
Under consideration for publication in Theory and Practice of Logic Programming 1

Incremental and Iterative Learning of Answer Set
Programs from Mutually Distinct Examples

Arindam Mitra and Chitta Baral
Arizona State University

(e-mail: {amitra7,chitta}@asu.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Over the years the Artificial Intelligence (AI) community has produced several datasets which have given
the machine learning algorithms the opportunity to learn various skills across various domains. However, a
subclass of these machine learning algorithms that aimed at learning logic programs, namely the Inductive
Logic Programming algorithms, have often failed at the task due to the vastness of these datasets. This
has impacted the usability of knowledge representation and reasoning techniques in the development of AI
systems. In this research, we try to address this scalability issue for the algorithms that learn answer set
programs. We present a sound and complete algorithm which takes the input in a slightly different manner
and performs an efficient and more user controlled search for a solution. We show via experiments that
our algorithm can learn from two popular datasets from machine learning community, namely bAbl (a
question answering dataset) and MNIST (a dataset for handwritten digit recognition), which to the best of
our knowledge was not previously possible. The system is publicly available at https://goo.gl/KdWAcV.

KEYWORDS: Inductive Logic Programming, Answer Set Programming, Question Answering, Handwritten
Digit Recognition, Context Dependent Learning.

1 Introduction

Answer Set Programming has emerged as a powerful tool for knowledge representation and rea-
soning. To use this tool for an application, however, one needs application specific knowledge.
For E.g., if a system uses answer set programming to answer the question from column 1 in Table
1 the system needs to know that “X is to the right of Y IF Y is to the left of Z and Z is above X”.
Inductive Logic Programming algorithms aim to learn these kinds of knowledge from a dataset.
However, existing ILP algorithms have limited scalabilty and often fail to learn knowledge from
a machine learning dataset. This leads to manual construction of a knowledge base which can be
very time consuming and may not be practical sometimes. For E.g., for applications where an
effective representation of the rules is unknown, such as for the case of handwritten digit recog-
nition (Fig. 1), one may need to try several representations before settling down for a winner.
However, this may be unrealistic given that MNIST dataset (Fig. 1) contains 50,000 examples
and writing down the rules that explain all these examples for a particular choice of representa-
tion will take significant amount of time.

In this work, we consider this scalability issue. We observe that one major obstruction in scala-
bility arises from the discrepancy between the definition of Inductive Logic Programming and the

2 Arindam Mitra and Chitta Baral

The square is above the rectangle. The square is below the rectangle. The square is below the rectangle.
x The triangle is to the left of the

square.
The triangle is to the right of the
square.

The triangle is to the right of the
square.

Is the rectangle to the right of the
triangle?

Is the rectangle to the right of the
triangle?

Is the triangle below the rectangle?

y Yes No Yes

Table 1: A set of examples taken from the Task 17 of bAbI question answering dataset.

Fig. 1: A set of images from the MNIST dataset.

structure of a machine learning dataset. The learning problem in Inductive Logic Programming
(ILP) is defined as follows (Muggleton 1991):

Definition 1 (Inductive Logic Programming)
Given a set of positive examples E+, negative examples E− and some background knowledge B,
an ILP algorithm finds an Hypothesis H such that,

B∪H |= E+, B∪H 6|= E−

The hypothesis space is restricted with a language bias that is specified by a series of mode
declarations M.

A machine learning dataset on the other hand contains a series of 〈x,y〉 pairs, x being the input
and y being the desired output (Table 1). To work with an ILP algorithm, one needs to first convert
the 〈x,y〉 pairs in the format of 〈B,E+,E−〉. The conversion process is carried out by the user and
so there might be some variations. However, normally the sets E+ and E− are created using y’s
and the x’s go inside B. Extra care is taken so that different 〈x,y〉 pairs do not interfere with each
other. Table 2(a) shows one example of this process. Since the number of 〈x,y〉 pairs are usually
large, the problem instance becomes too big for the ILP solvers to handle . For example, consider
someone wants to employ an ILP algorithm to learn from a question answering task from bAbI
dataset (Weston et al. 2015), which contains 1,000 comprehension examples similar to the ones
in Table 1. The resulting background knowledge B will contain about 10,000 facts and E+ will
contain 1,000 positive annotations pertaining to answers and E− will contain a total of 1,000
negative examples describing what is not an answer for each question. An ILP solver such as
XHAIL (Ray 2009) will throw memory errors when given an input of this size. The question that
we ask here is “can we find a solution to the ILP problem without considering all the 〈x,y〉 pairs
together ?” We show that the answer is yes. In fact it is possible to find a solution considering
only one 〈x,y〉 pair at a time. To achieve this we model the learning task as follows:

Definition 2 (Inductive Logic Programming for Distinct Examples)
An ILP task for Distinct Examples (denoted as ILPDE) is a tuple 〈B,M,D〉, where B is an Answer
Set Program, called the background knowledge, M defines the set of rules allowed in hypotheses

Theory and Practice of Logic Programming 3

(the hypothesis space) and D is the dataset containing a series of context dependent examples
〈E1,E2, ...,En〉. Here each Ei is a tuple 〈Oi,E+

i ,E
−
i 〉 where, Oi is a logic program, called ob-

servation , E+ is a set of positive ground literals and E− is a set of negative ground literals. A
hypothesis H is an inductive solution of T (written as H ∈ ILPDE(B,M,D)) iff,

H∪B∪Oi ` E+
i , ∀i = 1...n

H∪B∪Oi 0 E−i , ∀i = 1...n

In this formulation, each example 〈Oi,E+
i ,E

−
i 〉 directly corresponds to an 〈x,y〉 pair and it

takes into consideration that there are several distinct examples in a dataset, so there is no need
to explicitly isolate them from each other. Table 2(b) shows the encoding of the running example
in the format of ILPDE . It turns out that the ILPDE task described here is a simplification of
the Context-dependent Learning from Ordered Answer Sets task proposed in (Law et al. 2016).
However, to solve the Context-dependent Learning from Ordered Answer Sets task the authors in
(Law et al. 2016) convert it to a standard ILP problem which creates the same scalability issue.

