ProTeM: A Proof Term Manipulator

Christina Kohl
Department of Computer Science, University of Innsbruck, Austria
christina.kohl@uibk.ac.at

https://orcid.org/0000-0002-8470-2485

Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
aart.middeldorp@uibk.ac.at
https://orcid.org/0000-0001-7366-8464

—— Abstract

Proof terms are a useful concept for reasoning about computations in term rewriting. Human cal-
culation with proof terms is tedious and error-prone. We present ProTeM, a new tool that offers

support for manipulating proof terms that represent multisteps in left-linear rewrite systems.

2012 ACM Subject Classification Theory of computation — Rewrite systems, Theory of com-
putation — Equational logic and rewriting

Keywords and phrases Proof terms, term rewriting, interactive tool

Digital Object Identifier 10.4230/LIPIcs.FSCD.2018.31

Category System description

Funding This work is supported by FWF (Austrian Science Fund) project P27528.

Acknowledgements We are grateful to the reviewers for suggesting improvements to the interface
of ProTeM.

1 Introduction

Proof terms represent computations in term rewriting. They were introduced by van Oostrom
and de Vrijer for first-order left-linear rewrite systems to study equivalence of reductions in
[12] and [9, Chapter 8]. Extensions to higher-order rewriting and infinitary rewriting are
reported in [1] and [5], respectively. Hirokawa and the second author used proof terms for
confluence analysis of left-linear rewrite systems [2, 3].

Our motivation for studying proof terms is to close an important gap between proofs
produced by automatic confluence checkers and certified proofs. Numerous confluence criteria
described in the literature have been formalized in IsaFoR, a large Isabelle/HOL library for
term rewriting, see [7] for a recent overview. This includes the well-known result of Huet [4]
stating that a left-linear rewrite system is confluent if its critical pairs are closed by a parallel
step [8]. Its extension to multisteps (also called development steps) by van Oostrom [11] thus
far escaped all attempts to obtain a formalized proof. The picture proof in [11] conveys the
intuition but is very hard to formalize in a modern proof assistant. We believe that proof
terms together with residual theory [9, Section 8.7] will help to close the gap.

Calculations with proof terms are tedious and error-prone to do by hand, which is why
we developed ProTeM. Besides providing basic operations for manipulating proof terms that
represent multisteps in left-linear rewrite systems, like join and residual, ProTeM supports
new operations on proof terms that are required for a formalized proof of the main result of
? Christina Kohl anc.i Aart Middeldc?rp;

5v icensed under Creative Commons License CC-BY
3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Editor: Héléne Kirchner; Article No. 31; pp.31:1-31:8

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

mailto:christina.kohl@uibk.ac.at
https://orcid.org/0000-0002-8470-2485
mailto:aart.middeldorp@uibk.ac.at
https://orcid.org/0000-0001-7366-8464
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2

ProTeM: A Proof Term Manipulator

[11]. The latter include an inductive definition for computing the amount of overlap and a
function that returns the critical overlaps between co-initial proof terms.

In the next section we recall proof terms and introduce new operations for measuring
overlap between two proof terms. The web interface of ProTeM is described in Section 3 and
in Section 4 we present some implementation details. We conclude in Section 5 with ideas
for future extensions of ProTeM.

2 Proof Terms

Proof terms are built from function symbols, variables, and rule symbols. The latter represent
rewrite rules and have a fixed arity which is the number of different variables in the represented
rule. We use Greek letters as rule symbols. In this section we present the operations on proof
terms that are implemented in ProTeM. The following example will be used to illustrate
various definitions.

» Example 1. Consider the rewrite rules

a: f(g(z)) — g(h(,i(a)))
B: g(h(h(i(x),y),f(2))) = h(h(y,y),f(2))
vy: i(x) =z

g: h(z, f(y)) = h(i(f(»)),f(y))
€: g(h(z,y)) = h(z,y)

and the term s = f(g(h(h(i(i(a)), f(i(a))).f(g(a)))))- By
marking certain redexesin s we obtain the two proof
terms

A= a(h(8(i(~(a)),i(a),ala)))
B =f(B(i(a),f(v(2)), 8(a)))

This situation is illustrated on the right, where the redexes in A are indicated in red and
those in B in green.

