consists of two parts: a precision-dependent
translation (the encoding of constraints of the input theory
into constraints of the output theory), and a translation of
models of the output theory to models of the input theory
(the decoding). The goal of the encoding is to translate into a set of constraints that are simpler
to solve by some measure. One should note that the encoding can be a translation from a theory
unto itself, using a simplifying translation.

Once an approximated formula φout is obtained, it is sent to a suitable back-end solver.
This solver returns attempts to solve φout, and it produces either SAT or UNSAT as its result.
If the result is UNSAT, a proof of unsatisfiability or an unsat core can usually be extracted and
we may attempt to generalize and rewrite them such that they apply to the input formula φin.
The current version of UppSAT, however, does not attempt this and instead näıvely increases
the precision, to create a more refined approximation. (Conveniently, this is also a viable way
to handle undecidable theories and incomplete back-end solvers that return UNKNOWN for
some queries.)

If the result is SAT, an approximate model mout is obtained. This model is decoded to a
candidate model min, which may or may not be an actual model of the input formula φin. If it
is, then min is returned as a solution and the procedure terminates. If it is not, model recon-
struction is applied – a procedure which attempts to slightly modify min into a new candidate
model m̂in which is once again checked against the input formula φin. If it is still not satisfied,
model-based refinement is activated, which increases precision based on the approximate model
mout and candidate model min.

Precision refinement, both in the UNSAT and the SAT case ranges from a näıve, uniform
increase of precision of each symbol of the formula, to a more fine-grained refinement where
only certain variables and operators have their precision increased (non-uniformly). The whole
process is illustrated in Figure 2.

2



The Next 104 UppSAT Approximations Zeljić, Backeman, Wintersteiger and Rümmer

Input
Formula

Encoding

checkSATDecoding

Reconstruction

Model-Based
Refinement

Proof-Based
Refinement

Encoded
Formula

Model

Approximate
Model

Proof

Precision

Reconstructed
Model

Precision

SAT UNSAT

Figure 2: The main components needed to implement approximations in UppSAT, and the flow
of data in between them.

Goals of Approximations. The core idea of using approximations is to abstract away com-
plexity while retaining the essence of the constraints, e.g., by reducing the search space or
simplifying semantics. There are a number of ways this can be achieved:

• Reducing the search space by adding constraints to the formula, e.g., limiting the length
of a string or an array, or imposing interval constraints on numeric data types.

• Reducing the search space by going to smaller data type, e.g., in case of parametric data
types this is achieved by re-typing the variables and constraints.

• Removing challenging semantics such as non-linear constraints or rounding operations,
by moving to theories that are simpler but retain the relevant aspects, e.g., moving from
floating-point arithmetic (FPA) to bit-vector arithmetic (BVA).

Power of UppSAT In previous work the approximation framework and the approximation
were implemented within a SMT-solver [9]. Implementation of a new approximation required
a lot of code duplication and restricted the choice of decision procedures. In UppSAT, the
approximation framework is implemented as an abstract SMT solver, which is instantiated
using an approximation and an SMT-solver as a back-end. By using UppSAT, there are several
advantages:

• It is easy to support new SMT-solvers as back-ends, enabling the comparison of an ap-
proximation against different solving algorithms and their implementations.

• UppSAT comes with pre-defined components and templates, allowing for easy and compact
specification of new approximations. Of course, new templates and components can also
be added.

3



The Next 104 UppSAT Approximations Zeljić, Backeman, Wintersteiger and Rümmer

• UppSAT enables new non-approximating SMT solvers, by simply implementing a precise
translation between the theories. For example, using a bit-precise translation of FPA into
BVA and a bit-vector back-end, yields an SMT solver for FPA. This is also a simple way
to resolve combination of FPA and BVA, by translating it into BVA upfront.