Table 2: The sample predicate is used to separate different examples. The constants tri,rec, sq
respectively denote triangle, rectangle and square. holdsAt(rp(sq,rec,above),1) says that the
square is above the rectangle at time point 1.

ans(X,no)← not ans(X,yes), id(X).
sample(1,holdsAt(rp(sq,rec,above),1)).
sample(1,holdsAt(rp(tri, sq, le f t),1)).
ans(1,yes)←

sample(1,holdsAt(rp(rec, tri,right),1)).
sample(2,holdsAt(rp(sq,rec,below),1)).

B sample(2,holdsAt(rp(tri, sq,right),1)).
ans2(yes)←

sample(2,holdsAt(rp(rec, tri,right),1)).
sample(3,holdsAt(rp(tri, sq, le f t),1)).
sample(3,holdsAt(rp(tri, sq, le f t),1)).
ans(3,yes)←

sample(3,holdsAt(rp(tri,rec,below),1)).
E+ {ans(1,yes),ans(2,no),ans(3,yes).}
E− {ans(1,no),ans(2,yes),ans(3,no).}

(a) An ILP encoding of the problem in Table 1

holdsAt(rp(sq,rec,above),1).
O1 holdsAt(rp(tri, sq, le f t),1).

E1 ans(yes)← holdsAt(rp(rec, tri,right),1).
E+

1 {ans(yes)}
E−1 {ans(no)}

holdsAt(rp(sq,rec,below),1).
O2 holdsAt(rp(tri, sq,right),1).

E2 ans(yes)← holdsAt(rp(rec, tri,right),1).
E+

2 {ans(no)}
E−2 {ans(yes)}

holdsAt(rp(tri, sq, le f t),1).
O3 holdsAt(rp(tri, sq, le f t),1).

E3 ans(yes)← holdsAt(rp(tri,rec,below),1).
E+

3 {ans(yes)}
E−3 {ans(no)}

(b) An ILPDE encoding of the problem in Table 1

It should be noted that any standard ILP problem 〈B,M,E+,E−〉 can be thought of as an ILPDE

problem with only one example, 〈{},M, 〈(B,E+,E−)〉〉. Similarly any ILPDE task can be converted
to an ILP task. However, utilizing the ‘distinctness’ property of the examples we can do better.
The algorithm that we propose here roughly works as follows: Given an instance of the ILPDE

task, it first finds a solution H1 of E1. Then it expands H1 minimally to solve only E2 and
obtains H2 . In the next iteration it again expands H2 minimally to solve E1 and it continues
expanding until it finds a hypothesis that solves both E1 and E2. Next it starts with a solution of
〈E1,E2〉 and tries to expand it iteratively until it solves all of E1,E2 and E3. The process continues
until a hypothesis is found that explains all the examples. Section 3 describes the algorithm. We
show that the algorithm is sound and complete when H ∪ B∪Oi is stratified for all i = 1, ...,n.

4 Arindam Mitra and Chitta Baral

Our algorithm allows more control over the mode declarations (Section 2) which can lead to
noticeable speed up in the search process. We evaluate our algorithm on two popular datasets:
1) a question answering dataset published by Facebook AI Research (Weston et al. 2015) and 2)
a handwritten digit recognition database (LeCun 1998). To the best of our knowledge, no sound
and complete ILP algorithm could learn from these two datasets. The work of (Mitra and Baral
2016) that learns from the bAbl dataset uses a modification of an existing ILP algorithm and the
resulting algorithm is not complete. We discuss this further in section 5.

2 Background

In this section, we describe the type of rules that our algorithm can deal with, the syntax of the
mode declarations and the XHAIL algorithm which plays a crucial role in our algorithm.

Answer Set Programming

An answer set program is a collection of rules of the form,

L0← L1, ...,Lm,not Lm+1, ...,not Ln

where each of the Li’s is a literal in the sense of a classical logic. Intuitively, the above rule means
that if L1, ...,Lm are true and if Lm+1, ...,Ln can be safely assumed to be false then L0 must be true.
The left-hand side of an ASP rule is called the head and the right-hand side is called the body.
Predicates and ground terms in a rule start with a lower case letter, while variable terms start
with a capital letter. We will follow this convention throughout the paper. A rule with no head
is called a constraint. A rule with empty body is referred to as a f act. The semantics of ASP is
based on the stable model semantics of logic programming (Gelfond and Lifschitz 1988). In this
work, both the background knowledge B and the solution H are a collection of such ASP rules.