If « is a rule symbol then lhs(a) (rhs()) denotes the left-hand (right-hand) side of the
rewrite rule represented by «. Furthermore var(«) denotes the list (z1,...,x,) of variables
appearing in « in some fixed order. The length of this list is the arity of . Given a rule
symbol « with var(a) = (z1,...,z,) and terms t1,...,t,, we write (t1,...,t,)q for the
substitution {x; — t; | 1 < ¢ < n}. A proof term A witnesses a multistep from its source
src(A) to its target tgt(A), which are computed as follows:

src(z) = tgt(z) = =
src(f(A1, ..., Ap)) = f(src(Aq) src(Ay))
src(a(Ay, ..., Ap)) = lhs(a)(src(A1),...,src(An))a
tgt(f(Ar, ..., An)) = f(tgt(Ar), ... tgt(4n))
tgt(a(Ay, ..., Ay)) = rhs(a)(tgt(A1), ..., tgt(An))a

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

C. Kohl and A. Middeldorp

Here f is an n-ary function symbol. Proof terms A and B are co-initial if they have the
same source. We define the orthogonality predicate A L B by the following clauses:
zlx
f(Ay,...,A) L f(By,...,Bn) < A; L B;foralll1<i<n
a(4y,...,A,) Llhs(a)(B1,...,Bpe <= A; L B foralll <i<n
lhs(a)(A1,..., Ap)a L a(By,...,B,) < A; L B;foralll<i<n

In all other cases A L B is false. Next we recall the join (A U B) and residual (A/ B)
operations on co-initial proof terms:

7

7

rUz=z/z==x
f(Ay,..., AU f(By,...,Bn) = f(A1UBy,..., A, UB,)
a(Ay, ..., A)Ua(By,...,By) =a(A1UBy,..., A, UB,)
a(Ay, ..., A)Ulhs(a)(By,...,Bp)a = a(A1 UBy,..., A, UBy,)
lhs(a)(A1, ..., Ap)a Ua(By,...,By) =a(A1 UBy,..., A, UB,)
f(Ay, ..., A/ f(By,...,By) = f(A1/By,..., A, /| By)
a(A, ..., A,) /a(B,...,By) =rhs(a)(A1 /By,...,An / Bp)a
a(Ay, ..., A) /hs(a)(By,...,Bna = a(A1/ B1j..., Ay / By)
lhs(a)(A1, ..., An)a /a(B1,...,By) = rths(a){Ay / B1,..., Ay / Bp)a

These are partial operations. The next operation that we define on proof terms is deletion
A — B, which is used to remove steps from a multistep:
T-—r==
f(A1, ..., Ay) — f(Byy. ., By) = f(AL =By, ..., A, — By)
O((Al7 “e ,An) — Oé(Bl, > - - 7Bn) N |hS(Oz)<A1 — B]_, ce 7An — Bn)a
Q(Al, ey An) — |hS(Oé)<B17 ey Bn>a = O[(Al — Bl, X ,An — Bn)

Like join and residual, deletion is-a partial operation.
» Example 2. The proof terms A and Blin-Example 1 are not orthogonal. Let C' =
B —f(B(i(a),f(i(a)),g(a))) =f(g(h(h(i(i(a)),f(7(a)),f(g(a))))). We have A L C. Moreover,

A/ C = a(h(4(i(v(a)),a), a(a)))

C'/ A= g(h(h(h(i(f(v(a))),f(v(2))). g(h(a,i(2)))),i(a)))

An important concept in the correctness proof of the confluence theorem in [11] is the
amount of overlap between two multisteps. Below we present an inductive definition for
measuring the overlap between co-initial proof terms. It is based on a special labeling of the
source of a proof term. We write Ihsu(a) for the result of labeling every function symbol in
Ihs(cr) with o as well as the distance to the root of a: Ihs*(a) = @(lhs(c), o, 0) with
t ifteVy
failp(tr, i+ 1), 0(tn, i+ 1)) ift=f(t1,...,tn)

The mapping src? computes the labeled source of a proof term:

o(t, o, i) = {

srcf(z) =
st (f(A1, ..., Ap)) = f(srcf(Ay), ... srcf(Ay))
srch((Aq, ..., Ap)) = Ihs* (@) (src?(AL), . .. srcf(Ay))a

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

31:3

FSCD 2018

31:4

ProTeM: A Proof Term Manipulator

Given two co-initial proof terms A and B, the following function computes a single labeled
term in which all function symbols corresponding to redex patterns in A and B are marked:

merge(A, B) = merge’(src?(A), src*(B))

with merge’(s,t) = s for s,t € V and merge’(s,t) = fap(merge’(s1,¢1), ..., merge’ (sp,tn)) if
s= fa(s1,...,8,) and t = fp(t1,...,tn). Here we identify an unlabeled function symbol f
with f_. The merge function is used to measure the amount of overlap between co-initial
proof terms: A(A, B) = measure(merge(A, B)) with measure(u) =0 if u € V and