In Table 1 (taken from [1]) a comparison of back-ends and instantiations of the UppSAT
framework are presented on non-trivial satisfiable floating-point formulas of the SMT-LIB
(QF FP). It shows that there is significant performance improvement to be had using the
approximation approach. The SMT solvers MathSAT [4], Z3 [5], and Sonolar [7] feature bit-
precise conversions from FPA to bit-vector constraints, known as bit-blasting, and represent
the currently most commonly used solvers in program verification. An alternative, constraint
programming-based approach to solve FPA constraints is implemented in COLIBRI [2]. Cur-
rently, only Z3 and MathSAT are supported as back-ends by UppSAT.

ACDCL MathSAT Z3 FPA ↔ FXA SmallFloat SmallFloat SmallFloat
(Z3) (ACDCL) (MathSAT) (Z3)

Solved 86 99 97 91 78 101 101
Timeouts 44 31 33 39 52 29 29
Best 65 4 6 9 3 9 9
Iterations - - - 2.69 3.59 3.16 3.02
Only solver 1 0 2 0 0 1 0

Table 1: Back-ends and instantiations of UppSAT, showing # of benchmarks solved within 1
hour, # of timeouts, # of instances for which the solver was fastest, average # of refinement
iterations on solved problems, and # of instances only solved by the respective solver.

104 Approximations. When defining an approximation in UppSAT, there are several key
choices to be made. These are illustrated in Table 2. First of all, an input and and a output
theory are chosen, defining the context. Secondly, a codec is picked, defining the semantics
of precision, encoding and decoding. This can be, for example, a monolithic encoding where
the precision regulates the encoding of the entire formula, or a composite one where precision
is assigned to each variable and operation in the formula, encoding them independently of
each other (modulo well-sortedness). Other examples include reducing the size of floating-point
types, described as SmallFloat in [9], or translating from floating-point arithmetic to fixed-
point arithmetic (FXA) as described in Section 3. Thirdly, a reconstruction strategy must be
chosen, for instance, this can be equality-as-assignment, a heuristic using equalities to propagate
values (see [1]), or evaluation-based using a back-end to patch failing constraints such as numeric
model lifting [8]. Finally, a refinement strategy should be decided, which defines how precision
should be increased when reconstruction fails, this can be a simple uniform increase or using the
discrepancy between candidate model and the reconstructed model to decide which precision
to increase. Furthermore, a notion of error can be used to decide by how much to increase the
precision.

Many of these choices are orthogonal, which enables a multitude of approximations to be
composed from a few distinct components. Together with the rapid prototyping of UppSAT, it
allows after the introduction of a new component to quickly try many new approximations with
relatively little coding effort. For example, re-implementation of the SmallFloat approximation
takes fewer than 300 lines of commented Scala code.

4



The Next 104 UppSAT Approximations Zeljić, Backeman, Wintersteiger and Rümmer

Context Codec Reconstruction Refinement

(Tin × Tout,P)

Monolithic Encoding
SmallFloat

FPA ↔ FXA
...

Evaluation-Based
Equality-as-Assignment
Numerical Model Lifting

...

Uniform
Error-Based

...

Table 2: Choices when defining approximations

3 Work In Progress

We are currently working on a number of different directions, where the goal is to extend and
test the capabilities of UppSAT.

Local Search Reconstruction. Local search strategies are often employed in optimisation
and there are adaptations of such for the SAT problem (see e.g., [6]). Currently, UppSAT model
reconstruction is done using a linear pass (with equality-as-assignment), where a failed model
is passed through once and heuristics are applied to it in an attempt to turn it into a model.
However, this often fails and after refinement another iteration is performed. Since UppSAT
spends most of its runtime finding approximate models, there is plenty of room for effective use
of resources on a more extensive portfolio of model reconstruction strategies.

The assumption is that a candidate model lies close (if not equal) to a model of the in-
put formula. Therefore, using local search to probe ‘similar’ models, or models ‘close’ to the
approximate one (by some measure), intuitively makes sense. The challenge lies in defining a
good measure of fitness, such as to steer the search toward finding better and better models,
for some notion of ‘better’. For example, in numerical domains, a value that depends on how
large the violation is, e.g., the absolute difference between two numbers which should be equal,
could be used. By minimizing the sum of these violations, a search direction is defined such
that when fitness is zero an actual model is found.