Mode Declarations

Given a set of positive examples E+, negative examples E− and some background knowledge B,
an ILP algorithm computes a set of rules H so that B∪H |= E. The rules in H are often restricted
with a language bias that is specified by a series of mode declarations M (Muggleton 1995). One
can think of this as a way of injecting expert knowledge for the learning task.

There are two types of mode declarations, namely modeh declarations and modeb declarations.
A modeh(s) declaration (Table 3) specifies a literal s that can appear as the head of a rule in H.
A modeb(s) declaration (Table 3) specifies a literal s that can appear in the body of a rule. The
argument s is called schema and comprises of two parts: 1) an identifier for the literal and 2) a
list of placemakers for each argument of that literal. A placemaker is either +type (input), -type
(output) or $type (constant), where type denotes the type of the argument. An answer set rule is
in the hypothesis space defined by M (call it L(M)) if and only if its head (resp. each of its body
literals) is constructed from the schema s in a modeh(s) (resp. in a modeb(s)) in L(M)) as follows:

- by replacing an output (-) placemaker by a new variable.
- by replacing an input (+) placemaker by a variable that appears in the head or in a previous

body literal and
- by replacing a ground ($) placemaker by a ground term.

Theory and Practice of Logic Programming 5

Table 3 shows a set of mode declarations Msample that one can use to solve the example prob-
lem in Table 1.There is only one modeh(s) declaration in Msample, where the schema is hold-
sAt(relativeposition(+op1,+op1, $direction), +time). Assuming that there are only four constants
of type directions, the set of possible head literals are:

holdsAt(relativeposition(X,Y, le f t),T),

holdsAt(relativeposition(X,Y,right),T),

holdsAt(relativeposition(X,Y,above),T),

holdsAt(relativeposition(X,Y,below),T)

Where X and Y are variables of type op1 and T has type time. There are three modeb decla-

rations and they restrict additions of literals to the body as directed by their individual schema.
Note that the following rule,

holdsAt(relativeposition(X,Y, le f t),T)← holdsAt(relativeposition(Z,X,above),T),

holdsAt(relativeposition(Y,Z,right),T).

is in L(Msample), as the head is allowed by the modeh (Table 3) and the third modeb (Table 3)
allows the addition of holdsAt(relativeposition(Z,X,above),T) with Z being an output (new)
variable and the first modeb allows the addition of holdsAt(relativeposition(Y,Z,right),T), as all
the associated variables Y, Z and T have appeared before.

#modeh holdsAt(relativeposition(+op1,+op1,$direction),+time).
#modeb holdsAt(relativeposition(+op1,+op1,$direction),+time).
#modeb holdsAt(relativeposition(+op1,-op1,$direction),+time).
#modeb holdsAt(relativeposition(-op1,+op1,$direction),+time).

Table 3: Mode declarations for the problem of Table 1

Additionally, weights can be assigned to modeh and modeb (written as #modeh(s)=W) and they
express the cost that is involved when a mode declaration is used. The default weight for mode
declarations is 1. Existing implementations of the ILP algorithms, take only one set of mode
declarations and thus all the modeh declarations share the same set of modebs. Our algorithm
allows the user to provide modeh specific modeb declarations. This additional feature allows the
user to provide more supervision in the search procedure and makes the search faster.

XHAIL

The XHAIL (Ray 2009) algorithm plays a crucial role in the algorithm that we present here. In
this section, we describe various concepts and notations associated with the XHAIL algorithm.
Given an ILP task ILP(B,M,E = {E+∪E−}), XHAIL (Ray 2009) derives the hypothesis in three
steps, namely the abductive step, the deductive step and the inductive step. We will explain these
steps with respect to the example E1 from Table 2(b). The set B contains the representation of
x1, denoted by O1 and the set E the contains annotations derived from y1. M is the set of mode
declarations described in Table 3.

6 Arindam Mitra and Chitta Baral

Abductive Step

In the first step XHAIL finds a set of ground (variable free) atoms 4 = {α1, ...,αn} such that
B∪4 |= E, where each αi is a ground instance of the modeh(s) declaration atoms. For the running
example there is only one modeh declaration. Thus the set 4 can contain ground instances of
only holdsAt(relativeposition(X,Y,Z),T). In the following we show one possible 4 that meets
the above requirement.

4 =
{
holdsAt(relativeposition(rectangle, triangle,right),1)

}
Deductive Step

In the second step, XHAIL computes a clause αi ← δ1
i ...δ

mi
i for each αi in 4, where B∪4 |=

δ
j
i ,∀1≤ i≤ n,1≤ j≤mi and each clause αi← δ1

i ...δ
mi
i is a ground instance of a rule in L(M). In the

running example, 4 contains only one atom, α1 = holdsAt(relativeposition(rectangle, triangle,
right),1) which is initialized to the head of the clause k1. The body of k1 is saturated by adding all
possible ground instances of the literals in modeb(s) declarations that satisfy the constraints men-
tioned above. There are two ground instances, holdsAt(relativeposition(square,rectangle,above),1)
and holdsAt(relativeposition(triangle, square, le f t),1), of the literals in the modeb(s) declara-
tions and both of them can be added to the body as specified by M. In the following we show the
set of ground clauses K (called kernel) constructed in this step and their variabilized version Kv

(called generalization) that is obtained by replacing all input and output terms by variables.

K =

holdsAt(relativeposition(rectangle, triangle,right),1)

← holdsAt(relativeposition(square,rectangle,above),1),

holdsAt(relativeposition(triangle, square, le f t),1).