1+ Z measure(u;) if a¥ # — and b' # —

measure(forp (U1, ..., Up)) =t

= n
Z measure(u;) otherwise
=1
Finally the overlaps function collects all pairs of overlapping redexes in co-initial proof terms:

overlaps(A, B) = {(1%047(1’/3)

p,q € Posz(u), £1(u(p)) = o, £2(u(q)) = B°, and either
p < q and ¢1(u(q)) = al\?l op g < p and £2(u(p)) = 5\;;\4\

Here u = merge(A, B) and Posz(u) is the set of function positions in w. The functions ¢; and
U5 extract the first and second label of a labeled function symbol: ¢1(fas) = a and 2(fep) = b.
The condition ¢, (u(q)) = a9\ in the first case of the definition of overlaps(A, B) ensures
that ¢\p is a position in Ihs(c).

» Example 3. For the proof terms in Example 1 we have

merge(4, B) = fas (Baigo(h_pn (hsogi(i-gs(ino- (2)). for (i_2(a))), Faoge (8- (2))))

and A(A, B) = 3. Here a‘abbreviates'a_—. Furthermore, overlaps(A, B) consists of the tuples
(e,a,1,B), (111,8,1, B), and (112, e, 1, B).

3 Web Interface

In this section we will first give a. brief overview of the main parts of ProTeM’s user interface,
subsequently we will describe all features in more detail. The web interface of ProTeM can
be accessed at

http://informatik-protem.uibk.ac.at/

The layout of our application is displayed in Figure 1. At the center of the screen we have a
large area for displaying the history of commands a user has entered (on the left), together
with result output corresponding to these commands (on the right). We also offer the
possibility to export the commands and results of the current session as a simple text file via
the “Session Log” button underneath the output area. Below that there is a smaller panel
where all rules of the currently loaded term rewrite system are displayed. At the bottom
of the screen we have a command line with several buttons above it, that help users enter
unusual symbols such as Greek letters for rule symbols or the L symbol for the orthogonality
predicate on proof terms. To the left of the screen we have a sidebar that gives an overview
of the syntax that is used for commands. In the navigation bar at the top right corner of the
screen we have a link leading to a help page with details about every component and feature
of ProTeM.

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

http://informatik-protem.uibk.ac.at/

C. Kohl and A. Middeldorp

lhs(a),

ProTeM - Proof Term Manipulator

upload TRS file

rhs(a)
loaded example TRS

vars(a) loaded TRS from example2.trs

src(A), tgt(A) A= alh(3(iy(a), i(a)), ala) (h(E(i(y(@)), i@)), @)
co-initial(A, B) B =f(B(i(a), fiv(a)), g(@) (R (i(2), f(v(@)), o(a))
A L B ... orthogonality co-initial(A, B) True
- overlaps(A, B) (e, o, 1, B), (111, 3, 1, B), (112, ., 1, B)
A 0 Deml2l d1 =f(g(h(3(i(i(=)). ia)). fla@N) fath(@(G(@)), i@). flg@)))
A/ Bresidual o 2 (ica), @), g@) 1(3(i(), @), g@))
A - B...deletion D =1(=(h(y(f(i(2))), fi(2))), fla@))) f(e(h(y((i(@))), fli(a))), fa(a)))
src*(A) ... labeled source co-initial(A /d1, D) True
merge(a, g) | C=DU(B-d2)/dl) e(hy(iCy(@)), Ty (@), o))
A(A/d1,C) 1

Al(A, B) ... amount of overlap

overlaps(A, B)

-H(aC9) = a(h(x, i@))

‘%(?(h(i(‘)‘ ¥), 1(2))) = hih(y, y), f(z))
i) =2 %

= h(x, 1(v)) = h((T(y)), T())

sg(h(x, y)) = h(x, y)

LT T T

LaTeX macros

overlaps

SN0 D

Figure 1 Screenshot of a ProTeM session.

3.1 Uploading a Term Rewrite System

When first opening the website, a_simple example rewrite system is loaded per default. Users
can upload their own rewrite systems from .trsfiles. The files need to correspond to a
simplified form of the standard TRS-format as described in [6], where only the VAR and
RULES sections are taken into account. Additionally the rule symbols ProTeM should use
can be specified in the file by prepending each rule with its corresponding symbol followed
by a colon. For reference, an example «trs file is available in the help section of the tool. If
one or more rules have no specified rule symbols, ProTeM chooses a new Greek letter for
each rule, starting from «. In cases where there are more than 24 rules, ProTeM begins
to append digits to each Greek letter, e.g..al, 81, v1, When uploading a new rewrite
system, the buttons above the command line will automatically change according to the new
rule symbols.