Improved Fixed-Point Approximation. In a previous paper [1], a fixed-point approx-
imation for floating-point numbers was presented as a proof of concept. We are currently
extending this work, primarily by introducing a more sophisticated refinement method. In the
näıve approximation, floating-point number were translated into fixed-point numbers based on
a precision p, such that the encoded numbers had p integral bits and p fractional bits. A uni-
form refinement strategy was used, i.e., whenever model reconstruction failed, the precision for
the whole formula was uniformly increased. Now we propose to improve this ordering by:

• Use a composite precision for encoding, enabling a fine-grained encoding and reconstruc-
tion.

• Use a vector precision domain (i, f) making the number of integral bits i and fractional
bits f independent from each other.

• Refine precision based on where and how the reconstruction failed, e.g., by studying how
many bits were lost in encoding.

Experiments using a näıve implementation thereof show the potential of these changes having a
significant impact on performance and that they may well result in a very competitive decision
procedure for floating-point arithmetic.

5



The Next 104 UppSAT Approximations Zeljić, Backeman, Wintersteiger and Rümmer

Linear Approximation of Non-linear Constraints. There exist many efficient (decision)
procedures for solving linear real constraints. However, when dealing with non-linear formulas,
the problem gets much harder. We propose an approximation of FPA using linear constraints
over reals to employ existing, efficient decision procedures.

A straightforward, but näıve, method is to simply guess the values of some of the involved
variables, thus cutting out constraints over non-linear operators (akin to theory decisions in
SMT context). If the approximation is unsatisfiable, chosen approximate values will be adjusted.
If an approximate model is found, then reconstruction is attempted which would yield better
values for the next iteration if the reconstruction fails. More interestingly, it might be possible to
use approximate models and the Taylor-expansion around the approximate values to iteratively
obtain better estimates of higher-order factors. The inspiration comes from work on incremental
linearization of transcedental functions by Cimatti et al. [3].

4 Conclusion

We present the UppSAT framework and describe how it can be used for effective construction
of approximating decision procedures. We show the anatomy of UppSAT approximations and
observe that there is a large space of approximations available to be explored. Furthermore,
we propose that UppSAT is a great test-bed environment to explore these approximations with
little implementation overhead. We also introduce three currently ongoing research projects,
the first extending UppSAT library of components with a local search algorithm for model
reconstruction, and two projects focused on using UppSAT to solve problems within theories
which current solvers are struggling to deal with efficiently.

References

[1] Peter Backeman, Aleksandar Zeljić, Christoph M. Wintersteiger, and Philipp Rümmer. Exploring
approximations for floating-point arithmetic using UppSAT. In Automated Reasoning, 9th Inter-
national Joint Conference (IJCAR), LNCS. Springer, 2018. To appear.

[2] Franois Bobot, Zakaria Chihani, and Bruno Marre. Real behavior of floating point. In 15th Inter-
national Workshop on Satisfiability Modulo Theories (SMT 2017), 2017.

[3] Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco Roveri, and Roberto Sebastiani. Sat-
isfiability modulo transcendental functions via incremental linearization. CoRR, abs/1801.08723,
2018.

[4] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. The
MathSAT5 SMT solver. In TACAS, volume 7795 of LNCS, 2013.

[5] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS, volume 4963 of
LNCS. Springer, 2008.

[6] Holger H. Hoos and Thomas Stützle. Local search algorithms for SAT: An empirical evaluation. J.
Autom. Reason., 24(4):421–481, May 2000.

[7] F. Lapschies, J. Peleska, E. Gorbachuk, and T. Mangels. SONOLAR SMT-solver. In SMT-COMP
system description, 2012.

[8] Jaideep Ramachandran and Thomas Wahl. Integrating proxy theories and numeric model lifting
for floating-point arithmetic. In FMCAD. IEEE, 2016.

[9] Aleksandar Zeljic, Christoph M. Wintersteiger, and Philipp Rümmer. An approximation framework
for solvers and decision procedures. JAR, 58(1):127–147, 2017.

6


	Introduction
	UppSAT
	Work In Progress
	Conclusion