Kv =

holdsAt(relativeposition(X,Y,right),T)

← holdsAt(relativeposition(Z,X,above),T),

holdsAt(relativeposition(Y,Z, le f t),T).

Inductive Step

In this step XHAIL tries to find a compressive theory H by selecting from Kv as few literals as
possible while ensuring that B∪H |= E. For this example, working out this problem will lead to
a unique solution,

H =
{
holdsAt(relativeposition(X,Y,right),T).

}
which contains a single rule with empty body. In general, the compression process may lead to
multiple options for H.

Let 〈HI ,HG,4〉 denote a solution returned by XHAIL(B,M,E), where HG is the generalization
computed from 4 and HI is a compressed version of HG that solves E. It should be noted that
there might be many choices for 4 and correspondingly there might be many possible solutions
〈HI ,HG,4〉. In the following table, we define few notations which will be useful later.

Theory and Practice of Logic Programming 7

Notations
XHAIL(B,M,E) The set of all the solutions 〈HI ,HG ,4〉 to the problem P = ILP(B,M,E),

where HI is minimal i.e. no compressed version of HI can solve P.
4(B,M,E) {4|〈HI ,HG,4〉 ∈ XHAIL(B,M,E) for some HI ,HG}.
HG(B,M,E) {HG |〈HI ,HG ,4〉 ∈ XHAIL(B,M,E) for some 4,HI}.
HG(4) The generalization computed from 4.

3 Algorithm

XHAIL can compute the solutions of ILP(BE1 ,M, {E
+,E−}E1). However how to compute the so-

lutions of ILPDE(B,M, 〈E1,E2〉) without solving the standard Inductive Logic Programming task
constructed from E1 and E2 (denoted by ILP(BE1,E2 ,M, {E

+,E−}E1,E2)) ? This section addresses
this question. Before that we define the following terms which will be needed for the discussion.

Definition 3
H1 ≤ H2 Two answer set programs H1 and H2 are related by “≤” (denoted as H1 ≤ H2) if and
only if H1 can be transformed into H2 by either adding new rules to H1 or by adding new literals
in the body of the existing rules.

Definition 4
Minimality A solution H of ILP(B,M,E) is minimal iff @H′ <H in L(M) that solves ILP(B,M,E).

Definition 5
Distinctness A series of examples Ei〈Oi,E+

i ,E
−
i 〉, i = 1...n are said to be distinct iff, ∆(B∪O1 ∪

...∪On,M,∪n
i=1E+

i ,∪
n
i=1E−i) = {∪n

i=14i|(41, ...,4n) ∈∆(B∪O1,M,E+
1 ,E

−
1)× ...×∆(B∪On,M,E+

n ,E
−
n)}.

A series of examples Ei〈Oi,E+
i ,E

−
i 〉, i = 1...n are said to be mutually distinct iff all subsets of the

examples are distinct.

Now consider the two examples E1 and E2 . Since E1 and E2 are distinct examples con-
structed from two different 〈x,y〉 pairs, by definition, ∆(B∪O1∪O2,M,∪2

i=1E+
i ,∪

2
i=1E−i) = {41∪

42|(41,42) ∈ ∆(B∪O1,M,E+
1 ,E

−
1)×∆(B∪O2,M,E+

2 ,E
−
2)}. Thus, for any solution 〈HI ,HG,4〉 of

ILP(B∪O1∪O2,M,∪2
i=1E+

i ,∪
2
i=1E−i), ∃41 ∈ ∆(B∪O1,M,E+

1 ∪E−1) and ∃42 ∈ ∆(B∪O2,M,E+
2 ∪

E−2) such that,

HG(4) = HG(41)∪HG(42) ≥ HI

This property allows us to search for HI’s without solving ILP(B∪O1∪O2,M,∪2
i=1E+

i ,∪
2
i=1E−i)

directly. The search procedure can be briefly described as follows: For any choice of (41,42) pair,
first find all the minimal H ≤ HG(41)∪HG(42) that solves E1 and then expand those minimally,
with respect to E2 and E1 alternatively, until all the minimal HI’s that solves both E1 and E2 are
found. To find all the HI one simply needs to iterate over all possible (41,42) pairs which can be
computed from ILP(B∪O1,M,E+

1 ,E
−
1) and ILP(B∪O2,M,E+

2 ,E
−
2) individually.

It should be noted that it is possible to have HG(4′) = HG(4′′), even though 4′ , 4′′. Thus, the
above search procedure can be optimized by iterating over pairs of generalizations instead of it-
erating over the abducibles. Another drawback of the above search procedure is that the search re-
sults of (H1

G(41),H2
G(42)) do not give any information for the search initiated on (H1

G(4′1),H2
G(4′2)).

In every iteration it starts from scratch. However, if we remember the solutions of ILPDE(B,M,E1),
we can use those as lower bounds for finding the solutions of ILPDE(B,M, 〈E1,E2〉). This is be-
cause, if HI is a minimal solution of ILPDE(B,M, 〈E1,E2〉), then HI also solves ILPDE(B,M,E1)

8 Arindam Mitra and Chitta Baral

and there exists a 〈H1
I ,H

1
G,41〉 ∈ ILPDE(B,M,E1) such that H1

I ≤ HI . Thus, for the iteration
(H1

G(41),H2
G(42)), one can search if some H1

I ≤ H1
G(41) can be expanded by either expanding

some rules in H1
I or by adding new rules from the remainder of H1

G(41)∪H2
G(42) or both to

solve E2 along with E1. Theorem 1 formalizes this idea.