3.2 Commands

There are two types of commands available, one are assignments, the other computations
on proof terms. Assignments have syntax id = proofterm where id can be any string
and proofterm any valid proof term. Notably it is possible to use nested expressions in
assignments (e.g. C'= D U ((B —d2)/d1), see also Figure 1). Commands for rule symbols
are 1hs(a), rhs(a) and vars(«) where o can be any rule symbol used in the current TRS.
Commands for proof terms include all operations described in Section 2 and their nested
applications. The syntax of these operations is listed in the sidebar of our application.
Commands have to be entered into the text field at the bottom of the screen. The
blue buttons above it can be used to enter special symbols that are used for some of the
commands (like L for orthogonality, or A for measuring the amount of overlap between two
proof terms). In addition there is one orange button for each currently used rule symbol.

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

31:5

FSCD 2018

31:6

ProTeM: A Proof Term Manipulator

When pressing one of the buttons, the corresponding symbol appears in the command line,
with the focus returning immediately to the text field itself so that the user can carry on
typing. A command can be submitted either by pressing enter or by using the “Submit”
button. If the command line contains a valid command, it will be sent to the server and
executed. The result will then be displayed in the output area above. If the command was
not valid (e.g. trying to assign the result of an undefined operation), an error message will
be displayed (see Figure 2 in Appendix A).

3.3 Export to BTEX

A proof term or labeled proof term can be exported as a IXTEX string. To correctly insert proof
terms from ProTeM into a I¥TEX document it is first necessary to add the required macros.
These define colors and provide support for UTF8 encoding of Greek letters. In particular
we define three new commands \pfun, \pvar, \prule which define the representations of
function symbols, variables and rule symbols respectively. The macros can be downloaded
by clicking on the “IXTEX macros” entry in the sidebar. Clicking on any proof term in the
output area will open a popup view, which contains a text field with the ITEX representation
of that proof term (see Figure 3 in Appendix A). It can then be copy-and-pasted into any
document.

4 Implementation Details

The core functionality of ProTeM ds written in Scala. For the web component we used the
Vaadin framework [10]. Vaadin-is'a Java web application framework that makes it easier
for developers who don’t have much experience with web technologies, such as JavaScript,
HTML and HTTP requests, to design responsive and interactive web applications. Vaadin
allows developers to write all required code in pure Java (or any other language that runs on
the JVM). Applications can also be extended with custom HTML or JavaScript and themed
with CSS. From a technological point of view the Ul logic of a Vaadin application runs as
a Java Servlet in a Java application server. On the client side Vaadin uses JavaScript to
render the user interface in the browser-and communicate user events to the server. All
communication is automated and makes heavy use of AJAX (Asynchronous JavaScript and
XML) to make applications as responsive as possible. An additional benefit for our particular
application was that Vaadin autematically stores the state of each user session (as long as
the browser window is open), so that we can provide users with an interactive interface and
still call our Scala functions on the server for all computations on proof terms.

5 Conclusion

In this paper we presented ProTeM, a tool that supports operations on proof terms that
represent multisteps in first-order left-linear rewrite systems. There are several possibilities
to extend the functionality of ProTeM. First of all, adding a composition operation to the
language of proof terms allows to represent rewrite sequences that are not single multisteps.
Equivalence testing and normalization become then interesting questions. Also one could
ask the tool to compute proof terms that represent a given rewrite sequence. Another useful
extension will be automatic support for visualizing co-initial proof terms, like the figure in
Example 1. Dropping the left-linearity requirement will be a challenging task, which requires
the development of new theory.

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

C. Kohl and A. Middeldorp

—— References

1

10

11

12

H.J. Sander Bruggink. FEquivalence of Reductions in Higher-Order Rewriting. PhD thesis,
Utrecht University, 2008.

Nao Hirokawa and Aart Middeldorp. Decreasing diagrams and relative termination. J.
Autom. Reasoning, 47(4):481-501, 2011. doi:10.1007/s10817-011-9238-x.

Nao Hirokawa and Aart Middeldorp. Commutation via relative termination. In Proc. 2nd
International Workshop on Confluence, pages 29-33, 2013.

Gérard P. Huet. Confluent reductions: Abstract properties and applications to term re-
writing systems: Abstract properties and applications to term rewriting systems. J. ACM,
27(4):797-821, 1980. doi:10.1145/322217.322230.