Theorem 1
For any solution 〈HI ,HG,4〉 of ILPDE(B,M, 〈E1, ...,En〉) there exists a solution 〈H′I ,H

′
G,4

′〉 of
ILPDE(B,M, 〈E1, ...,En−1〉) and a generalization H′′G in ILPDE(B,M,En) such that, H′I ≤ HI ≤

H′G∪H′′G , when H∪B∪Oi is stratified for any choice of i ∈ {1, ...,n} and H ∈ {HG,H′G,H
′′
G}. Here,

Oi is the observation from Ei. �

With this in mind, the algorithm for finding the solutions of ILPDE(B,M, {E1,E2, ...,En}) is
described in Algorithm 1. The proof of the theorem is in Appendix A.

Example

In this subsection we describe how our algorithm computes a solution to the running example
ILPDE(B,M, 〈E1,E2,E3〉) from Table 1. Here B contains all the constants of type op1, direction
and time and M is the one described in Table 3 .

Initialization: First the stack is filled with the output from XHAIL(B,M,E1). In section 1, we
have seen that the output contains only one tuple. The following block shows the content of the
stack after initialization.The underlined part denotes HI , where HG is the entire program.

holdsAt(relativeposition(X,Y,right),T)

← holdsAt(relativeposition(Z,X,above),T),

holdsAt(relativeposition(Y,Z, le f t),T).

Iteration 1: In iteration 1, the hypothesis on the top (denoted as Top〈HTop
I ,HTop

G 〉) of the stack
is popped. One can see that the hypothesis HTop

I does not cover E2. So, the algorithm tries to find
an expansion of it which solves E2 and E1 both. For that it first finds HG(B,M,E2) and creates
a new refinement stack with lower bound (HTop

I) - upper bound (HTop
G ∪HTop

G) pairs as shown
below:

holdsAt(relativeposition(X,Y,right),T)

← holdsAt(relativeposition(Z,X,above),T),

holdsAt(relativeposition(Y,Z, le f t),T).

It may be noted that HG(B,M,E2) is empty as E2 does not contain any positive example, so
the stack contains only and exactly the Top. Next it pops the refinement stack and tries to find the
minimal extensions of the Top that covers E2. There are two such minimal extensions , H′,H′′

and both of them are pushed to the refinement stack.

Theory and Practice of Logic Programming 9

Algorithm 1: I2XHAIL

Data: An instance of ILPDE(B,M, {E1, . . . ,En})
Result: A solution to the problem
/* initialize a stack with the solutions of ILP(B,M,E1) */

1 stack = XHAIL(ILP(B,M,E1));
2 while stack is not empty do

/* pop the hypothesis from the top */

3 〈HI ,HG〉 = stack.pop();
/* get an example Ei such that B∪HI ∪Oi 0 E+

i or B∪HI ∪Oi ` E−i */

4 Ei = nextUncoveredExample(HI);
/* No such example exists */

5 if Ei is null then
/* found a solution */

6 return HI .

7 else
/* Find expansions of HI that also solves Ei */

8 re f inementsS tack = <> ;
/* support set denotes the set of examples from which < Hi,HG >

is created */

9 supports = supportS et(HI)∪{Ei};
/* compute a set of lower bound-upper bound pairs for the search

space. */

10 HG(Ei) = f indGeneralizatons(B,M,Ei);
11 foreach H in HG(Ei) do
12 push 〈HI ,HG ∪H〉 to re f inementsS tack

13 while refinementsStack is not empty do
/* get a candidate lower bound-upper bound pair */

14 〈H′I ,H
′
G〉 = re f inementsS tack.pop();

/* get an example from supports that is not covered by H′I */

15 E j = nextUncoveredExampleFromS (H′I , supports);
16 if E j is null then

/* if no such example exists then we found a solution to

the subproblem. Push it to the stack. */

17 push 〈H′I ,H
′
G〉 to stack;

18 else
/* Expand H′I minimaly along H′G so that it covers E j */

19 expansions = expandMinimal(〈H′I ,H
′
G〉,B,E j);

/* Push all expansions in the re f inementsS tack for further
updates. */

20 foreach 〈H′′I ,H
′′
G〉 in expansions do

21 refinementsStack.push(〈H′′I ,H
′′
G〉)

10 Arindam Mitra and Chitta Baral

H′ =

holdsAt(relativeposition(X,Y,right),T)

← holdsAt(relativeposition(Z,X,above),T),

holdsAt(relativeposition(Y,Z, le f t),T).

H′′ =

holdsAt(relativeposition(X,Y,right),T)

← holdsAt(relativeposition(Z,X,above),T),

holdsAt(relativeposition(Y,Z, le f t),T).

The algorithm then goes on popping the top of the refinement stack, say H′. Since H′ solves

both E1 and E2 the condition on line 16 of Algorithm 1 is satisfied and H′ is pushed into the
main stack. Similarly, H′′ is popped next and pushed to the main stack. At this point refinement
stack becomes empty and iteration 1 exits as it has discovered all the minimal extensions of Top.
The stack now contains H′′ on top of H′.

Iteration 2: In the next iteration the algorithm pops 〈H′′I ,H
′′
G〉 which is currently at the top of

the stack. The next problem that it does not solve is E3. It then computes HG(B,M,E3) which
contain only one element,

H′′′ =

holdsAt(relativeposition(X,Y,below),T)

← holdsAt(relativeposition(Z,Y,below),T),

holdsAt(relativeposition(X,Z,right),T).

It then pushes 〈H′′I ,H

′′
G ∪H′′′〉 to the refinement stack and finds the minimal expansions of H′′I

within the bound of H′′G ∪H′′′. There will be only one such expansion, H f inal which will then
be pushed into the refinement stack and finally into the main stack. Since H f inal solves all three
examples, the algorithms terminates returning H f inal as the solution.

H f inal =

holdsAt(relativeposition(X,Y,right),T)

← holdsAt(relativeposition(Y,Z, le f t),T).

holdsAt(relativeposition(X,Y,below),T)← .

On the Minimality of the Solution

The solution returned by algorithm 1 may not be minimal. This is because if HI is expanded
minimally to H′I to solve a new example E, it does not ensure that H′I is minimal with respect to
the relevant subproblem. An example of this is the following: B = {}, E1 = 〈{p.,b.,c.}, {a}, {}〉, E2 =

〈{b.}, {}, {a}〉, E3 = 〈{c.}, {a}, {}〉, and M = {#modeh a,#modeb b,#modeb c,#modeb p}. There are
two solutions in ILPDE(B,M, 〈E1,E2〉): H1 = {a← c.} and H2 = {a← p.}. If H2 is expanded first,
it will produce {a← p.,a← c.} as the solution of ILPDE(B,M, 〈E1,E2,E3〉) and since it covers
all the examples, it will be returned as the solution. However, only {a← c.} is sufficient to cover
E1,E2,E3. Thus the output is not minimal. The minimal solution can be found by computing all
the solutions to ILPDE(B,M, 〈E1,E2,E3〉) and then discarding the ones which have a compressed
version of it already in ILPDE(B,M, 〈E1,E2,E3〉). However, algorithm 1 prefers efficiency over
minimality and returns the first solution found.

Theory and Practice of Logic Programming 11

4 Related Work

In recent years the field of Inductive logic programming has seen major advancements in many
of its areas. Different ILP algorithms have been proposed (Ray 2009; Athakravi et al. 2013; Law
et al. 2014; Athakravi et al. 2015; Katzouris et al. 2015; Kazmi et al. 2017; Schüller and Kazmi
2017). Researchers have analyzed various kinds of “good” rules that cannot be learned with the
current definition of entailment (called “cautious inference”) and proposed an alternative to that,
named as “brave inference”. ILP Algorithms have thus been proposed that can do only “brave
inference” (Otero 2001) or both (Sakama 2005; Sakama and Inoue 2009; Law et al. 2015). Efforts
have also been made to learn answer set programs that not only contain Horn clauses but also
choice rules and constraints (Law et al. 2015). With these developments and the various systems
that have been produced with these researches, people have successfully applied the paradigm of
Inductive logic programming to various areas (Gulwani et al. 2015; Mitra and Baral 2016). And
with these exposures to different applications, several changes are being made to the paradigm
of ILP.

Recently (Law et al. 2016) proposed context dependent learning for ordered answer set pro-
grams. Due to lack of space we do not discuss learning ordered answer set programs here. Inter-
ested readers can refer to (Law et al. 2016). The definition of context dependent learning in this
paper is an adaptation of their definition for standard ILP setting. It should be noted that even
though the concept of context depending learning was proposed in (Law et al. 2016), to solve the
problem their method converts it to a standard ILP problem using choice rules. Here, we have
made the first attempt to solve the problem in its original form.

In this work, we deal with the situation where there are many small distinct examples {(x1,y1), ...,
(xn,yn)}. Another situation where scalability is needed, is when there is a single but large exam-
ple. Works in (Katzouris et al. 2015; Katzouris et al. 2017) talk about this situation. Our work is
also related to the work in logical vision (Dai et al. 2015) that aims to learn symbolic representa-
tion of simple geometric concepts.

5 Experiments

We have applied our algorithm on two datasets. They are discussed below:

Task 6: Lists/Sets Task 17: Path finding Task 10: Indefinite reasoning
Sandra picked up the football
there.

The office is east of the hallway. Fred is either in the school or the
park.

Sandra journeyed to the office. The kitchen is north of the office. Mary went back to the office.
Sandra took the apple there. The garden is west of the bedroom. Bill is either in the kitchen or the

park.
Sandra discarded the apple. The office is west of the garden. Fred moved to the cinema.
What is Sandra carrying? How do you go from the kitchen to

the garden?
Is Bill in the office?

Table 4: Example question answering tasks from bAbI dataset

Question Answering

Recently a group of researchers from Facebook has proposed a question answering challenge
(Weston et al. 2015) containing 20 different tasks. Table 1 and 4 shows examples of such tasks.