Carlos Lombardi, Alejandro Rios, and Roel de Vrijer. Proof terms for infinitary rewriting. In
Gilles Dowek, editor, Rewriting and Typed Lambda Calculi - Joint International Conference,
RTA-TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 14-17, 2014. Proceedings, volume 8560 of Lecture Notes in Computer Science, pages
303-318. Springer, 2014. doi:10.1007/978-3-319-08918-8_21.

Claude Marché, Albert Rubio, and Hans Zantema. Termination problem data base: Format
of input files. https://www.lri.fr/~marche/tpdb/format.html. Accessed: 2018-17-01.
Julian Nagele. Mechanizing Confluence. PhD thesis, University of Innsbruck, 2017.

Julian Nagele and Aart Middeldorp. Certification of classical confluence results for left-
linear term rewrite systems. In Jasmin Christian Blanchette and Stephan Merz, editors,
Interactive Theorem Proving - 7th International Conference, ITP 2016, Nancy, France,
August 22-25, 2016, Proceedings, volume 9807 of Lecture Notes in Computer Science, pages
290-306. Springer, 2016. doi:10.1007/978-3-319-43144-4_18.

Terese, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

Vaadin framework 8. https://vaadin.com/docs/v8/framework/introduction/
intro-overview.html. Accessed: 2018-17-01.

Vincent van Qostrom. Developing developments. Theor. Comput. Sci., 175(1):159-181,
1997. doi:10.1016/S0304-3975(96)00173-9.

Vincent van Oostrom and Roel C. de Vrijer.~Four equivalent equivalences of reductions.
Electr. Notes Theor. Comput.. Sei., 70(6):21-61, 2002. doi:10.1016/S1571-0661(04)
80599-1.

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

31:7

FSCD 2018

http://dx.doi.org/10.1007/s10817-011-9238-x
http://dx.doi.org/10.1145/322217.322230
http://dx.doi.org/10.1007/978-3-319-08918-8_21
https://www.lri.fr/~marche/tpdb/format.html
http://dx.doi.org/10.1007/978-3-319-43144-4_18
https://vaadin.com/docs/v8/framework/introduction/intro-overview.html
https://vaadin.com/docs/v8/framework/introduction/intro-overview.html
http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://dx.doi.org/10.1016/S1571-0661(04)80599-1
http://dx.doi.org/10.1016/S1571-0661(04)80599-1

31:8 ProTeM: A Proof Term Manipulator

A Additional Screenshots

This appendix contains the screenshots referred to in Sections 3.2 and 3.3.

a2 =f(P(i(a), f(ia)). g(a)) f(B(i(a), f(i(a)), g(a))
D = fe(h(y (@), fi(a)). flo(an) fle(h(y(fi@))), 1i(@)). fla@N)
co-initial(A / d1, D) True
D u((B -d2)/d1) FE((y(ECy @), f(y(@)). fla@N)

A(AJALD U (B-d2 Error: a(a) and f(y(a)) not joinable

o f(g(x) » a(h(x, i(2))
E: g(h(h(i(q, v), f(2))) » hih(y, v), f(2))
y:i(x) =2 x

a2 h(x, f(y)) = h(i(f(y)), f(y))

exg(h(x, y)) = h(x, y)

ElNDnaEmn aan

| C=a(@) uy(a) } l soon

=

1

Figure 2 An invalid assignment; the join operation of these two proof terms is not defined.

A= OOy ey, ndjj, uiay)y ASSIYIITIETIC
B = f(B(i(a). f(y(a)). g(a))) assignment
co-initial(A, B) True
AL1B False
C = B - f(B(i(a). (i), g(a))) fg(h(h(i(i(a)). fy(z))), flala))))
ALC True
alc ~frE6R (@), &), ala)))
ciA CaleX a, (@), i)
sich(a) [pfun{l_{\prule{c}*{0B(pfun{g_{\prule{cd*{1}(pfun{h(ip]'- fao(gat (@)
A(AB 3
ﬂvfer\api(A. B) (e, o, 1, B), (111, 3, 1, B), (112, o0, 1, B)
src#(B) T(gpothptthp2(ipa(i(a)), fio(a))). fa2(g(@))))

Figure 3 Popup view containing the ITEX representation of a labeled proof term.

The official version will be available from July 9, 2018 at:
http://www.dagstuhl.de/dagpub/978-3-95977-077-4

	Introduction
	Proof Terms
	Web Interface
	Uploading a Term Rewrite System
	Commands
	Export to LaTeX

	Implementation Details
	Conclusion
	Additional Screenshots