12 Arindam Mitra and Chitta Baral

TASK Time Rules Acc
1: Single Supporting Fact 3 10 100
2: Two Supporting Facts 3 2 100
3: Three Supporting facts 100
4: Two Argument Relations 2 8 100
5: Three Argument Relations 6 20 100
6: Yes/No Questions 100
7: Counting 5 14 100
8: Lists/Sets 4 8 100
9: Simple Negation 4 13 100
10: Indefinite Knowledge 9 21 100

TASK Time Rules Acc
11: Basic Coreference 4 5 100
12: Conjunction 100
13: Compound Coreference 100
14: Time Reasoning 4 4 100
15: Basic Deduction 4 1 100
16: Basic Induction 4 1 93.6
17: Positional Reasoning 4 26 100
18: Size Reasoning 4 4 100
19: Path Finding 17 2 100
20: Agent’s Motivations 2 6 100

Table 5: Performance on the set of 20 tasks. The tasks for which training is not required is marked
with ‘-’. Running time is measured in minutes.

Each task contains 1000 or more such stories in the training data. The goal is to build a system
that uniformly solves all the tasks.

The work of (Mitra and Baral 2016) has shown how Inductive logic programming can be used
to solve the tasks. Their method can be summarized as follows: Given the input containing a story
and a question, first translate it to an Answer Set Program using a natural language parser and
some handwritten rules, then use some knowledge to answer the question. In the training phase,
learn the necessary knowledge. They have used XHAIL system to learn the knowledge. However,
XHAIL could not scale to the entire dataset. So they have divided the dataset. For each task their
method takes a bunch of examples together, learns from the bunch using XHAIL, adds the learned
hypothesis back to the background knowledge and then takes the next bunch to learn from. Since
knowledge learned from a group of examples is never updated again, they had to manually find
a group size that will work for this dataset. The group size depended on the task and clearly it
might happen that for some new task there does not exist a group size to which xhail can scale.
In this work, we reuse the dataset, their mode declarations and have found that our algorithm can
learn all the knowledge given the input ILPDE(B,M,Dtask), where Dtask contains all the 1000
examples of a task. Table 5 shows the time it has taken, the number of rules learned for each task
and the accuracy for each task. Our system has achieved the same accuracy as that of (Mitra and
Baral 2016).

Semantic Parsing We have done further experiments with the task of semantic parsing. We took
all the unique sentences in the training dataset of (Weston et al. 2015) and the corresponding
parse tree of the sentences and then trained an ILP system to do the conversion from scratch.
Table 6 shows an example of this task. The training dataset contains 5458 such examples. Our
system learned a collection of 165 rules in 128 minutes from the training data which accurately
parsed all the sentences in the test data.

Handwritten Digit Recognition

The MNIST dataset (LeCun 1998) contains images of handwritten digits. Each image is a 28×28
matrix and is labeled with a number between 0 to 9 denoting the digit it represents. The value of a
cell (pixel) in the matrix (image) ranges between 0 (black) to 255 (white) capturing the darkness
at that point. In this experiment we use our ILP algorithm to learn rules that identifies digits. For
that we represent the images in the following way:

Theory and Practice of Logic Programming 13

Sentence
Daniel journeyed to the bathroom.
ASP Representation Oi
index(1..5). lemma(1,daniel). pos(1,nn). lemma(2,journey). pos(2,vbd). lemma(3,to).
pos(3,to). lemma(4,the). pos(4,dt). lemma(5,bathroom). pos(5,nn).
Positive Examples E+

i
arg1(journey01,daniel), arg2(journey01,bathroom) .
Positive Examples E−i
any possible output that is not in E+.

Table 6: An example from the semantic parsing task. For each word in the sentence the represen-
tation contains its lemma and pos tag, which are obtained using Stanford parser .

1. First, we divide all cell value by 255 so that the value of each cell is in the range of [0,1].
2. For each 4×4 non-overlapping submatrix we create a super-pixel whose value is the sum

of the all the pixels in that region. This gives a 7× 7 size matrix representation of the
original image. Note that in this reduced matrix, each cell value ranges between 0 to 16.

3. If the value of a super-pixel from the 7× 7 matrix is less than 2 we consider it to be in
the off state. If the value is more than or equal to 5 we consider it be in the on state. The
original image is then described as two disjoint sets: 1) a set of positions where the state
of the super-pixel is off and 2) another set where all the super-pixel are on.

We learn rules on this representation. Each learned rule for a digit d simply says, if the super-
pixels in certain positions are off and are on for some other positions then the image represents
the digit d. The training data in the MNIST dataset contains a total of 60,000 images with ap-
proximately 6,000 images for each digit. To learn the rules for each digit we take all the examples
of that digit and take equal amount of images that represent other digits and pass that to our algo-
rithm. Table 7 shows the number of rules learned for each digit and the performance on the test
data. Except for the digit 1, it takes 160 hours to learn the rules for each digit.

Digit #Rules #Test Examples Acc(%)
0 3,021 980 60.91
1 444 1134 95.85
2 4,606 1032 32.95
3 3,661 1010 49.80
4 3,416 982 49.59

Digit #Rules #Test Examples Acc(%)
5 3,459 891 42.65
6 2,621 958 65.03
7 2,430 1028 63.52
8 3,237 978 54.50
9 2,382 1009 69.18

Table 7: Performance on handwritten digit recognition tasks. For each digit, column 2 shows the
numbers of rules learned, the number instances of that digit in the test set and the percentage of
instances correctly classified.

As the Table 7 suggests the performance on handwritten digit recognition is quite poor in com-
parison to the state-of-the-art neural network classifier (Wan et al. 2013) that achieves 99.79%
accuracy on this dataset. The number of rules column in Table provides insights on this high
error rates. Consider the example of digit 0. If there are 5000 instances of digit 0 and the algo-
rithm outputs 3,021 rules that means the representation that we have chosen does not allow good
generalization. However, the representation seems to work quite well for the digit 1.

An important lesson learned from this experiment is that even though it takes a small amount

14 Arindam Mitra and Chitta Baral

of time to perform a hypothesis refinement when finding a solution H for 〈E1, ...,Ei〉 from a
solution of 〈E1, ...,Ei−1〉, the algorithm needs to verify if H explains all of {E1, ...,Ei} before it
can proceed to the next iteration. If the size of H is big (such as the case for digit recognition) and
too many refinements are taking place then the algorithm spends a lot of time in the verification
phase. An important future work will be to optimize this step by identifying which examples
could have been affected if a hypothesis goes through refinement. Nevertheless, the algorithm
is able to output a solution and does not blow up when a problem of this size is given as input.
The dataset associated with all the experiments and the learned rules are available at https:
//goo.gl/k6AEEz. All experiments were performed on an intel i7 machine with 12 GB RAM.

6 Conclusion

Earlier days of Artificial Intelligence have seen many handwritten rule based systems. Later those
were replaced by better performing machine learning based systems. With the advancements of
knowledge representation and reasoning languages, a natural question arises, “if machines can
learn logic programs, can it achieve better accuracy than existing statistical machine learning
methods such neural networks?” It should be noted that the system of (Mitra and Baral 2016)
achieved better results than the existing deep learning models on the bAbI dataset. To further
explore this possibility we need to focus on the task of learning of logic programs and need
to develop systems that can learn from large datasets. In this paper, we have made an attempt
towards that.

Acknowledgments

We are grateful to Stefano Bragaglia for making the code of XHAIL publicly available which
is reused in the development of our system. We would also like to thank the reviewers for their
insightful comments. This work has been supported by the NSF grant 1750082.

References

Athakravi, D., Alrajeh, D., Broda, K., Russo, A., and Satoh, K. 2015. Inductive learning using constraint-
driven bias. In Inductive Logic Programming, pp. 16–32. Springer, Cham.

Athakravi, D., Corapi, D., Broda, K., and Russo, A. 2013. Learning through hypothesis refinement using
answer set programming. In International Conference on Inductive Logic Programming, pp. 31–46.
Springer.

Dai, W.-Z., Muggleton, S. H., and Zhou, Z.-H. 2015. Logical vision: Meta-interpretive learning for simple
geometrical concepts. In ILP (Late Breaking Papers), pp. 1–16.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In ICLP/SLP,
Volume 88, pp. 1070–1080.

Gulwani, S., Hernandez-Orallo, J., Kitzelmann, E., Muggleton, S., Schmid, U., and Zorn, B. 2015. In-
ductive programming meets the real world. Communications of the ACM 58, 11, 90–99.

Katzouris, N., Artikis, A., and Paliouras, G. 2015. Incremental learning of event definitions with inductive
logic programming. Machine Learning 100, 2-3, 555–585.

Katzouris, N., Artikis, A., and Paliouras, G. 2017. Distributed online learning of event definitions.
CoRR abs/1705.02175.

Kazmi, M., Schüller, P., and Saygın, Y. 2017. Improving scalability of inductive logic programming via
pruning and best-effort optimisation. Expert Systems with Applications.

Theory and Practice of Logic Programming 15

Law, M., Russo, A., and Broda, K. 2014. Inductive learning of answer set programs. In European Workshop
on Logics in Artificial Intelligence, pp. 311–325. Springer, Cham.

Law, M., Russo, A., and Broda, K. 2015. Learning weak constraints in answer set programming. Theory
and Practice of Logic Programming 15, 4-5, 511–525.

Law, M., Russo, A., and Broda, K. 2016. Iterative learning of answer set programs from context dependent
examples. Theory and Practice of Logic Programming 16, 5-6, 834–848.

LeCun, Y. 1998. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/ .
Mitra, A. and Baral, C. 2016. Addressing a question answering challenge by combining statistical methods

with inductive rule learning and reasoning. In AAAI, pp. 2779–2785.
Muggleton, S. 1991. Inductive logic programming. New generation computing 8, 4, 295–318.
Muggleton, S. 1995. Inverse entailment and progol. New generation computing 13, 3-4, 245–286.
Otero, R. 2001. Induction of stable models. Inductive Logic Programming, 193–205.
Ray, O. 2009. Nonmonotonic abductive inductive learning. Journal of Applied Logic 7, 3, 329–340.
Sakama, C. 2005. Induction from answer sets in nonmonotonic logic programs. ACM Trans. Comput.

Logic 6, 2 (April), 203–231.
Sakama, C. and Inoue, K. 2009. Brave induction: a logical framework for learning from incomplete infor-

mation. Machine Learning 76, 1 (Jul), 3–35.
Schüller, P. and Kazmi, M. 2017. Best-effort inductive logic programming via fine-grained cost-based

hypothesis generation. arXiv preprint arXiv:1707.02729.
Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R. 2013. Regularization of neural networks using

dropconnect. In International Conference on Machine Learning, pp. 1058–1066.
Weston, J., Bordes, A., Chopra, S., and Mikolov, T. 2015. Towards ai-complete question answering: a set

of prerequisite toy tasks. arXiv preprint arXiv:1502.05698.

